
Chaos, Solitons and Fractals 26 (2005) 615–636

www.elsevier.com/locate/chaos
Impulsive control and synchronization
of spatiotemporal chaos q

Anmar Khadra a,1, Xinzhi Liu a,*, Xuemin Shen b

a Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada N2L 3G1
b Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1

Accepted 10 January 2004

Communicated by Prof. Ji-Huaun He
Abstract

The impulsive control of spatiotemporal chaos of a particular type of non-linear partial differential equations has

been investigated. A criterion for the solutions of these partial differential equations to be equi-attractive in the large

is determined and an estimate for the basin of attraction is given in terms of the impulse durations and the magnitude

of the impulses. Extending these results to impulsively synchronize spatiotemporal chaos of the same type of partial

differential equations is explored. A proof for the existence of a certain kind of impulses for synchronization such that

the error dynamics is equi-attractive in the large, is established. A comparison of the developed theoretical model with

other existent numerical models available in the literature has been studied. Several simulation results are given to con-

firm the theoretical results. Moreover, an investigation of the Lyapunov exponents of the error dynamics between

impulsively synchronized spatiotemporal chaotic systems, is done to further confirm the theoretical results.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of impulsive ordinary differential equations and its applications to the fields of science and engineering

have been very active research topics [28–30,43–45], since the theory provides a natural framework for mathematical

modeling of many physical phenomena. Furthermore, impulsive control, which is based on the theory of impulsive dif-

ferential equations, has gained renewed interests recently for its promising applications towards controlling systems

exhibiting chaotic behaviour. In fact, it was realized that, such a control method allows the stabilization of a chaotic

system using only small control impulses, even though the chaotic behaviour may follow unpredictable patterns (in gen-

eral, chaotic signals are broadband, noise like and difficult to predict). Examples include the impulsive control of auton-

omous systems of ODE�s such as Lorenz system and Chua�s oscillator [29,43,45] and non-autonomous chaotic systems
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of ODE�s, such as the Duffing�s oscillator [42], where the stabilization of the chaotic system is achieved in a small region

of the phase space using the notion of practical stability (instead of controlling the non-autonomous chaotic system to

an equilibrium position).

One of the useful applications of impulsive control is the study of impulsive synchronization of two identical chaotic

systems generated by ODE�s. In [34,40,41,44], two autonomous chaotic ordinary differential systems, the drive system

and the response system, have been considered for impulsive synchronization. Samples of the state variables of the drive

system at discrete time instances are used to drive the response system. These samples are called the synchronization

impulses and are employed to impulsively control the error system between the drive and the response systems. The

asymptotic stability of the error dynamics is established, assuring the synchronization between the two systems, and

an upper bound on the time intervals between the impulses is obtained. A generalization of this particular type of syn-

chronization to time-varying impulse intervals has been further developed in [27], where less conservative conditions on

the Lyapunov function are obtained in the sense that it is required to be non-increasing along a subsequence of the

switching. The applications of impulsive synchronization to secure communications have been also developed

[40,41]. Further detailed analysis of impulsive control and impulsive synchronization of chaotic systems are presented

in [23,24,38,39].

Extending the theory of impulsive differential equations to partial differential equations has also gained considerable

attention recently [1–3]. Several differential inequalities are obtained, and asymptotic stability results, comparison re-

sults and uniqueness results involving first order PDE�s and first order partial differential-functional equations are

established using the method of Lyapunov functions (also called energy functions for PDE�s). In addition, numerical

analysis of these first order partial differential equations is also investigated in [18]. This motivates the idea of general-

izing the methods of impulsive control and impulsive synchronization to apply them on spatiotemporal chaotic systems

generated by continuous extended systems. Early attempts of such approach include the synchronization of spatiotem-

poral chaotic systems generated by coupled non-linear oscillators (coupled non-linear ODE�s) [20,22] and impulsive

synchronization of spatiotemporal chaotic systems generated by PDE�s [14,21,22]. Actually the idea of synchronizing

partial differential equations, by applying other methods, such as synchronizing by means of a finite number of local

tiny perturbations selected by an adaptive technique [4,5], or synchronizing by using an extended time-delay auto-

synchronization algorithm [8], or synchronizing by using only a finite number of coupling signals that are given in terms

of local spatial averages (sensor coupling) [15,17,36], are some available methods for spatiotemporal synchronization in

the literature. In fact some detailed study of frequency and phase synchronization of two non-identical PDE�s has also
been done in [5,16].

Due to the fact that the chaotic states in spatiotemporal systems, such as PDE�s, are typically high dimensional,

involving multiple stable and unstable modes, the idea of synchronization becomes a more challenging process when

compared to synchronizing low dimensional chaotic systems produced by ODE�s. For example, most of the coupling

schemes for spatiotemporal synchronization, described earlier, are very difficult to implement experimentally because

either the coupling has to be applied at all spatial points simultaneously or some variable of the driven system has

to be reset to new values at specific points in space [17], unlike synchronizing ODE�s. However, when impulsive syn-

chronization is used, these two issues can be overcome since much smaller subset of points are driven impulsively in

this method, as we shall explain later in this paper. Furthermore, another problem is associated with spatiotemporal

synchronization: PDE�s have inherently complex behaviour associated with them and that it takes them usually longer

to be solved numerically when compared to ODE�s, thus making synchronization a slow process. Although this might

generate problems in implementation, it is believed, on the other hand, that this type of character for PDE�s may lead to

distinct advantages in masking information for secure communication (e.g., many more frequencies are involved in the

mask when a PDE is used). In other words, this might make the transmission of information more secure. Therefore

there has been several attempts to apply this theory to communication as a promising tool towards securing informa-

tion transmission [9–11]. It was realized that [37] making multichannel (ten channels or a hundred channels, for

instance) spread-spectrum communication by synchronizing spatiotemporal chaos, can greatly enhance the communi-

cation efficiency since a large number of informative signals can be transmitted and received simultaneously. It should

be mentioned that employing impulsive synchronization of spatiotemporal chaos in secure communication remains

currently under investigation to see how implementable this method can be.

Unfortunately, there has been no theoretical analysis of impulsive spatiotemporal synchronization to determine the

type of conditions that the impulses must satisfy in order to achieve the desired property of synchronization. Further-

more, the analysis of the Lyapunov exponents of these models has not been yet explored. In order to entertain the idea

of impulsive spatiotemporal synchronization between two continuous-time extended systems of PDE�s, the notion of

equi-attractivity in the large property [24] provides us with the required tool to investigate this type of synchronization

theoretically. It gives the desired description needed to formulate the problem and set up the conditions on the different

parameters of the systems together with the impulse durations and impulse magnitudes. This theoretical development
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will give a solid mathematical explanation (which is not available in the literature) on how and why impulsive synchro-

nization of spatiotemporal chaotic systems works, then we shall compare it with several numerical results known about

this method of synchronization [21,22]. In addition, we shall confirm the theoretical results by developing a technique

which analyzes the Lyapunov exponents of the error dynamics generated from the impulsive synchronization of these

spatiotemporal chaotic systems. This technique is an extension of the method proposed by [13] which deals with systems

of ODE�s only. We shall generalize this technique to PDE�s by incorporating it with the numerical method of lines [33],

and then we shall generate a numerical result representing a sufficient condition for impulsive synchronization. The

numerical result will be consistent with the results obtained from analyzing the same systems theoretically.

In this paper, we study the impulsive control of spatiotemporal chaos of one particular type of non-linear partial

differential equations represented by the Kuramoto–Sivashinsky equation. Sufficient conditions to impulsively control

the chaotic behaviour of the Kuramoto–Sivashinsky equation are derived to reflect upon the requirements to achieve its

equi-attractivity in the large property. These conditions give an estimate on the basin of attraction in terms of the im-

pulse durations and the magnitude of the impulses. Furthermore, we extend the result to impulsively synchronize two

identical one-dimensional Grey–Scott models (Grey–Scott model is a reaction diffusion system). We prove the existence

of a set of matrices Qk, k = 1,2 , . . . , which guarantees that the error dynamics will be driven to zero, i.e., the solutions

are equi-attractive in the large. We also provide a comparison between the theoretical development of this theory with

the numerical analysis available in the literature by running simulations and by investigating the Lyapunov exponents.

The rest of the paper is organized as follows. In Section 2, several classes of functions and definitions are stated. In

Section 3, the impulsive control of the Kuramoto–Sivashinsky equation is studied with some examples. In Section 4,

the impulsive synchronization of two identical Grey–Scott models is investigated and a numerical discussion is pro-

vided. Then in Section 5, the Lyapunov exponents of the error dynamics between two impulsively synchronized

Grey–Scott models are analyzed. Finally, in Section 6, we give concluding remarks.
2. Preliminaries

Consider the impulsive initial boundary value problem presented by the one-dimensional (i.e., one spatial dimen-

sion) nth order partial differential equation given by
ou
ot ¼ f t; x; u; ou

ox ;
o2u
ox2 ; . . . ;

onu
oxn

� �
t 6¼ tk ;

Duðt; xÞ ¼ Qkuðt; xÞ; t ¼ tk

)
t 2 Rþ; k ¼ 1; 2; . . . ;

uð0þ; xÞ ¼ u0ðxÞ; x 2 ½0; L�;
uðt; 0Þ ¼ uðt; LÞ ¼ h1ðtÞ; t 2 Rþ;
ou
ox ðt; 0Þ ¼ ou

ox ðt; LÞ ¼ h2ðtÞ; t 2 Rþ;

..

.

on1 u
oxn1 ðt; 0Þ ¼ on1 u

oxn1 ðt; LÞ ¼ hn1ðtÞ; t 2 Rþ

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð1Þ
for some n1 P 0, where
ou

ot
¼ ou1

ot
;
ou2
ot

; . . . ;
oum
ot

� �T

;

ou

ox
¼ ou1

ox
;
ou2
ox

; . . . ;
oum
ox

� �T

;

o2u

ox2
¼ o2u1

ox2
;
o2u2
ox2

; . . . ;
o2um
ox2

� �T

;

..

.

onu

oxn
¼ onu1

oxn
;
onu2
oxn

; . . . ;
onum
oxn

� �T

;

Duðtk ; xÞ :¼ uðtþk ; xÞ � uðt�k ; xÞ; for all x 2 [0,L], uðtþk ; xÞ ¼ limt!tþk
uðt; xÞ, for a fixed x 2 [0,L], and the moments of im-

pulse satisfy 0 = t1 < t 2 < � � � < t k < � � � and limk!1 tk = 1. The matrices Qk are m · m constant matrices satisfying

kQkk :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðQT

k QkÞ
q

< L1, for every k = 1,2, . . . and some L1 > 0 (kmax(Q
TQ) is the largest eigenvalue of QT Q).
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Let f : Rþ � ½0; L� � Rm � � � � ! Rm be continuous on ðtk ; tkþ1� � ½0; L� � Rm � � � � ! Rm, and fðtþk ; x; u; ou=ox;
o2u=ox2; . . . ; onu=oxnÞ exist for every k = 1,2, . . . Let n = 2 in the above model and assume that f satisfies Lipschitz con-

dition with respect to u, ou/ox and o2u/ox2. Furthermore, assume that there exist functions f1(t,u) and f2(t,u) such that
f1ðt; uÞ 6 fðt; x; u; 0; 0Þ 6 f2ðt; uÞ
for every ðt; x; uÞ 2 ½0; T � � ½0; L� � Rm, where the inequality holds componentwise and T is a positive number, and that

there exist solutions c(t) and q(t) to the systems given by
_cðtÞ ¼ f1ðt; cÞ; t 6¼ 0; tk ; T ; 1 6 k 6 m1;

DcðtkÞ ¼ QkcðtkÞ; 1 6 k 6 m1;

cð0þÞ ¼ c0

8><>:

and 8
_qðtÞ ¼ f2ðt; qÞ; t 6¼ 0; tk ; T ; 1 6 k 6 m1;

DqðtkÞ ¼ QkqðtkÞ; 1 6 k 6 m1;

qð0þÞ ¼ q0;

><>:

respectively, where tm1

6 T . If q0 6 u0(x) 6 c0 on [0,L] and if there exists a function p 2 Cðð0; T Þ � f0; Lg;RþÞ, such
that, for i = 1, . . . ,n1,
pðt; xÞqðtÞ 6 hiðtÞ 6 pðt; xÞcðtÞ;
t5 tk, k = 1,2, . . . ,m1, then there exists a local solution u(t,x) for system (1) satisfying
qðtÞ 6 uðt; xÞ 6 cðtÞ
provided that the original partial differential equation, in (1), without the impulses, has a solution [7]. For x 2 [0,L], let

u(t,x) :¼ u(t,x,u0(x)) be any solution of (1) satisfying u(0+,x) = u0(x) and u(t,x) be left continuous at each tk > 0,

k = 1,2, . . . , in its interval of existence, i.e., uðt�k ; xÞ ¼ uðtk ; xÞ, for every x 2 [0,L].

Definition 1. Suppose that uðt; xÞ : Rþ � ½0; L� ! Rm for some m > 0, where u is of classL2½0; L� with respect to x. Then

kÆk2 of u(t,x) is defined by
kuðt; xÞk2 :¼
Z L

0

kuðt; xÞk2 dx
� �1=2

;

where kÆk is the Euclidean norm. In order to study the dynamics of particular systems whose structures resemble system

(1), we shall introduce the following classes of functions and definitions. Let

ScðMÞ :¼ fu 2 Rm : kuk2 P Mg;
ScðMÞ0 :¼ fu 2 Rm : kuk2 > Mg;
m0ðMÞ :¼ fV : Rþ � ScðMÞ ! Rþ : V ðt; uÞ 2 Cððtk ; tkþ1� � ScðMÞÞ; locally Lipschitz in u and V ðtþk ; uÞ
exists for k ¼ 1; 2; . . .g; where M P 0:
Definition 2. Let M P 0 and V 2 m0(M). Define the upper right derivative of V(t,u) with respect to the continuous por-

tion of system (1), for ðt; uÞ 2 Rþ � ScðMÞ0 and t 5 tk, k = 1,2, . . . , by
Dþ
t V ðt; uÞ :¼ lim

d!0þ
sup

1

d
V t þ d; uþ df t; x; u;

ou

ox
;
o2u

ox2
; . . . ;

onu

oxn

� �� �
� V ðt; uÞ

� 	
:

Definition 3. Solutions of the impulsive system (1) are said to be

(S1) equi-attractive in the large if for each � > 0, a > 0 and t0 2 Rþ, there exists a number T :¼ T(t0, �,a) > 0 such that

ku(t0,x)k2 < a implies ku(t,x)k2 < �, for t P t0 + T;

(S2) uniformly equi-attractive in the large if T in (S1) is independent of t0.

From the definition of equi-attractivity in the large, it can been seen that the solutions of system (1), which possess

this property, will converge to zero, with respect to the kÆk2, no matter how large ku(t0,x)k2 is. In other words,

limt!1ku(t,x)k2 = 0. Moreover, the properties (S1) and (S2) in Definition 3 become identical for autonomous systems
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[24], i.e., when f(t,x,u,ou/ox, . . . ,onu/oxn) = f(x,u,ou/ox, . . . ,onu/oxn). Therefore when dealing with autonomous sys-

tems, the uniform terminology will be automatically removed.

The above definitions will be used heavily in exploring the conditions under which the solutions generated by several

impulsive PDE�s are equi-attractive in the large. We begin by discussing the impulsive control of the Kuramoto–Siva-

shinsky equation.
3. Impulsive control of the Kuramoto–Sivashinsky equation

Consider the impulsive control of the Kuramoto–Sivashinsky equation represented by the impulsive initial boundary

value problem given by
ut þ ðu2Þx þ uxx þ uxxxx ¼ 0; t 6¼ tk
Duðt; xÞ ¼ �qkuðt; xÞ; t ¼ tk ;

�
t 2 Rþ; k ¼ 1; 2; . . . ;

uð0; xÞ ¼ u0ðxÞ; x 2 ½0; L�;
uðt; 0Þ ¼ uðt; LÞ ¼ 0; t 2 Rþ;

uxðt; 0Þ ¼ uxðt; LÞ ¼ 0; t 2 Rþ;

8>>>>><>>>>>:
ð2Þ
where qk > 0, k = 1,2, . . . , andL is the only free parameter. Eq. (2), with the absence of the impulses, exhibits extensive chaos,

which means that the Lyapunov dimension of the attractor grows linearly with the system size L [6], as shown in Fig. 1.

The following lemma gives upper bounds on ku(t,x)k2 and kux(t,x)k2 in terms of kuxx(t,x)k2. This lemma is the well-

known Poincaré inequality described in [31,35].

Lemma 1. Let J = [0,L] and u 2 C2(J). If u(0) = u(L) = 0, then
kuðxÞk2 6
L
p
kuxðxÞk2: ð3Þ
The next Theorem gives the required criteria for system (2) to be equi-attractive in the large. It provides us with a

tool towards impulsively controlling the chaotic behaviour of the Kuramoto–Sivashinsky equation by forcing the solu-

tion to converge to zero.

Theorem 1. Let q = minkqk and Dk+1 = tk+1�tk 6 D, for k = 1,2, . . . and for some D > 0. Then the impulsive Kuramoto–

Sivashinsky Eq. (2) is equi-attractive in the large if
ð1� qÞ2efD < 1; ð4Þ
where f = 1 � (p/L)4.
Fig. 1. Propagation of the solution of the Kuramoto–Sivashinsky equation without the impulses.
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Proof. We shall prove this theorem by choosing an appropriate Lyapunov function V(u(t,x)). Let
V ðuðt; xÞÞ :¼ kuðt; xÞk22 ¼
Z L

0

uðt; xÞ2 dx:
Then, by system (2) with its boundary conditions, by Definition 2 and by applying integration by parts, we obtain,

for all t 2 (tk, tk+1], k = 1,2, . . . ,
Dþ
t V ðuðt;xÞÞ¼

Z L

0

2uðt;xÞutðt;xÞdx¼
Z L

0

ð�4uðt;xÞ2uxðt;xÞ�2uðt;xÞuxxðt;xÞ�2uðt;xÞuxxxxðt;xÞÞdx

¼�4

3
uðt;xÞ3





L
0

�2

Z L

0

uðt;xÞuxxðt;xÞdx�2uðt;xÞuxxxðt;xÞ




L
0

þ2uxðt;xÞuxxðt;xÞ






L

0

�2

Z L

0

uxxðt;xÞ2dx

¼�2

Z L

0

uðt;xÞuxxðt;xÞdx�2

Z L

0

uxxðt;xÞ2dx 6
Z L

0

uðt;xÞ2dxþ
Z L

0

uxxðt;xÞ2dx�2

Z L

0

uxxðt;xÞ2dx

¼kuðt;xÞk22�kuxxðt;xÞk22:
However, by Lemma 1, we have
kuðt; xÞk22 6 L2=p2kuxðt; xÞk22:
Since ux(t,x) satisfies the conditions of Lemma 1, we have once more
kuxðt; xÞk22 6 L2=p2kuxxðt; xÞk22:
Thus
Dþ
t V ðuðt; xÞÞ 6 kuðt; xÞk22 �

p4

L4
kuðt; xÞÞk22 ¼ fV ðuðt; xÞÞ:
Hence, for all t 2 (tk, tk+1], k = 1,2, . . . , we have
V ðuðt; xÞÞ 6 efðt�tkÞV ðuðtþk ; xÞÞ ð5Þ
and
V ðuðtkþ1; xÞÞ 6 efDkþ1V ðuðtþk ; xÞÞ: ð6Þ
Moreover, according to the structure of the impulses defined in (2), we have, for all x 2 [0,L] and k = 1,2, . . . ,
uðtþk ; xÞ ¼ uðtk ; xÞ � qkuðtk ; xÞ ¼ ð1� qkÞuðtk ; xÞ )
Z L

0

uðtþk ; xÞ
2
dx ¼

Z L

0

ð1� qkÞ
2uðtk ; xÞ2 dx:
It follows that
V ðuðtþk ; xÞÞ ¼ ð1� qkÞ
2V ðuðtk ; xÞÞ: ð7Þ
Hence, by using inequalities (6) and (7), we have, for every k = 1,2, . . . ,
V ðuðtkþ1; xÞÞ 6 ð1� qkÞ
2
efDkþ1V ðuðtk ; xÞÞ 6 ð1� qÞ2efDV ðuðtk ; xÞÞ: ð8Þ
By inequalities (4) and (8), we can conclude that
lim
k!1

V ðuðtk ; xÞÞ ¼ 0:
Therefore, by inequality (5), we have, for all t 2 (tk, tk+1] and k = 1,2, . . . ,
V ðuðt; xÞÞ 6 efDkþ1V ðuðtþk ; xÞÞ 6 ð1� qkÞ
2
efDkþ1V ðuðtk ; xÞÞ 6 ð1� qÞ2efDV ðuðtk ; xÞÞ ! 0; as k ! 1:
It follows that
lim
t!1

V ðuðt; xÞÞ ¼ 0:
In other words the solutions to the impulsive Kuramoto–Sivashinsky equation, defined by (2), are equi-attractive in

the large. h
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Remark 1. From Theorem 1, we see the spatiotemporal chaotic behaviour (or when p/L � 1) of the Kuramoto–Siva-

shinsky equation, described by the partial differential equation in (2), is impulsively controlled and the solutions are

driven towards the equilibrium solution u(t,x) = 0, achieving the desired equi-attractivity property. The proof is done

by reducing the problem from a PDE problem into an ODE involving the Lyapunov function V(u(t,x)) which is easier

to handle.

Remark 2. From the proof of Theorem 1, it is concluded that if the ratio p/L is chosen to be strictly greater than 1 (by

taking smaller spatial range L), the solutions of the Kuramoto–Sivashinsky equation will remain equi-attractive in the

large even with the absence of the impulses. A numerical example showing this phenomenon will be given in this section.

However, if p/L < 1, then the impulses are needed to stabilize the system provided that these impulses satisfy the con-

dition stated in Theorem 1.

Remark 3. The condition in Theorem 1 is a sufficient condition but not necessary. In other words, the impulsive partial

differential equation described by system (2) may remain equi-attractive in the large even if inequality (4) is not satisfied.

We shall demonstrate this result in the numerical example given in this section.

Remark 4. Inequality (4) reflects the type of relationship that exists between the magnitude of the impulses (repre-

sented by the parameter q) and the duration of the impulses (represented by the parameter D). Thus the larger the

impulse duration Dk is, the stronger the magnitude of the impulse qk, for all k P K for some K P 1, is required to main-

tain the equi-attractivity property (see Fig. 2). An estimate on the basin of attraction can be obtained by solving for D:
D < Dmax ¼
� lnð1� qÞ2

f
; for 0 < q < 2:
The following numerical examples illustrate Theorem 1 and Remarks 1–4. When L = 50, the Kuramoto–Sivashinsky

equation, given in (2), exhibits chaotic behaviour in both time and space. If we take the magnitude of the impulses to be

qk = q = 0.4, for all k = 1,2, . . . , then Theorem 1 indicates that the maximum impulse duration permissible to guarantee

the equi-attractivity property (i.e., convergence to the equilibrium solution) is given by Dmax � 1.022 s. In other words,

if the impulse durations satisfy Dk < Dmax, k = 1,2, . . . , then limt!1ku(t,x)k2 = 0. This can be shown in Fig. 3, where the

time of the convergence is approximately 0.12 s. In this numerical simulation and the remaining ones in this section, a

MacCormack�s method [25,26], with first forward differencing and then backward differencing to achieve second order

accuracy, is applied. The time step size is taken to be 0.0001 s and the number of spatial points is taken to be 150. More-

over, in all of these simulations, the initial condition is taken to be u0(x) = 0 with strong perturbations in the middle.

Increasing the magnitude of the impulses to qk = q = 0.7, k = 1,2, . . . , the maximum impulse duration predicted by The-

orem 1 becomes Dmax = 2.408 s Fig. 4 shows the convergence of ku(t,x)k2 to zero with impulse duration Dk = D = 0.1 s,

for k = 1,2, . . . , which is consistent with that of Theorem 1. This illustrates the type of relationship that exists between

the impulse durations and the magnitude of the impulses, as mentioned in Remark 4. Furthermore, when applying
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Fig. 2. Basin of attraction of D with respect to q for different values of L.
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Fig. 4. ku(t,x)k2 converging to zero for D = 0.1, qk = q = 0.7 and L = 50.
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impulses with magnitude qk = q = 0.2, k = 1,2, . . . ,Dmax = 0.4463 s, according to Theorem 1, and the impulsive control

of the Kuramoto–Sivashinsky equation can still be achieved with impulse durations given by Dk = D = 0.45 > Dmax (see

Fig. 5). This indicates that condition (4), in Theorem 1, is a sufficient condition but not necessary, as we discussed in

Remark 3. In other words, the equi-attractivity property was still achieved even if the impulses lie outside the basin of

attraction described by Fig. 2. However, if these impulses lie drastically far from the basin of attraction, then the solu-

tions to system (2) will not converge to zero, as shown in Fig. 6, where Dk = D = 1 > Dmax. Finally, we show in Fig. 7,

the convergence of the solutions of the Kuramoto–Sivashinsky equation to zero without the impulses because L = 2 and

(p/L) < 1, as was mentioned in Remark 2.
4. Impulsive synchronization of the Grey–Scott model

We have been successful in using impulsive control methods to control the behaviour of the Kuramoto–Sivashinsky

equation by making its solutions equi-attractive in the large, although the original PDE exhibited spatiotemporal cha-

otic behaviour. We will extend this work and investigate the impulsive synchronization of two identical spatiotemporal

chaotic systems. The Grey–Scott model [32] will be used as the spatiotemporal chaos generator. The coming theory is

definitely applicable to the synchronization of two Kuramoto–Sivashinsky equations as well as any other spatiotempo-

ral chaotic system exhibiting the same structure.
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Fig. 5. ku(t,x)k2 converging to zero for D = 0.45, qk = q = 0.2 and L = 50.
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The Grey–Scott cubic auto-catalysis model is a reaction–diffusion system which corresponds to two reactions which

are both irreversible. This model exhibits mixed mode spatiotemporal chaos and is described by the following

equations.
ou1
ot

¼ �u1u22 þ að1� u1Þ þ d152u1;

ou2
ot

¼ u1u22 � ðaþ bÞu2 þ d252u2;
ð9Þ
where b is the dimensionless rate constant of the second reaction, a is the dimensionless feed rate and d1 and d2 are the

diffusion coefficients. The system size is 2.5 · 2.5 and the boundary conditions are periodic. Detailed stability and bifur-

cation analysis of the above model is given in [32]. Figs. 8 and 9 show the propagation of the solutions u1(t,x) and

u2(t,x) for the one-dimensional case. A forward Euler integration of the finite difference equation, resulting from the

discretization of the diffusion operator, is applied with 257 mesh points and 0.01 integration step size. The initial con-
Fig. 9. Propagation of u2(t,x) in the one-dimensional case for Eq. (9).

Fig. 8. Propagation of u1(t,x) in the one-dimensional case for Eq. (9).
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ditions are chosen to be (u01,u02)
T = (1,0)T with strong perturbations in the middle and the parameters of the system are

taken to be a = 0.028, b = 0.053, d1 = 2 · 10�5 and d2 = 10�5. In the following, we shall discuss the impulsive synchro-

nization of the one-dimensional version of this system with another identical system starting from different initial con-

ditions. In other words, we investigate the synchronization of the chaotic signal u(t,x) = (u1(t,x),u2(t,x))
T, given by
Transmitter :

ou1
ot ¼ �u1u22 þ að1� u1Þ þ d1

o2u1
ox2

ou2
ot ¼ u1u22 � ðaþ bÞu2 þ d2

o2u2
ox2

9=; t 2 Rþ;

uð0; xÞ ¼ u0ðxÞ; x 2 ½0; L�;
uðt; 0Þ ¼ uðt; LÞ ¼ hðtÞ; t 2 Rþ;

8>>>>><>>>>>:
ð10Þ
with the chaotic signal v(t,x) = (v1(t,x),v2(t,x))
T, given by
Receiver :

ov1
ot ¼ �v1v22 þ að1� v1Þ þ d1

o2v1
ox2

ov2
ot ¼ v1v22 � ðaþ bÞv2 þ d2

o2v2
ox2

)
t 6¼ tk ; k ¼ 1; 2; . . . ;

Dvðt; xÞ ¼ �Qkeðt; xÞ; t ¼ tk ; x 2 ½0; L�; k ¼ 1; 2; . . . ;

vð0; xÞ ¼ v0ðxÞ; x 2 ½0; L�;
vðt; 0Þ ¼ vðt; LÞ ¼ ~hðtÞ; t 2 Rþ;

8>>>>>>><>>>>>>>:
ð11Þ
where a, b, d1 and d2 are as defined before, L = 2.5 is the linear extension of the reactor tank, u0(x) and v0(x) are the

initial conditions, h(t) is the periodic boundary condition for the transmitter system, e(t,x) :¼ u(t,x) � v(t,x). Qk are

2 · 2 constant matrices satisfying kQkk < L1, for every k = 1,2, . . . and some L1 > 0. The boundary condition ~hðtÞ de-
scribed at the receiver, is defined by
~hðtÞ :¼ hðtÞ � gðtÞ 1þ
X1
k¼1

ðkI þ Qkk
2k � kI þ Qk�1k

2ðk�1ÞÞHðt � tkÞ
h i( )

; ð12Þ
where gðtÞ ¼ ðg1ðtÞ; g2ðtÞÞ
T 2 C1ðRþÞ, kg(t)k 6 N, for some N > 0 and for all t 2 Rþ, I is the 2 · 2 identity matrix, Q0 is

defined to be the zero matrix (i.e., Q0 = 0) andH(t � tk), k = 1,2, . . . , is the alternative heaviside step function defined by
Hðt � tkÞ ¼
0 if t 6 tk ;

1 if t > tk :

�

According to Eqs. (10)–(12), the error system e(t,x) will be given by
oe1
ot ¼ �u1u22 þ v1v22 � ae1 þ d1

o2e1
ox2

oe2
ot ¼ u1u22 � v1v22 � ðaþ bÞe2 þ d2

o2e2
ox2

)
t 6¼ tk ; k ¼ 1; 2; . . . ;

Deðt; xÞ ¼ Qkeðt; xÞ; t ¼ tk ; x 2 ½0; L�; k ¼ 1; 2; . . . ;

eð0; xÞ ¼ e0ðxÞ; x 2 ½0; L�;
eðt; 0Þ ¼ eðt; LÞ ¼ eHðtÞ; t 2 Rþ;

8>>>>>>><>>>>>>>:
ð13Þ
where e0(t) :¼ u0(t)�v0(t) and
eHðtÞ :¼ gðtÞ 1þ
X1
k¼1

ðkI þ Qkk
2k � kI þ Qk�1k

2ðk�1ÞÞHðt � tkÞ
h i( )

:

Notice that if kI + Qkk 6 L2 < 1, for every k = 1,2, . . . , then
lim
t!1

k eHðtÞk ¼ lim
t!1

khðtÞ � ~hðtÞk ¼ 0:
This is a very important property which will be used in the upcoming theory. Furthermore, Due to the fact that u

and v are both generated by spatiotemporal chaotic systems, we may conclude immediately that they are both equi-

bounded [24]. This will also be a very useful property which will be used in the proof of the next theorem. Thus, using

the above description, to explore the idea of impulsively synchronizing the two systems u and v, reduces to proving that

the error system (13) is equi-attractive in the large or that limt!1ke(t,x)k2 = 0.

We shall state now two lemmas ([19], Theorem 3.1, p. 45 and Corollary 2.2, p 33, respectively) and prove two other

ones in order to establish several results needed in obtaining certain criteria for system (13) to be equi-attractive in the

large.
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Lemma 2. Let p(t) 5 0 and r(t) be given functions for t = ‘,‘ + 1,‘ + 2, . . . , for some ‘ 2 Rþ [ f0g. Then

(a) The solutions of the equation w(t + 1) = p(t)w(t) are given by
wðtÞ ¼ wð‘Þ
Yt�1

s¼‘

pðsÞ:
(b) All solutions of the equation z(t + 1) = p(t)z(t) + r(t) are given by
zðtÞ ¼ wðtÞ
X rðtÞ

EwðtÞ þ C
� 	

;

where
P

is the indefinite sum, E is the shift operator (Ez(t) = z(t + 1)), C is an arbitrary constant and w(t) is any non-zero

solution from part (a).

Lemma 3. If n 2 Zþ [ f0g, than
X
tn ¼ 1

1þ n
Bnþ1ðtÞ þ C;
where Bn are Bernoulli polynomials [19], for all n 2 Zþ [ f0g, and C is an arbitrary constant.

Lemma 4. Let p(t) :¼ q and r(t) :¼ Ktnqt�1 in Lemma 2, for all t = 1,2, . . . (‘ = 1), where 0 < q < 1, n 2 Zþ [ f0g and

K 2 Rþ. Then limt!1z(t) = 0.

Proof. From Lemmas 2 and 3, we can conclude that w(t) = qtw(1) and
zðtÞ ¼ wðtÞ
X rðtÞ

EwðtÞ þ C
� 	

¼ qtwð1Þ
X Ktnqt�1

qtþ1wð1Þ þ C
� 	

¼ Kqt�2
X

tn þ P
h i

¼ Kqt�2 1

nþ 1
Bnþ1ðtÞ þ P

� 	
¼ K

1þ n
Bnþ1ðtÞqt�2 þ PKqt�2;
where C is an arbitrary constant and P = qw(1)C/K. Notice that
lim
t!1

PKqt�2 ¼ 0 and lim
t!1

K
nþ 1

Bnþ1ðtÞqt�2 ¼ 0
(since 0 < q < 1, Bn are Bernoulli polynomials, for all n 2 Zþ [ f0g, and because of L�Hôpital�s rule applied n + 1 times

for the second limit). It follows that limt!1z(t) = 0. h

We can also prove that the type of function chosen for r(t) in Lemma 4 satisfies
lim
t!1

rðtÞ ¼ lim
t!1

Ktnqt�1 ¼ 0
for all n 2 Zþ [ f0g, by applying again L�Hôpital�s rule n times.

Lemma 5. Let f ðu1; u2Þ :¼ u1u22 be defined over the set S ¼ fðu1; u2ÞT 2 R2 : 0 6 ju1j 6 b1 and 0 6 ju2j 6 b2g. Then the

function f satisfies Lipschitz condition on S with Lipschitz constant given by L0 :¼ b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ 4b1

q
. In other words, for every

(u1,u2)T,(v1, v2)T 2 S, we have
jf ðu1; u2Þ � f ðv1; v2Þj 6 L0kðu1 � v1; u2 � v2Þk:
Proof. Since the set S is compact and convex subset of R2 and f has continuous partial derivatives on S, we have, by the

Mean Value Theorem [12], for some c = (c1,c2)
T in the line segment joining (u1,u2)

T and (v1,v2)
T which lies entirely in S,
jf ðu1; u2Þ � f ðv1; v2Þj ¼ krf ðcÞ � ðu1 � v1; u2 � v2Þk 6 krf ðcÞkkðu1 � v1; u2 � v2Þk

¼ kðc22; 2c1c2Þkkðu1 � v1; u2 � v2Þk ¼ jc2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 þ 4c21

q
kðu1 � v1; u2 � v2Þk

6 b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
2 þ 4b2

1

q
kðu1 � v1; u2 � v2Þk;
as required. h
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We establish the following theorem which specifies the type of conditions required to guarantee the convergence of

solutions of system (13) to zero as time approaches infinity.

Theorem 2. Let qk be the largest eigenvalue of (I + Qk)T(I + Qk) and Dk+1 :¼ tk+1 � tk 6 D, for all k = 1,2, . . . and for

some D > 0. In addition, let q :¼ supk qk, d = max(d1,d2),
bi :¼ max sup
t2Rþ

uiðtÞ; sup
t2Rþ

viðtÞ
 !

;

Ei :¼ sup
t2Rþ

oei
ox

ðt; LÞ � oei
ox

ðt; 0Þ




 




for i = 1 and 2,
b :¼ 4b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
2 þ 4b2

1

q
� 2a;
E :¼ maxðE1;E2Þ and F :¼ 2dE=b. If eHðtÞ ¼ ð eH 1ðtÞ; eH 2ðtÞÞT; eH ðtÞ :¼ eH 1ðtÞ þ eH 2ðtÞ with g(t) = (0.5,0.5)T, for all

t 2 Rþ (i.e., g1(t) + g2(t) = 1), and
qebD < 1; ð14Þ
then system (13) is equi-attractive in the large.

Proof. The proof of this Theorem is similar to that of Theorem 1. Choose the Lyapunov function (or energy function)

to be
V ðeðt; xÞÞ :¼
Z L

0

eTðt; xÞeðt; xÞdx ¼
Z L

0

ðe21ðt; xÞ þ e22ðt; xÞÞdx:
In this case, we have, by Eq. (13) and Lemma 5,
Dþ
t V ðeÞ ¼ 2

Z L

0

e1
oe1
ot

þ e2
oe2
ot

� �
dx

¼ 2

Z L

0

�ðu1u22 � v1v22Þe1 � ae21 þ d1e1
o2e1
ox2

þ ðu1u22 � v1v22Þe2 � ðaþ bÞe22 þ d2e2
o2e2
ox2

� 	
dx

6 2

Z L

0

ju1u22 � v1v22ke1j þ ju1u22 � v1v22ke2j
� �

dxþ 2

Z L

0

�ae21 � ðaþ bÞe22
� �

dx

þ 2

Z L

0

d1e1
o2e1
ox2

þ d2e2
o2e2
ox2

� 	
dx

6 4b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
2 þ 4b2

1

q Z L

0

kek2 dx� 2

Z L

0

ae21 þ ðaþ bÞe22
� �

dxþ 2

Z L

0

d1e1
o2e1
ox2

þ d2e2
o2e2
ox2

� 	
dx

6 4b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
2 þ 4b2

1

q
� 2a

� �
kek22 þ 2

Z L

0

d1e1
o2e1
ox2

þ d2e2
o2e2
ox2

� 	
dx:
Apply integration by parts to the second term in the later inequality, we get, for i = 1 and 2,
Z L

0

ei
o2ei
ox2

dx ¼ ei
oei
ox





L
0

�
Z L

0

oei
ox

� �2

dx 6 Ei
eH iðtÞ �

Z L

0

oei
ox

� �2

dx:
Thus
Dþ
t V ðeÞ 6 4b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
2 þ 4b2

1

q
� 2a

� �
kek22 þ 2d1E1

eH 1ðtÞ þ 2d2E2
eH 2ðtÞ � 2dkexk22:
However, �2dkexk22 6 0. Therefore we can conclude that
Dþ
t V ðeÞ 6 4b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
2 þ 4b2

1

q
� 2a

� �
kek22 þ 2d1E1

eH 1ðtÞ þ 2d2E2
eH 2ðtÞ

() DþV ðeÞ 6 bkek2 þ 2dE eH ðtÞ ¼ bV ðeÞ þ 2dE eH ðtÞ () DþV ðeÞ � bV ðeÞ 6 2dE eH ðtÞ:
t 2 t
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By multiplying both sides of the later inequality by e�bt, we obtain
e�btDþ
t V ðeÞ � be�btV ðeÞ 6 2dE eH ðtÞe�bt () Dþ

t e�btV ðeÞ
� �

6 2dE eH ðtÞe�bt:
It implies, by the definition of eH ðtÞ and for every t 2 (tk, tk+1], that
Z t

tþk

Dþ
s e�bsV ðeÞ
� �

ds 6 �Fe�bt eH ðtÞ þFe�btk ~HðtÞ:
Hence, for t 2 (tk, tk+1], we have
V ðeðt; xÞÞ 6 ebDkþ1V ðeðtþk ; xÞÞ þFðebDkþ1 � 1Þ eH ðtÞ ð15Þ
and
V ðeðtkþ1; xÞÞ 6 ebDkþ1V ðeðtþk ; xÞÞ þFðebDkþ1 � 1Þ eH ðtÞ: ð16Þ
On the other hand, for every x 2 [0,L] and every k = 1,2, . . . , we have, by the structure of the impulses given in system

(13),
eðtþk ; xÞ ¼ ðI þ QkÞeðtk ; xÞ () V ðeðtþk ; xÞÞ ¼
Z L

0

eTðtk ; xÞðI þ QkÞ
TðI þ QkÞeðtk ; xÞdx

() V ðeðtþk ; xÞÞ 6 qk

Z L

0

eTðtk ; xÞeðtk ; xÞdx:
i.e.,
V ðeðtþk ; xÞÞ 6 qkV ðeðtk ; xÞÞ: ð17Þ
Substituting inequality (17) into inequalities (15) and (16), we obtain
V ðeðt; xÞÞ 6 qke
bDkþ1V ðeðtk ; xÞÞ þFðebDkþ1 � 1Þ eH ðtÞ ð18Þ
and
V ðeðtkþ1; xÞÞ 6 qke
bDkþ1V ðeðtk ; xÞÞ þFðebDkþ1 � 1Þ eH ðtÞ: ð19Þ
Let Vk :¼ V(e(tk,x)), for every k = 1,2, . . . In this case, we have, by inequality (19) and for every k = 1,2, . . . ,
V kþ1 6 qke
bDkþ1V k þFðebDkþ1 � 1Þ eH ðtÞ 6 qebDV k þFðebD � 1Þ eH ðtÞ:
Since qk < q < 1, for every k = 1,2, . . ., we may conclude that, for every t 2 (tk, tk+1],
FðebD � 1Þ eH ðtÞ < Fqk�1:
Hence
V kþ1 6 qebDV k þFqk�1: ð20Þ
Define V1 :¼ V 1 and Vkþ1 :¼ qebDVk þFqk�1, for k = 1,2, . . . This implies, by inequality (20) and induction, that

V k 6 Vk , for all k = 1,2, . . . However, by Lemma 4 and inequality (14), we have limk!1Vk ¼ 0. i.e., limk!1Vk = 0.

Therefore
lim
k!1

V ðeðtk ; xÞÞ ¼ 0;
which, in turn, implies that, by inequality (18),
lim
t!1

V ðeðt; xÞÞ ¼ 0:
In other words, solutions to system (13) are equi-attractive in the large, as required. h

Remarks 3 and 4, from the previous section characterizing the KS model, are also suitable for this model, especially

Remark 3 which reflects the fact that the conditions stated in Theorem 2 are sufficient conditions but not necessary. In

addition, we have the following three remarks.

Remark 5. The existence of the parameters Ei, i = 1,2, indicates that the solution surfaces of the impulsive Grey–Scott

model are bounded and that the frequency of the oscillations of the solution surfaces, at the boundary, is also bounded

(i.e., boundary oscillations of the solution surfaces do not increase with time). This is consistent with the properties of
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the Grey–Scott model and the boundary conditions corresponding to it. Therefore the existence of the parameters E1

and E2 is guaranteed.

Remark 6. Theorem 2 can be extended to the two-dimensional Grey–Scott model described by system (9), although the

theory is more complicated due to the use of double integrals for the evaluation of the Lyapunov functions (or energy

functions).

Remark 7. Theorem 2 assures the existence of the matrices Qk, k = 1,2, . . . , which will guarantee the convergence of

solutions of the error system (13) to the equilibrium solution. Obtaining an estimate on q is done numerically upon

knowing the other parameters of the system. In this case, an approximation of the basin of attraction for D can be

obtained with this numerical value of q.

We show now several numerical simulations to confirm the results obtained in Theorem 2. The numerical method ap-

plied in these simulations is the forward Euler integrations of the finite-difference equations. As in the simulations of sys-

tem (10), the integration step size in these simulations is taken to be 0.01 s and the number of spatial points is taken to be

257. Moreover, the initial conditions in these simulations are taken to be (u01(x),u02(x))
T = (1,0)T with strong perturba-

tions in the middle and (v01(x),v02(x))
T = (1,0)T as well but with significantly different perturbations in the middle from

the transmitter system. The remaining parameters of the error system are the same as described for the simulations of sys-

tem (10). If the impulse durations are taken to be Dk = D = 0.1 s, for all k = 1,2, . . . , then the solutions converge to zero by

choosing Qk = Q = �0.5I, for all k = 1,2, . . . Fig. 10 shows the quick convergence of the error dynamics to zero in 0.9 s,

which is consistent with that of Theorem 2. It should be mentioned that with the discretization chosen above and the the-

oretical model represented by Eq. (13), the impulses are applied at every discrete point in the spatial direction x at every tk,

k = 1,2, . . . In other words, in the numerical model shown here, the impulses are applied on the 257 discrete spatial points

corresponding to every tk, k = 1,2, . . . This explains the quick convergence of solutions to zero. However, in [21,22], it was

observed (with an example) that the numerical model obtained from the discretization of systems (10) and (11) (and hence

the error system Eq. (13)) impulsively synchronize without the need to drive all of the 257 spatial points. i.e., the synchro-

nization of the discrete models approximating systems (10) and (11) synchronize even by driving much smaller number of

points in the spatial direction for every tk, k = 1,2, . . . We confirm this result by showing two different examples with the

same value for D andQ. In the first example, we drive 32 spatial points in the e1 and e2 directions simultaneously, for every

tk, k = 1,2, . . . Fig. 11 shows how the error system converges to zero very slowly. In fact the convergence is significantly

faster if the impulses are applied at the 32 spatial points but in the e2 direction only (i.e., Q = diag(0,�0.5)), as shown in

Fig. 12. This is a significant difference between the theoretical model presented earlier and the numerical model shown in

the simulations. The reason for the numerical models to show convergence is that the equations obtained by discretization

are coupled equations. Thus if the impulse is applied at one particular discrete point, then the neighboring points are also

affected because of the coupling factor. This does not hold in the theoretical (or continuous model), because impulses are

applied in a continuousmanner and it is impossible to apply impulses at discrete points (since the solutions, in this case, are

hypersurfaces). In the next section, we shall explain the reasons behind the convergence behaviour in Figs. 11 and 12, by

employing the numerical method of lines, for solving PDE�s, and the Lyapunov exponents analysis.
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Fig. 10. ke(t,x)k2 converging to zero for D = 0.1 and Qk = Q = �0.5I.
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Fig. 11. ke(t,x)k2 converging to zero for D = 0.1, and Qk = Q = �0.5I with impulses applied at 32 spatial points in the direction of e1
and e2.
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Fig. 12. ke(t,x)k2 converging to zero for D = 0.1, and Qk = Q = diag(0,�0.5) with impulses applied at 32 spatial points in the direction

of e2 only.
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5. Lyapunov exponents analysis

We have developed in the previous section a scheme for impulsively synchronizing two Grey–Scott models. This was

done by applying analytical methods which generated sufficient conditions on the impulses and on the parameters of the

systems involved. Enforcing these conditions guarantees equi-attractivity in the large property of the error dynamics

between the two Grey–Scott models. It remains to investigate how this method behaves when we analyze the error

dynamics numerically. In other words, we need to check the Lyapunov exponents of the synchronization error systems

developed in the previous section and see if the results are consistent with the theoretical results we have already ob-

tained in Theorem 2. Due to the fact that impulsive systems have a unique character represented by jump discontinuities

at the moments of impulse, the classical approach of finding Lyapunov exponents of the error dynamics is not appli-

cable in this case. We shall, therefore, apply a different technique, proposed in [13], to study the dynamics of the syn-

chronization error systems described by ODE�s. However, in this section, we shall extend this technique to analyze the

Lyapunov exponents of error dynamics between two identical spatiotemporal chaotic systems. Then we shall introduce

an illustrative numerical example employing the Gray–Scott model to show how the technique works. The theory will

depend on the numerical method of lines for PDE�s to develop the technique.
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Fig. 13. A scheme showing the structure of the impulses.
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We shall concern ourselves with unidirectional-coupling in impulsive synchronization. In other words, one system

will impulsively drive the other but not vice versa. In a uni-coupled synchronization scheme, we transmit the impulses

sampled from one state variable of the driving system to the response system (driven system). To avoid clutter, and

without loss of generality, we study the case when impulse samples are equidistant. Let D and P denote the period

and the width of the impulse samples, respectively. Note that D and P must satisfy P � D and the area enclosed by

the impulse is equal to 1 (see Fig. 13). We begin our discussion by first dealing with the case when we have impulsive

driving along the whole spatial direction x. i.e., using the discretization we mentioned in the previous section, where

every discrete spatial point, at every moment tk, k = 0,1, . . . , is driven. The set of matrices Qk, k = 0,1, . . . , will be cho-
sen to be
Qk ¼ Q ¼
�I O1

O2 O3

� �
;

where I is an ‘ · ‘ identity matrix and O1, O2 and O3 are the ‘ · m, m · ‘ and m · m zero matrices, respectively

(‘ + m = n). This motivates us to split the drive system into two dynamical models: one which corresponds to the period

given by P and the other which corresponds to the period given by D�P. Let u :¼ (u1,u2)
T, where u1 = (u11,u12, . . . ,u1‘)

T

and u2 = (u21,u22, . . . ,u2m)
T. In this case, the general form of the driving system will be given by
ou1
ot ¼ pðu1; u2; u1x; u2x; . . .Þ;
ou2
ot ¼ qðu1; u2; u1x; u2x; . . .Þ;

(
ð21Þ
where we have assumed that p and q are both independent of the time variable t and the spatial variable x, an assump-

tion which is consistent with the models discussed in this paper. However, for the response system, we have two sets of

time intervals to consider.

• For all x 2 [0,L] and for t 2 [kD,kD + P), k = 0,1, . . . , we have
Response system A
u01 ¼ u1;
ou0

2

ot ¼ qðu1; u02; u01x; u02x; . . .Þ:

(
ð22Þ
• For all x 2 [0,L] and for t 2 [kD + P, (k + 1)D), k = 0,1, . . . , we have
Response system B

ou0
1

ot ¼ pðu01; u02; u01x; u02x; . . .Þ;
ou0

2

ot ¼ qðu01; u02; u01x; u02x; . . .Þ:

8<: ð23Þ
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It follows, from systems (22) and (23), that the synchronization error will be given by

• For response system A: with x 2 [0,L] and t 2 [kD,kD + P), k = 0,1, . . . , we have
e1 ¼ 0;
oe2
ot ¼ qðu1; u2; u1x; u2x; . . .Þ � qðu1; u02; u01x; u02x; . . .Þ:

�
ð24Þ
• For response system B: with x2[0,L] and t2[kD + P,(k + 1)D), k = 0,1, . . ., we have
oe1
ot ¼ pðu1; u2; u1x; u2x; . . .Þ � pðu01; u02; u01x; u02x; . . .Þ;
oe2
ot ¼ qðu1; u2; u1x; u2x; . . .Þ � qðu01; u02; u01x; u02x; . . .Þ:

(
ð25Þ
Notice that systems (24) and (25) are partial differential equations. Therefore applying the same derivations given in [13]

is not feasible even with use of the norm given in Definition 1. This is due to the presence of the spatial derivatives

uix,uixx, . . ., i = 1,2. Therefore in order to implement the same techniques discussed in [13], we need to apply the numerical

method of lines for integrating partial differential equations [33]. This method is based on transforming the spatial deriv-

atives uix,uixx, . . . , i = 1,2, into finite difference expressions (discretization). In other words, systems (24) and (25) are trans-

formed into a system of N ordinary differential equations, where N depends on the number of spatial points in the

discretization process. The new system of ODE�s, which approximates the dynamics of the system of PDE�s, will be used
to discuss the dynamics of the synchronization error. In this case, the synchronization error, (e1,e2)

T, will be given by

• For response system A: with t 2 [kD,kD + P), k = 0,1, . . . , we have
e1 ¼ 0;

_e2 ¼ ~qðu1; u2Þ � ~qðu1; u02Þ:

�
ð26Þ
• For response system B: t 2 [kD + P, (k + 1)D), k = 0,1, . . . , we have
_e1 ¼ ~pðu1; u2Þ � ~pðu01; u02Þ;
_e2 ¼ ~qðu1; u2Þ � ~qðu01; u02Þ:

�
ð27Þ
The equations in (26) and (27) are systems of ODE�s that can be approximated by the variational systems, given by
_e ¼ J u1~pðu1; u2Þe1 ð28Þ
and
_e1
_e2

� �
¼ J u1

~pðu1; u2Þ J u2
~pðu1; u2Þ

J u1~qðu1; u2Þ J u2~qðu1; u2Þ

� �
e1

e2

� �
; ð29Þ
respectively, where J stands for the Jacobian matrices of the corresponding functions ~p and ~q. Hence if we let l and k be

the largest Lyapunov exponents of systems (28) and (29), respectively, then the inequality
D :¼ ðl� kÞP þ kD < 0;
represents a sufficient condition to guarantee synchronization (see [13]).

In order to illustrate how the numerical method of lines works and how to incorporate it with the theory of Lyapu-

nov exponents, we shall take the synchronization error between two identical Grey–Scott models discussed in Section 4.

Suppose that samples of the state variable u2 are used to drive the state variable v2 in the response system at the discrete

moments tk, k = 0,1, . . . , for all x 2 [0,L] (here ‘ = m = 1). Obviously, the response system A1, for x 2 [0,L] and

t 2 [kD,kD + P), k = 0,1, . . . , is given by
Response system A1

oe1
ot ¼ �ðaþ u22Þe1 þ d1

o2e1
ox2 ;

e2 ¼ 0:

(
ð30Þ
Applying the finite difference method, to discretize the last term in the first equation of (30), and the periodic boundary

conditions, we get, for j = 1,2, . . . ,255,
_eðjÞ1 ¼ � aþ uðjÞ2

� �2� 	
eðjÞ1 þ d1

eðjþ1Þ
1 � 2eðjÞ1 þ eðj�1Þ

1

ðDxÞ2
;
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where Dx = L/256 (here N = 256). The largest Lyapunov exponent of the latter model is given by l = �0.80867. To eval-

uate the second Lyapunov exponent k, we need to consider the response system B, given by
Response system B

oe1
ot

¼ �ðu1u22 � v1v22Þ � ae1 þ d1

o2e1
ox2

;

oe2
ot

¼ u1u22 � v1v22 � ðaþ bÞe2 þ d2

o2e2
ox2

:

8>><>>: ð31Þ
With the applications of the finite difference method and the periodic boundary conditions, system (31) becomes, for

j = 1,2, . . ., 255,
_eðjÞ1 ¼ � uðjÞ1 uðjÞ2

� �2
� vðjÞ1 vðjÞ2

� �2� 	
� aeðjÞ1 þ d1

eðjþ1Þ
1 � 2eðjÞ1 þ eðj�1Þ

1

ðDxÞ2
;

_eðjÞ2 ¼ uðjÞ1 uðjÞ2

� �2
� vðjÞ1 vðjÞ2

� �2
� ðaþ bÞeðjÞ2 þ d2

eðjþ1Þ
2 � 2eðjÞ2 þ eðj�1Þ

2

ðDxÞ2
:

8>>><>>>: ð32Þ
The variational equation of system (32) is given by
_eðjÞ1 ¼ � aþ uðjÞ2

� �2� 	
eðjÞ1 � 2uðjÞ1 u2ðjÞeðjÞ2 þ d1

eðjþ1Þ
1 � 2eðjÞ1 þ eðj�1Þ

1

ðDxÞ2
;

_eðjÞ2 ¼ uðjÞ2

� �2
eðjÞ1 þ ð2uðjÞ1 u2ðjÞ � a� bÞeðjÞ2 þ d2

eðjþ1Þ
2 � 2eðjÞ2 þ eðj�1Þ

2

ðDxÞ2
:

8>>><>>>: ð33Þ
The largest Lyapunov exponent of system (33) is given by k = 0.0023. Using these values for l and k, one can give an

estimate on the maximum impulse duration permissible to achieve synchronization, provided that a value for the im-

pulse width P is chosen.

The analysis of the case when the impulses are not applied along the whole spatial dimension x, is still very similar to

the above approach. It is done by applying the method of lines first to the PDE�s involved in the model, and creating a

system of ODE�s which will be used to find the Lyapunov exponents of the synchronization error. In the previous sec-

tion, we discussed one particular example employing two identical Grey–Scott models which was motivated by the work

in [20–22]. In that example, the spatial derivatives in the two Grey–Scott models were discretized using the finite dif-

ference method and the resulting ODE�s were integrated numerically using forward Euler integration. The number

of spatial points in that discrete model was 257 points for each given time step ss, s = 1,2, . . . . The impulsive driving

was done at 33 spatial points of the 257 spatial points generated from discretizing the state variable v2. In other words,

taking K = L/32, the values of the impulses were given by
v2ðtþk ; gKÞ ¼ v2ðtk ; gKÞ � �ðu2ðtk ; gKÞ � v2ðtk ; gKÞÞ; ð34Þ
k = 0,1, . . . and g = 0,1, . . . , 32. In the previous section, we showed, through numerical simulations, that the norm of the

error dynamics between the two Grey–Scott models approached zero when � = �0.5. Now suppose that the value of

� = �1 and the method of lines is applied instead. This means that the spatial derivatives are discretized using finite dif-

ference method and the Grey–Scott models are transformed into two systems of 2 · 257 ordinary differential equations.

In this case, 33 equations out of each one of these two systems of ODE�s will be synchronized impulsively using the im-

pulses described by equation (34). In this case, the discretized systems at the transmitter and receiver will be given by
_uð0Þ1 ¼ �uð0Þ1 uð0Þ2

� �2
þ a 1� uð0Þ1

� �
þ d1

2uð0Þ1 � 5uð1Þ1 þ 4uð2Þ1 � uð3Þ1

ðDxÞ2
;

_uð0Þ2 ¼ uð0Þ1 uð0Þ2

� �2
� ðaþ bÞuð0Þ2 þ d2

2uð0Þ2 � 5uð1Þ2 þ 4uð2Þ2 � uð3Þ2

ðDxÞ2
;

_uðjÞ1 ¼ �uðjÞ1 uðjÞ2

� �2
þ a 1� uðjÞ1

� �
þ d1

uðjþ1Þ
1 � 2uðjÞ1 þ uðj�1Þ

1

ðDxÞ2
;

_uðjÞ2 ¼ uðjÞ1 uðjÞ2

� �2
� ðaþ bÞuðjÞ2 þ d2

uðjþ1Þ
2 � 2uðjÞ2 þ uðj�1Þ

2

ðDxÞ2
;

_uð256Þ1 ¼ �uð256Þ1 uð256Þ2

� �2
þ a 1� uð256Þ1

� �
þ d1

2uð256Þ1 � 5uð255Þ1 þ 4uð254Þ1 � uð253Þ1

ðDxÞ2
;

_uð256Þ2 ¼ uð256Þ1 uð256Þ2

� �2
� ðaþ bÞuð256Þ2 þ d2

2uð256Þ2 � 5uð255Þ2 þ 4uð254Þ2 � uð253Þ2

ðDxÞ2

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

ð35Þ
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at the transmitter end, whereas at the receiver end, we have
_vð0Þ1 ¼ �vð0Þ1 vð0Þ2

� �2
þ a 1� vð0Þ1

� �
þ d1

2vð0Þ1 � 5vð1Þ1 þ 4vð2Þ1 � vð3Þ1

ðDxÞ2
;

_vð0Þ2 ¼ vð0Þ1 vð0Þ2

� �2
� ðaþ bÞvð0Þ2 þ d2

2vð0Þ2 � 5vð1Þ2 þ 4vð2Þ2 � vð3Þ2

ðDxÞ2
;

_vðjÞ1 ¼ �vðjÞ1 vðjÞ2

� �2
þ a 1� vðjÞ1

� �
þ d1

vðjþ1Þ
1 � 2vðjÞ1 þ vðj�1Þ

1

ðDxÞ2
;

_vðjÞ2 ¼ vðjÞ1 vðjÞ2

� �2
� ðaþ bÞvðjÞ2 þ d2

vðjþ1Þ
2 � 2vðjÞ2 þ vðj�1Þ

2

ðDxÞ2
;

_vð256Þ1 ¼ �vð256Þ1 vð256Þ2

� �2
þ a 1� vð256Þ1

� �
þ d1

2vð256Þ1 � 5vð255Þ1 þ 4vð254Þ1 � vð253Þ1

ðDxÞ2
;

_vð256Þ2 ¼ vð256Þ1 vð256Þ2

� �2
� ðaþ bÞvð256Þ2 þ d2

2vð256Þ2 � 5vð255Þ2 þ 4vð254Þ2 � vð253Þ2

ðDxÞ2
;

v2ðtþk Þ
ð8�gÞ ¼ v2ðtkÞð8�gÞ � �ðu2ðtkÞð8�gÞ � v2ðtkÞð8�gÞÞ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð36Þ
for j = 1,2, . . . , 255, for g = 0,1, . . . , 32. In other words, the new state variables vðjÞ1 and vðjÞ2 are impulsively synchronized

with the state variables uðjÞ1 and uðjÞ2 , for j = 0,1, . . . , 256, by impulsively driving vð8�gÞ1 and vð8�gÞ2 by the discrete values of

uð8�gÞ1 and uð8�gÞ2 , g = 0,1, . . . , 32, at the moments tk, k = 1,2, . . . If we denote the vector ðuð0Þ1 ; uð8Þ1 ; uð16Þ1 ; . . . ; uð256Þ1 Þ by �x and

the vector consisting of the remaining state variables at the transmitter end by �y, whereas we denote the vector

ðvð0Þ1 ; vð8Þ1 ; vð16Þ1 ; . . . ; vð256Þ1 Þ by �x0 and the vector consisting of the remaining state variables at the receiver end by �y0, then
the theory developed in [13] becomes once more applicable. Thus a typical expression for the response system A2, for

t 2 [kD,kD + P), k = 0,1, . . . , will be given by
�X :¼ �x� �x0 ¼ 0;

_�Y :¼ _�y� _�y
0
:

(
ð37Þ
The variational equation approximating the error dynamics given by (37) can be evaluated and a fourth order

Runge–Kutta method may be used to integrate the resulting variational equation in order to find its largest Lyapunov

exponent. By applying Matlab programming, we found out that the largest Lyapunov exponent of system (37) is given

by l = �0.0242. Unlike the latter description, when t 2 [kD + P, (k + 1)D), k = 0,1, . . . , (i.e., outside the impulse), the

response system will be identical to the response system B obtained in the previous example. Thus the error dynamics

between the ODE�s at the transmitter and receiver are identical to those given by Eq. (32). This means that the value of

k = 0.0023.

Once more, knowing these values of l and k, one may obtain an upper bound on the maximum impulse duration

permissible to achieve synchronization provided that P, the width of the impulse, is known.
6. Conclusion

We have shown that the impulsive control of the solution trajectories of the Kuramoto–Sivashinsky equation and

the impulsive synchronization of two identical Grey–Scott models can be achieved by applying certain kind of impulses.

This is a generalization of the theory of impulsive control from ODE�s to PDE�s. Since PDE�s, which generate spatio-

temporal chaos, have more complex dynamics in comparison with ODE�s, it is expected that the impulsive control and

synchronization of spatiotemporal chaos will have promising applications towards secure communication.
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