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In this paper, a novel technique based on impulsive fuzzy T–S model is proposed for con-
trolling chaotic systems with parameter uncertainties. According to this new model, a uni-
fied methodology for establishing robust stability, asymptotic stability and exponential
stability of impulsive controllers is developed. Various robust stability conditions are pre-
sented in the form of linear matrix inequalities (LMI). A simple iterative algorithm is also
provided for calculating design parameters based on LMI techniques. Finally, a typical
design procedure is developed by using well-known chaotic systems for illustration,
accompanied by several numerical simulations to demonstrate the validity of the proposed
methodology.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Due to recent advances made in the applications of chaos to chemical reactions, power converters, biological systems, infor-
mation processing, secure communications, etc., controlling complex chaotic dynamics for engineering applications has newly
emerged as an attractive field accompanied by rapid development in its theories and methodologies [1–17]. For example, linear
state feedback [2] and Lyapunov-type methods [3] have been used for linear and nonlinear control-design purposes, respec-
tively. In addition, in [4], a feedback linearization technique has been also applied for controlling chaotic systems. Combining
intelligent modeling [5] with chaos control based on fuzzy logic continues to gain more interest in recent years. For example,
Tanaka et al. [6] derived chaotic fuzzy models and designed fuzzy-model-based controllers with the aim of stabilizing or syn-
chronizing these chaotic systems. Similarly, impulsive control methods have been also used widely for the same purposes using
only small control impulses. While these impulsive control techniques offer a direct method for modulating digital information
onto a chaotic carrier signal for spread spectrum applications [7–9], they lack a unified design for controlling different chaotic
systems and fail to emulate human operators. It is interesting to note that impulsive techniques have been combined with fuzzy
T–S models to design appropriate controllers for nonlinear systems [10–12]. Although qualitative theories available in both do-
mains offer vast resources for analyzing these impulsive fuzzy T–S models, the issue of parameter uncertainties in these com-
. All rights reserved.
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plex nonlinear systems remains unresolved. In practical physical systems, the parameters of chaotic systems may not be known
exactly. Their presence may seriously impede system performance, decrease the speed of response and possibly cause chaotic
perturbations in the regular behavior of the system if these controllers are not designed properly. Therefore their effects cannot
be neglected when designing fuzzy T–S models based on chaotic systems with parameter uncertainties. There are several at-
tempts in the literature to study their effects. For instance, in [13], an input–output control scheme was used for chaos suppres-
sion in a class of uncertain chaotic systems, while in [14], an adaptive controller was designed based on Lyapunov stability
theory for a class of chaotic systems with time-varying, unknown and bounded parameters, which led to the global asymptotic
tracking of the desired bounded trajectories. Furthermore, in [15,16], a static output feedback approach was used to stabilize T–
S fuzzy systems with time-varying norm bounded uncertainties, while in [17], an input–output approach based on data ob-
tained from the underlying dynamical system was developed for modeling the adaptive control of an unknown chaotic system.
Finally, in [18], the impulsive control scheme of as uncertain Luré system was also presented. However, there has been very
little research done on the stability and design of impulsive fuzzy-model-based controllers for complex nonlinear systems with
parameter uncertainties so far.

We intend in this paper to study impulsive fuzzy T–S models of chaotic systems with parameter uncertainties. Our main
goal is to develop a unified and intelligent methodology aimed at obtaining various robust impulsive controllers targeting
chaotic systems with uncertainties. In other words, we intend to combine impulsive control techniques with intelligent fuz-
zy logic methodology, so that more powerful controllers that can handle both chaos and parameter uncertainties can be gen-
erated. These newly designed controllers will possess four distinctive features: (1) a class of closed-loop chaotic systems was
robustly stabilized for all admissible uncertainties; (2) the robust stability conditions obtained require only slight modifica-
tions to obtain asymptotic and exponential stability. Even their form remains almost the same; (3) several stability results
are expressed in terms of unified linear matrix inequalities to effectively resolve the issue of control parameters; (4) the
impulsive control of fuzzy models is very simple because it requires only the adjustment of impulsive distances, leading
to the stabilization of various chaotic systems using small control impulses.

This paper is organized as follows. In Section 2, we develop an alternative representation for a class of chaotic systems through
introducing impulses into uncertain T–S fuzzy models to generate a set of uncertain fuzzy impulsive T–S linear systems. By using
this representation scheme, many advanced impulsive-based analysis and design techniques can be slightly modified and em-
ployed for constructing impulsive fuzzy-model-based controllers. In Section 3, we derive sufficient conditions for the synthesis of
these controllers by using impulsive control approaches as well as LMI techniques combined with the application of a convex
optimization technique. We also propose in this section a simple iterative algorithm for calculating the design parameters based
on LMI techniques. Several numerical simulations are carried out in Section 4 to illustrate the proposed method.

2. Preliminaries

The aim of this work is to develop a robust control law for a class of chaotic systems with parameter uncertainties based
on the Takagi–Sugeno (T–S) fuzzy model with impulse effects. In this type of fuzzy model, local dynamics in different state
space regions are represented by linear system models. The overall model of the system is achieved by fuzzy ‘‘blending” of
these linear models. The T–S fuzzy model can express a highly nonlinear functional relation with a small number of rules. In
particular, we are interested in obtaining an exact and unified representation of many chaotic systems in a compact set of
state variables, such as Lorenz, Rössler, Chua, Chen and Lü systems, etc.

Consider a class of chaotic systems, which can be exactly represented in the following unified T–S fuzzy model.
Plea
Com
Rule i : IF z1ðtÞ is Mi1; and z2ðtÞ is Mi2; � � � � � � ; and znðtÞ is Min;

THEN _xðtÞ ¼ AixðtÞ i ¼ 1;2; � � � ; r:
ð1Þ
where Mij is a fuzzy set, zðtÞ ¼ ½z1ðtÞ; z2ðtÞ; � � � ; znðtÞ�T is a premise variable, xðtÞ 2 Rn is a state vector, Ai 2 Rn�n are system
matrices, r is fuzzy rule number.

So far, many chaos controllers have been developed through adding an extra input uðtÞ in each subsystem of (1), that is,
_xðtÞ ¼ AixðtÞ þ uðtÞ [6,14–17]. Recently, a new T–S model with impulse effects has been proposed for chaos control, where
each impulse is viewed as a controller to be designed [10,11]. In this controller, given a set of control instants T ¼ fskg,
sk 2 R, sk < skþ1, k ¼ N, where N is the set of natural numbers. According to our impulsive control strategy, we only need
to modify the changeable state variables at discrete instants called control instants. That is, at each sk, the state variable
x(t) is altered instantaneously by xðsþk Þ ¼ xðs�k Þ þ BixðtÞ, which denotes the ‘‘jump” of the state variable at the instant sk,
where Bi 2 Rn�n, xðsþk Þ is the right limit of xðtÞ at t ¼ sk, and xðs�k Þ is the left limit of xðtÞ, in other words, xðsþk Þ ¼ lim

t!sþ
k

xðtÞ,
xðs�k Þ ¼ lim

t!s�
k

xðtÞ. Based this idea, the impulsive T–S fuzzy of (1) is written as:
Rule i : IF z1ðtÞ is Mi1; and z2ðtÞ is Mi2; � � � � � � ; and znðtÞ is Min;

THEN
_xðtÞ ¼ AixðtÞ; t–sk

DxðskÞ ¼ BixðtÞ; t ¼ sk

�
i ¼ 1;2; � � � ; r; k ¼ 1;2; � � � ð2Þ
where DxðskÞ ¼ xðsþk Þ � xðs�k Þ.
In practice, however, some parameters of chaotic systems cannot be exactly known in priori and uncertainties always

appear in controllers for many reasons, including finite word length in digital systems, the imprecision inherent in analogy
se cite this article in press as: Zhang X et al., Unified impulsive fuzzy-model-based controllers for chaotic systems ...,
mun Nonlinear Sci Numer Simulat (2009), doi:10.1016/j.cnsns.2008.12.007



X. Zhang et al. / Commun Nonlinear Sci Numer Simulat xxx (2009) xxx–xxx 3

ARTICLE IN PRESS
systems, and the need for additional tuning of parameters in the final controller implementation [13–19]. Thus, it is very
interesting to study the design of robust impulsive fuzzy controllers with respect to parameter perturbations. A class of
impulsive T–S chaotic systems with the parameter uncertainties can be given by
Plea
Com
Rule i : IF z1ðtÞ is Mi1; and z2ðtÞ is Mi2; � � � � � � ; and znðtÞ is Min;

THEN
_xðtÞ ¼ ðAi þrAiÞxðtÞ; t–sk

DxðskÞ ¼ ðBi þrBiÞxðtÞ; t ¼ sk

�
i ¼ 1;2; � � � ; r; k ¼ 1;2; � � � ð3Þ
where rAi and rBi are unknown matrices representing the parameter perturbations. In [19], the nonlinear control of a
three-cylinder spark ignition engine with parameter uncertainties was discussed based on the T–S fuzzy model and robust
control approach. In this paper, we use the methods of [19] for representing parameter uncertainties, that is, the parameter
uncertainties are classically written as rAi ¼ DiFiEi, rBi ¼ DiFiEi, where Di, Ei, Di, Ei are known real matrices of appropriate
dimension, Fi, Fi are the unknown matrix functions with Lebesgue-measurable elements and satisfy the conditions:
FT
i Fi 6 I; FT

i Fi 6 I;
where I is the identity matrix of appropriate dimension.
Using classical center-average defuzzification, product inference and singletone fuzzifier, the impulsive fuzzy chaos con-

trol system (3) with parameter uncertainties becomes
_xðtÞ ¼
Pr
i¼1
ðAi þ DiFiEiÞxðtÞ t–sk

DxðskÞ ¼
Pr
i¼1

hiðzðtÞÞðBi þ DiFiEiÞxðtÞ t ¼ sk

8>>><
>>>:

ð4Þ
where hiðzðtÞÞ ¼ xiðzðtÞÞPr

i¼1
xiðzðtÞÞ

; xiðzðtÞÞ ¼
Qn

j¼1MijðzjðtÞÞ; i ¼ 1;2; � � � ; r; and MijðzjðtÞÞ is the grade of membership of zjðtÞ in Mij. Thus
xiðzðtÞÞP 0;
Xr

i¼1

xiðzðtÞÞ > 0; i ¼ 1;2; � � � ; r; hiðzðtÞÞP 0;
Xr

i¼1

hiðzðtÞÞ ¼ 1; i ¼ 1;2; � � � ; r:
Beside the uncertainty of chaotic systems, we discuss in this paper several stability criteria (such as robust stability, asymp-
totic stability, and exponential stability) at the same time. We focus our attention on the designs of several robust controllers
in the form of system (4) such that

(S1) A class of closed-loop chaotic systems is robustly stabilized for all admissible uncertainties.
(S2) The robust stability conditions can only require slight revisions to achieve asymptotic and exponential stabilities of

chaotic systems in such away that their forms remain almost the same.
(S3) Several stability results are expressed in terms of unified linear matrix inequalities to effectively resolve the issue of

control parameters.
(S4) The control method requires only the adjustment of impulsive distances, leading to the stabilization of various chaotic

systems using small control impulses.

Before concluding this section, we recall certain matrix inequalities that will be used in the next section.

Lemma 1. ([22]). Let A; E; F and R be real matrices of appropriate dimensions, with R satisfying kRk 6 1. Then we have

(a) For any scalar k > 0,
ERF þ ETRT FT
6 k�1EET þ kFFT :
(b) For any matrix P > 0 and scalar n > 0 such that nI � FT PF > 0,
ðAþ ERFÞT PðAþ ERFÞ 6 AT PAþ AT PFðnI � FT PFÞ�1FT PAþ n�1ET E:
3. Main results and design algorithm

In this section, we present our main results on the robust stabilization of system (4), and design an iterative algorithm for
calculating control parameters.
se cite this article in press as: Zhang X et al., Unified impulsive fuzzy-model-based controllers for chaotic systems ...,
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Theorem 1. Assume that there exist three positive constants k > 0, n > 0, b > 0, c > 0 and h > 0, and positive definite matrix P, such
that
Plea
Com
ðiÞ
PAi þ AT

i P � hP Ei PDi

ET
i �kI 0

DT
i P 0 �k�1I

2
64

3
75 6 0; i ¼ 1;2; � � � ; r;

ðiiÞ
ðI þ BiÞT PðI þ BiÞ � bPi Di ET

i PðI þ BiÞ
DT

i �n�1I 0

ðI þ BiÞT PEi 0 �ðnI � ET
i PEiÞ

2
664

3
775 6 0; i ¼ 1;2; � � � ; r:
Then the trivial solution of the impulsive fuzzy system (4) is stable if hðskþ1 � skÞ þ lnðbÞ 6 0; asymptotically stable if
hðskþ1 � skÞ þ lnðgbÞ 6 0; and exponentially stable if lnðbÞ < �ðhþ cÞd, where k 2 N and 0 < skþ1 � sk 6 d.

Proof. Consider the following Lyapunov function Vðt; xÞ ¼ xT Px. For t–tk, the time derivative of Vðt; xðtÞÞ along a given solu-
tion trajectory is given by
DþVðt; xðtÞÞ ¼ _xT Pxþ xT P _x ¼
Xr

i¼1

hiðzðtÞÞxT ½ðAT
i P þ PAiÞ þ 2PDiFiEi�x 6

Xr

i¼1

hiðzðtÞÞxTðAT
i P þ PAi þ k�1PDiD

T
i PT þ kET

i EiÞx
Employing Schur criterion to condition (i), we have
PAi þ AT
i P þ k�1PDiD

T
i P þ kET

i Ei 6 hP:
This implies that
DþVðt; xðtÞÞ 6 hxT Px ¼ hVðt; xÞ: ð5Þ
For t ¼ tk, we have
Vðtþk ; xðtþk ÞÞ ¼
Xr

i¼1

hiðzðtkÞxT
k ½ðI þ BiÞ þ DiFiEi�T P

Xr

j¼1

hjðzðtkÞ½ðI þ BjÞ þ DjFjEj�xk

¼
Xr

i¼1

h2
i ðzðtkÞxT

k ½ðI þ BiÞ þ DiFiEi�T P½ðI þ BiÞ þ DiFiEi�xk

þ
X

16i<j6r

hiðzðtkÞhjðzðtkÞxT
kf½ðI þ BiÞ þ DiFiEi�T P½ðI þ BjÞ þ DjFjEj�

þ ½ðI þ BjÞ þ DjFjEj�T PðI þ BiÞ þ DiFiEi�gxk

6

Xr

i¼1

h2
i ðzðtkÞxT

k ½ðI þ BiÞ þ DiFiEi�T P½ðI þ BiÞ

þ DiFiEi�xk þ
X

16i<j6r

hiðzðtkÞhjðzðtkÞxT
kf½ðI þ BiÞ þ DiFiEi�T PðI þ BiÞ þ DiFiEi�

þ ½ðI þ BjÞ þ DjFjEj�T P½ðI þ BjÞ þ DjFjEj�gxk

¼
Xr

i¼1

hiðzðtkÞxT
k ½ðI þ BiÞ þ DiFiEi�T P½ðI þ BiÞ þ DiFiEi�xk ð6Þ
Applying Lemma 1(b) on the right-hand side of (6), we obtain
Vðtþk ; xðtþk ÞÞ 6
Xr

i¼1

hiðzðtkÞxT
k ½ðI þ BiÞT PðI þ BiÞ þ ðI þ BiÞT PEiðnI � ET

i PEiÞ�1ET
i PðI þ BiÞ þ n�1DT

i Di�xk
Similarly, by applying Schur criterion on condition (ii), we get
ðI þ BiÞT PðI þ BiÞ þ ðI þ BiÞT PEiðnI � ET
i PEiÞ�1ET

i PðI þ BiÞ þ n�1DT
i Di 6 bP:
In other words,
Vðtþk ; xðtþk ÞÞ 6 bVðtk; xkÞ ð7Þ
Let xðtÞ � xðt; t0; x0Þ be any solution of (4) satisfying kxðt0Þk < d. It follows that, for any e 2 ð0;1�, we may choose d ¼ dðeÞ > 0
such that c2d

q < c1eqe�ðaþcÞm, i.e.,
Vðt0; xÞ 6 ðc1Þ1=qe: ð8Þ
se cite this article in press as: Zhang X et al., Unified impulsive fuzzy-model-based controllers for chaotic systems ...,
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For any t 2 ðt0; t1�, (4) implies
Plea
Com
Vðt; xÞ 6 Vðt0; xÞ expðhðt � t0ÞÞ:
Using the above inequality, we get
Vðt1; xÞ 6 Vðt0; xÞ expðhðt1 � t0ÞÞ ð9Þ
Inequalities (6) and (8) imply
Vðtþ1 ; xðtþ1 ÞÞ 6 bVðt1; xÞ 6 bVðt0; xÞ expðhðt1 � t0ÞÞ:
Similarly, for t 2 ðt1; t2�, we have
Vðt; xÞ 6 Vðtþ1 ; xÞ expðhðt � t1ÞÞ 6 bVðt0; xÞ expðhðt � t0ÞÞVðtþ2 ; xðtþ2 ÞÞ 6 bVðt2; xÞ 6 bVðtþ1 ; xÞ expðhðt2 � t1ÞÞ
6 b2Vðt0; xÞ expðhðt1 � t0ÞÞ expðhðt2 � t1ÞÞ 6 b2Vðt0; xÞ expðhðt � t0ÞÞ
By employing mathematical induction, we get for any t 2 ðtj�1; tj�,
Vðt; xÞ 6 bjVðt0; xÞ expðhðt � t0ÞÞ: ð10Þ
According to (10), there are three cases to consider: (I) In view of conditions hðsj � sj�1Þ þ lnðbÞ 6 0 and (10), we have
Vðt; xÞ 6 bjVðt0; xÞ expðhðt � t0ÞÞ 6 Vðt0; xÞ expð�hðt1 � t0ÞÞ expð�hðt2 � t1ÞÞ � � � expð�hðtj � tj�1ÞÞ expðhðt � t0ÞÞ
6 Vðt0; xÞ expð�hðtj � t0ÞÞ expðhðt � t0ÞÞ ¼ Vðt0; xÞ expðhðt � tjÞÞ 6 Vðt0; xÞ expðhdÞ
By using (8), the above implies
kxðtÞk 6 1
c1

� �1=2

Vðt0; xÞ expðhd=2Þ 6 e expðhd=2Þ: ð11Þ
Since e; h; d are constants, it follows that (4) is stable. (II) Similar to (11), when dj 6
1
g expð�aðsj � sj�1ÞÞ, we have
Vðt; xÞ 6 bjVðt0; xÞ expðhðt � t0ÞÞ 6
1
g

� �j

Vðt0; xÞ expðhdÞ
and
kxðtÞk 6 1
c1

� �1=2 1
g

� �j=2

Vðt0; xÞ expðhd=2Þ 6 e
1
g

� �j=2

expðhd=2Þ: ð12Þ
Since g > 1, it follows that (4) is asymptotically stable when j!1. (III) When lnðbÞ < �ðhþ cÞd, we have
Vðt; xÞ 6 bjVðt0; xÞ expðhðt � t0ÞÞ 6 expð�ðhþ cÞdÞÞ � � � expð�ðhþ cÞdÞÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{j

Vðt0; xÞ expðhðt � t0ÞÞ
¼ expð�jcdÞÞ expð�jhdÞVðt0; xÞ expðhðt � t0ÞÞ
6 expð�jcdÞÞ expð�h½ðt1 � t0Þ þ ðt1 � t0Þ þ � � � þ ðtj � tj�1Þ�ÞVðt0; xÞ expðhðt � t0ÞÞ
6 Vðt0; xÞ expð�jcdÞÞ expð�hðtj � t0ÞÞ expðhðt � t0ÞÞ ¼ Vðt0; xÞ expð�jcdÞÞ expðhðt � tjÞ
6 Vðt0; xÞ expð�jcmÞÞ expðhdÞ
and
kxðtÞk 6 1
c1

� �1=2

Vðt0; xÞ expð�jcd=2ÞÞ expðhd=2Þ 6 e expð�jcd=2ÞÞ expðhd=2Þ ð13Þ
which implies that (4) is exponentially stable. h

Remark 1. Theorem 1 states that 0 < b < 1 and kI þ Bik < 1. Hence we may choose the matrices Bi to satisfy kI þ Bik < 1, and
then calculate P by using an iterative method. Thus conditions (i) and (ii) of Theorem 1 are linear matrix inequalities with
respect to P.

In the following, we present a design algorithm for calculating the control parameters in Theorem 1.

Algorithm 1. In order to reduce control or implementation cost of chaotic systems, it would be desirable to choose impul-
sive distances as large as possible. Hence, according to Theorem 1, we have to choose h and 0 < b < 1 as small as possible to
guarantee large impulsive distances. Meanwhile, we may choose values for c; k; n > 0 and matrices Bi such that kI þ Bik < 1.
To summarize, the five steps required to stabilize system (3) are
se cite this article in press as: Zhang X et al., Unified impulsive fuzzy-model-based controllers for chaotic systems ...,
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(1) Set a threshold T, initialize h > 0, b > 0 (e.g., by setting h ¼ 5, b ¼ 0:1Þ;
(2) Calculate P by (i) and (ii) of Theorem 1;
(3) Stop if P exists. Otherwise set b ¼ bþ Db;
(4) Repeat from step 2 if b < 1. Otherwise set h ¼ hþ Dh and b equal its initial value;
(5) Repeat from step 2 if h < T . Otherwise fail.

Once the algorithm succeeds, we may determine a bound on the impulsive distances by utilizing the inequality
ðskþ1 � skÞ 6 � lnðbÞ=h. For obtain asymptotical stability, however, Algorithm 1 can be slightly modified by letting
0 < b < 1=g, since ðskþ1 � skÞ 6 � lnðgbÞ=h and g > 1. Similarly, by letting d < � lnðbÞ=ðhþ cÞ in Algorithm 1, the control
parameters for exponential stability can be calculated.
4. Numerical simulations and discussions

In order to illustrate our results, the design algorithm for calculating the control parameters in Theorem 1 is applied on
the Lorenz system and Chua’s oscillator with parameter uncertainties. Before the simulations, we give here the general
three-stage procedure for realizing chaos control. (1) We express the control structures of chaotic systems in the form of
system (3), and set the corresponding parameters including those uncertain ones. In this paper, the elements of rAi and
rBi are randomly chosen within 30% of their nominal values corresponding to BiB and BiB. (2) We apply the iterative algo-
rithm proposed here to calculate the control parameters in Theorem 1, which includes P, b, h and d, etc.. According to these
parameters, we can determine an upper bound on impulse jump distances. (3) We use the Runge-Kutta algorithm for solving
impulsive differential Eq. (4). In the implementation of the Runge–Kutta algorithm, we must add a condition to select and
judgment sentence for controlling the impulse jump. This is jointly determined by impulse jump distance and the time step
of the Runge–Kutta algorithm. In our examples, the integration step-size of the Runge–Kutta algorithm is set at [0,1] and the
time step is chosen to be 0.0001. In the following, we will give two examples for illustrating the effectiveness of our methods.

Example 1. Lorenz system [20]
Plea
Com
_x1ðtÞ ¼ aðx2ðtÞ � x1ðtÞÞ
_x2ðtÞ ¼ bx1ðtÞ � x2ðtÞ � x1ðtÞx3ðtÞ
_x3ðtÞ ¼ �cx3ðtÞ þ x1ðtÞx2ðtÞ

8><
>: :
where x1ðtÞ; x2ðtÞ; x3ðtÞ are the state variables, a, b, c are the system parameters. The Lorenz system is chaotic if a = 10, b = 28,
c = 8/3. We thus have the following impulsive fuzzy control model with parameter uncertainties.

Plant Rule i: IF x1ðtÞ is Mi.
THEN

_xðtÞ ¼ ðAi þrAiÞxðtÞ t–sk

Dxjt¼sk
¼ xðtþk Þ � xðt�k Þ � ðBi þrBiÞxðtÞ t ¼ sk i ¼ 1;2: k ¼ 1;2; � � �

xðtþ0 Þ ¼ x0

8><
>:
where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; x3ðtÞÞT
A1 ¼
�a a 0
b �1 �d

0 d c

2
64

3
75; A2 ¼

�a a 0
b �1 d

0 �d c

2
64

3
75;
B1 ¼ diagð½d11; d12; d13�Þ; d21 ¼ diagð½d21; d22; d23�Þ;M1ðx1ðtÞÞ ¼ 1
2 ð1þ

x1ðtÞ
d Þ, M2ðx1ðtÞÞ ¼ 1

2 ð1�
x2ðtÞ

d Þ. The parameters a; b; c; d11;

d12; d13; d21; d22 and d23 are the system’s parameters, while rAi and rBi represent the bounded parameter uncertainties.
The elements of rAi and rBi are randomly chosen within 30% of their nominal values corresponding to Ai and Bi. Based
on assumption of uncertainty, we define
Di ¼ Di ¼ diagð½0:3;0:3;0:3�Þ; Ei ¼
�a a 0
b �1 0
0 0 c

2
64

3
75; Ei ¼ Biði ¼ 1;2Þ:
In this example, we choose a ¼ 10; b ¼ 28; c ¼ 8=3;B1 ¼ diagð½�0:8;�0:5;�0:7�Þ;B2 ¼ diagð½�0:6;�0:5;�0:6�Þ, and d=30. In
terms of Algorithm 1, we choose initial iteration values for h and b as 5 and 0.1, respectively. Their increments, Dh and Db,
are chosen to be 5 and 0.1. In this case, P=[1.1591, -0.1671, -0.0000; -0.1671,1.6621,-0.0000; -0.0000, -0.0000, 1.2307],
h ¼ 500 and b ¼ 0:5. In other words, to achieve stability, the impulsive distances must satisfy ðskþ1 � skÞ 6 � lnðbÞ=h ¼ 0:0014.

Example 2. Chua’s oscillator [21]
_x1ðtÞ¼ að�x1ðtÞþx2ðtÞ� f ðx1ðtÞÞÞ
_x2ðtÞ¼ x1ðtÞ�x2ðtÞþx3ðtÞ; f ðx1ðtÞÞ¼m1x1ðtÞþm2ðjx1ðtÞþ1j� jx1ðtÞ�1jÞ;
_x3ðtÞ¼ bx2ðtÞ

8><
>:
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Fig. 1. (a) is phase diagram of uncertain Lorenz’s system without control; (b) and (c) are state diagram of uncertain Lorenz’s system under impulsive control
for impulsive distances 0.0014 and 0.001, respectively.
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Fig. 2. (a) is phase diagram of uncertain Chua’s system without control; (b) and (c) are state diagram of uncertain Chua’s system under impulsive control for
impulsive distances 0.0027 and 0.002, respectively.
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where x1ðtÞ; x2ðtÞ; x3ðtÞ are the state variables, a, b, m1, m2 are the system parameters. The Chua’s system is chaotic if a = 10,
b = 14.87, m1 ¼ �0:68, m2 ¼ �0:295. We thus have the following impulsive fuzzy control model with parameter
uncertainties.

Plant Rule i: IF x1ðtÞ is Mi.
Plea
Com
THEN

_xðtÞ ¼ ðAi þrAiÞxðtÞ t–sk

Dxjt¼sk
¼ xðtþk Þ � xðt�k Þ � ðBi þrBiÞxðtÞ t ¼ sk i ¼ 1;2: k ¼ 1;2; � � �

xðtþ0 Þ ¼ x0

8><
>:
where, xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; x3ðtÞ�T ,
A1 ¼
aðd� 1Þ a 0
1 �1 1
0 b 0

2
64

3
75; A2 ¼

�aðdþ 1Þ a 0
1 �1 1
0 b 0

2
64

3
75; /ðx1ðtÞÞ ¼

f ðx1ðtÞÞ=x1ðtÞ x1ðtÞ–0
�0:27 x1ðtÞ ¼ 0

�
;

M1ðx1ðtÞÞ ¼ 0:5ð1� /ðx1ðtÞÞ=dÞ;M2ðx1ðtÞÞ ¼ 1�M1ðx1ðtÞÞ;B1 ¼ diagð½d11; d12; d13�Þ, and B2 ¼ diagð½d21; d22; d23�Þ. The
uncertain matrices rAi and rBi are defined as in Example 1, while
Di ¼ Di ¼ diagð½0:3;0:3;0:3�Þ; Ei ¼
�a a 0
0 0 0
0 b 0

2
64

3
75; Ei ¼ Biði ¼ 1;2Þ:
In this example, we let a = 10, b = �14.87, B1 ¼ diagð½�0:8;�0:5;�0:7�Þ, B2 ¼ diagð½�0:6;�0:5;�0:6�Þ, and d ¼ 3. In
terms of Algorithm 1, we choose the initial iteration values of h and b to be 5 and 0.1, respectively, and their incre-
ments, Dh and Db to be 5 and 0.1. This implies that P=[1.2596 -0.0263 -0.1959;-0.0263 1.2993 -0.0278; -0.1959 -
0.0278 1.3872], and h ¼ 260 and b ¼ 0:5. It follows that the Chua’s oscillator is stable whenever
ðskþ1 � skÞ 6 � lnðbÞ=h ¼ 0:0027.

Based on the above discussions, we are now able to show simulation results of both examples. Fig. 1a shows the phase
diagram of an uncertain Lorenz system without the impulses; (b) and (c), on the other hand, show the time series of an
uncertain Lorenz exposed to a sequence of equidistant impulses with distances of 0.0014 and 0.001, respectively. Similarly,
Fig. 2 shows the same type of simulations for the uncertain Chua’s oscillator with impulsive distances of 0.0027 and 0.002,
respectively.

These simulations reveal that smaller impulsive distances imply faster convergence to the zero equilibrium. They also
show that the impulsive control of fuzzy models is very simple because it requires only the adjustment of impulsive dis-
tances, leading to the stabilization of various chaotic systems using small control impulses.

5. Conclusions

In this paper, a proposed mechanism to combine impulsive fuzzy models with chaos control to generate a class of fuzzy
chaotic systems with parameter uncertainties, have been investigated. Several unified criteria for stability, asymptotic sta-
bility and exponential stability have been presented in the form of LMI so that robust controllers can be solved efficiently by
using programming techniques. In addition, we have also designed an iterative algorithm for calculating control parameters
under various stability conditions based on LMI techniques. We demonstrated how effective this algorithm is by showing
that it is feasible to impulsively stabilize T–S fuzzy models based on chaotic systems by using only small control impulses.
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