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Summary. Planning studies involving diagnostic tests is complicated by the fact that virtually no test
provides perfectly accurate results. The misclassification induced by imperfect sensitivities and specificities
of diagnostic tests must be taken into account, whether the primary goal of the study is to estimate the
prevalence of a disease in a population or to investigate the properties of a new diagnostic test. Previous
work on sample size requirements for estimating the prevalence of disease in the case of a single imperfect
test showed very large discrepancies in size when compared to methods that assume a perfect test. In this
article we extend these methods to include two conditionally independent imperfect tests, and apply several
different criteria for Bayesian sample size determination to the design of such studies. We consider both
disease prevalence studies and studies designed to estimate the sensitivity and specificity of diagnostic tests.
As the problem is typically nonidentifiable, we investigate the limits on the accuracy of parameter estimation
as the sample size approaches infinity. Through two examples from infectious diseases, we illustrate the
changes in sample sizes that arise when two tests are applied to individuals in a study rather than a single
test. Although smaller sample sizes are often found in the two-test situation, they can still be prohibitively
large unless accurate information is available about the sensitivities and specificities of the tests being
used.
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Specificity.

1. Introduction
Consider designing a study to estimate the prevalence of
Strongyloides infection among Cambodian refugees (Joseph,
Gyorkos, and Coupal, 1995a). How large a sample is required
to accurately estimate the prevalence of infection with a diag-
nostic test? If a gold standard (or error-free) diagnostic test
is used to detect Strongyloides, the prevalence can simply be
estimated as the proportion of positive responses on the test.
Accordingly, sample size calculations can be based on meth-
ods for a single proportion (Lemeshow et al., 1990), with vari-
ance based on the binomial distribution. For example, if the
goal of the study is to estimate a (1 − α)% confidence interval
of length l for the prevalence, π, the required sample size, N,
may be calculated as

N =
4Z2

1−α/2π(1 − π)

l2
, (1)

where Z1−α/2 is the 1 − α/2 critical value of the standard
normal distribution. In order to implement formula (1) a
point estimate of π must be provided, which can be ob-
tained from earlier studies or fixed at a conservative estimate
of 0.5. An analogous situation arises in diagnostic accuracy
studies where the sensitivity (probability of a positive result
among truly positive subjects) and specificity (probability
that a truly negative subject tests negatively) of a new di-
agnostic test are to be estimated. If a perfect gold standard
test is available, equation (1) can be implemented separately
for the number of truly positive and truly negative subjects
required.

This idealized situation almost never occurs in practice.
Imperfect tests are frequently used in diagnostic studies be-
cause an error-free test does not exist or its use is not feasible.
Let T be the observed result on a dichotomous diagnostic test
and D be the true disease status. Denoting test sensitivity by
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S = P (T = 1 |D = 1) and test specificity by C = P (T =
0 |D = 0), the probability of obtaining a positive test is p =
πS + (1 − π) (1 − C). Thus, estimating a confidence inter-
val of length l for π is equivalent to estimating a confidence
interval of length |l(S + C − 1)| for p. Expression (1) can be
modified to account for this misclassification, giving

N =
4Z2

1−α/2p(1 − p)

(l(S + C − 1))2 . (2)

There are at least two serious drawbacks to using equa-
tions (1) and (2). First, they require exact point estimates
of all parameters involved, while only ranges of possible val-
ues for these parameters are usually available from previous
studies. Second, in estimating a sample size for π, equation (2)
assumes that the binomial distribution will be used in subse-
quent estimation. This can induce very large biases and con-
fidence intervals that are much too narrow when S and C are
not known exactly, as discussed by Joseph et al. (1995a).

In fact, two imperfect tests for detecting Strongyloides, a
serology test which looks for antibodies in the blood, and
microscopy, which directly looks for the nematode in a stool
sample, are available. Table 1 summarizes the marginal poste-
rior densities from an earlier study (Joseph et al., 1995) which
included N = 162 subjects. The width of the 95% credible in-
terval for the prevalence was almost l = 0.4, suggesting the
need for further study, but how many further subjects should
be tested? No sample size methods have appeared in the liter-
ature to date for the case of two imperfect tests. For a single
gold standard test, equation (1) with the posterior median
value of π = 0.76 and l = 0.1 gives N = 70, and equation (2)
with S = 0.89 and C = 0.67, the posterior median values for
the serology test, gives N = 168. As we will show, neither of
these sample sizes even approach being adequate, even if two
tests are applied, once all uncertainty inherent in the problem
is accounted for. Further, π could be better estimated if the
test properties were better known, but how should one design
a study to estimate test properties in the absence of a gold
standard?

Sample size determination for diagnostic studies based on
confidence intervals or hypothesis tests has been discussed by
Arkin and Wachtel (1990), Lemeshow et al. (1990), Buderer
(1996), and Alonzo, Pepe, and Moskowitz (2002). Frequentist
methods have also been proposed for efficient study designs to
assess diagnostic accuracy (Irwig et al., 1994), for sample size
determination of studies aimed at estimating the sensitivity at
a given false positive rate (Obuchowski and McClish, 1997), or
estimating the area under the receiver operating characteristic

Table 1
Prior distributions for prevalence of Strongyloides and sensitivity and specificity of the

serology and microscopy tests

Prior median
Test Parameter (95% credible interval) Beta (α, β) priors

Prevalence (π) 0.76 (0.52, 0.91) Beta (13.11, 4.59)
Serology test Sensitivity (S1) 0.89 (0.80, 0.95) Beta (58.97, 7.59)

Specificity (C1) 0.67 (0.36, 0.95) Beta (5.23, 2.17)
Microscopy Sensitivity (S2) 0.31 (0.22, 0.44) Beta (22.15, 45.97)

Specificity (C2) 0.96 (0.91, 0.99) Beta (84.09, 3.53)

curve (Hanley and McNeil, 1982). These and other methods
are summarized by Pepe (2003).

Several authors (including Adcock, 1988; Joseph, Wolfson,
and du Berger, 1995b; Joseph, du Berger, and Bélisle, 1997)
have proposed Bayesian criteria for sample size determination
based on posterior variances or credible interval widths. Cri-
teria have also been proposed for studies where the goal is to
maximize an expected utility function (Gittins and Pezeshk,
2000). While attractive in theory, these loss function-based
approaches are often problematic in practice (Joseph and
Wolfson, 1997). Here we focus on Bayesian criteria based
on interval widths, recently reviewed by Adcock (1997) and
Wang and Gelfand (2002). The criteria we use are summarized
in Section 2.

A Bayesian sample size method for prevalence studies using
a single non–gold standard diagnostic test was discussed by
Rahme, Joseph, and Gyorkos (2000). They showed that prior
uncertainty about the sensitivity or specificity of a test can
lead to a much larger sample size, compared to sample sizes
from formulae (1) or (2). They also showed that the noniden-
tifiable nature of this problem results in a “plateauing” of the
average coverage of posterior credible intervals with increasing
sample size. Therefore, in some situations the required cov-
erage may not be attained even with an infinite sample size.
Inferences for similar nonidentifiable problems have recently
been discussed by Gustafson, Le, and Saskin (2001).

In this article we extend the methods of Rahme et al. (2000)
in four directions. First, Section 3 investigates the sample size
problem when two conditionally independent binary diagnos-
tic tests are available. Conditional independence implies that
the two tests are statistically independent conditional on true
disease status, and while it is commonly assumed to hold,
it is difficult to verify in practice. As we will demonstrate,
the addition of a second non–gold standard test can substan-
tially decrease the sample size required for a given accuracy,
although unless test properties are accurately known, very
large sample sizes can still result. Second, Section 4 discusses
the design of studies whose primary goal is the estimation of
test properties rather than prevalence. Third, we employ three
different sample size criteria, rather than the single criterion
previously discussed, and show that the choice of criterion can
have a large impact on the sample size selected. Finally, we
examine what happens to the plateau identified by Rahme
et al. (2000) when a second test is added.

2. Bayesian Sample Size Criteria
Let θ = (θ1, θ2, . . . , θm) denote the unknown parameters in
the study. For example, if we are evaluating two diagnostic
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tests, then we may have m = 5 parameters, including the
prevalence of the condition in the population and the sensi-
tivities and specificities of each of the two tests. Let Θ de-
note the parameter space for θ, and let f(θ) represent the
joint prior distribution over Θ. The experiment provides data
x = (x1, x2, . . . , xN ) ∈ X , where N is the sample size, and the
possibly vector valued components of x represent the data
contributed by each subject. For example, xi = (xi1, xi2) may
denote the test results from two diagnostic tests, with xij = 1
or 0, depending on whether the jth diagnostic test (j = 1, 2)
was positive or negative for the ith subject (i = 1, . . . ,N).

The preposterior predictive distribution of x is given by

f(x) =

∫
Θ

f(x | θ)f(θ) dθ, (3)

and the posterior distribution of θ given x is f(θ |x) =
f(x | θ)f(θ)/f(x), where f(x | θ) is the likelihood of the data
x. Define θ−k = (θ1, θ2, . . . , θk−1, θk+1, . . . , θm), which takes
values in Θ−k . The marginal posterior distribution of the kth
component of θ, k = 1, 2, . . . ,m, is

f(θk |x) =

∫
Θ−k

f(θ |x) dθ−k. (4)

Typically, we summarize the marginal posterior density of
primary interest with a highest posterior density (HPD) or
other posterior credible interval. HPD intervals are the short-
est possible intervals for any given coverage probability (Box
and Tiao, 1973). At the planning stage, we wish for an inter-
val of length l that covers a particular θk, k = 1, 2, . . . ,m with
probability 1 − α. The marginal posterior distribution of θk

depends on the data vector x, which is of course unknown at
the planning stages of the experiment. We can eliminate this
uncertainty in different ways, leading to the following three
criteria.

Average coverage criterion (ACC): Allowing the coverage
probability 1 − α to vary with x while holding the credible in-
terval length, l, fixed leads to a sample size defined by the min-

imum N satisfying
∫
X {

∫ a(x,N)+l

a(x,N) f(θk |x) dθk}f(x) dx ≥ 1 − α.

Here f(x) is given by (3), f(θk | x) is given by (4), and a(x, N) is
the lower limit of the HPD interval of length l for the marginal
posterior density f(θk | x), which in general depends on both x
and N.

Average length criterion (ALC): Conversely, we can al-
low the HPD interval length to vary while fixing the cov-
erage probability. In this case, for each x in X we must
first find the HPD interval of length l ′(x, N) such that∫ a(x,N)+l′(x,N)
a(x,N) f(θk |x) dθk = 1 − α, and the sample size is the

minimum N that satisfies∫
X
l′(x,N)f(x) dx ≤ l, (5)

where l is the required average length. The left-hand side of (5)
averages the lengths of fixed coverage HPD intervals, weighted
by the predictive distribution f(x).

Worst outcome criterion (WOC): A conservative approach
is to ensure a maximum length of l and a minimum cover-
age probability of 1 − α, regardless of the data x that occur.

Thus we choose the minimum N such that infx∈X {
∫ a(x,N)+l

a(x,N) ×

f(θk |x) dθk} ≥ 1 − α. In practice, there is often at least
one data set that leads to very poor accuracy, so that the
WOC sample size is infinite. For example, this is always the
case when sampling from a normal distribution (Joseph and
Bélisle, 1997), and nonidentifiable models are also often prob-
lematic in this sense. Therefore, in this article we use the fol-
lowing modified WOC (MWOC) criterion. Rather than taking
the infinum across all possible data sets, we guarantee the de-
sired length and coverage over a subset S ∈ X such that S has
a given probability. For example, we might choose the sample
size N such that l and 1 − α are guaranteed over 95% of the set
X , according to the predictive distribution (3). We denote this
by MWOC (0.95), or more generally, MWOC (1− γ). Thus
we can avoid the situation of having to select an unnecessarily
large sample size to guard against highly improbable data. As
will be discussed below, looking at sample sizes from a vari-
ety of criteria exposes the tradeoffs between study cost and
accuracy of parameter estimation, and a sample size decision
can be based on this information.

3. Sample Size Determination for Prevalence Studies
In this section, we apply the above criteria to prevalence
studies using two imperfect diagnostic tests. We discuss
the asymptotic limits on the coverage and credible interval
lengths, and provide a detailed example. Once the likelihood
function and prior distribution are specified, the posterior
and predictive distributions are defined, and all criteria of
Section 2 are fully specified. Given, however, that closed forms
are not available for any of the above quantities, and that for
each possible sample size N, averages or maxima over HPD
intervals for all possible data sets x must be considered, the
numerical challenge is considerable, even by modern comput-
ing standards. We briefly outline the algorithms we used to
apply these criteria in practice, with full details appearing in
the Appendix.

3.1 ACC, ALC, and MWOC Sample Sizes When Results from
Two Tests Are Available

Let (T1, T2) denote the outcomes of two conditionally inde-

pendent diagnostic tests, and let N =
∑1

u=0

∑1
v=0 nuv be the

sample size, where nuv is the number of subjects for whom
(T 1 = u, T 2 = v), u, v = 0, 1. Define (Sj , Cj ), j = 1, 2 to be
the sensitivity and specificity of the jth test. The likelihood
function is then proportional to

L = f(n11, n10, n01, n00 |π, S1, C1, S2, C2)

∝ (πS1S2 + (1 − π)(1 − C1)(1 − C2))
n11

× (πS1(1 − S2) + (1 − π)(1 − C1)C2)
n10

× (π(1 − S1)S2 + (1 − π)C1(1 − C2))
n01

× (π(1 − S1)(1 − S2) + (1 − π)C1C2)
n00 .

In order to proceed further, the prior distribution f(π,
S1, C1, S2, C2) must be specified. Following others (Joseph
et al. 1995a; Gustafson et al., 2001; Johnson, Gastwirth, and
Pearson, 2001), we use independent beta prior distributions
for each of the five parameters. Dichotomous tests are some-
times based on an underlying continuous measure; increasing
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values of the cutoff point determining a positive test will si-
multaneously increase the sensitivity and decrease the speci-
ficity of the test. For a given preselected cutoff point, however,
it is reasonable to assume that the sensitivity and specificity
of the test are independent parameters. This choice of prior
distribution is convenient but not unique and may be replaced
by other suitable distributions depending on the context of the
problem. For an alternative model when the tests are possibly
correlated see Dendukuri and Joseph (2001).

With independent beta priors, the marginal posterior den-
sity for π becomes

f(π |n11, n10, n01, n00)

∝
∫
S1,C1,S2,C2

L× παπ−1(1 − π)βπ−1S
αS1−1
1

× (1 − S1)
βS1−1C

αC1−1
1 (1 − C1)

βC1−1

×S
αS2−1
2 (1 − S2)

βS2−1C
αC2−1
2

× (1 − C2)
βC2−1 dS1 dC1 dS2 dC2, (6)

where (απ, βπ) are the parameters of the beta prior distribu-
tion for the prevalence, and (αSj

, βSj
) and (αCj

, βCj
) are the

parameters of the prior distribution over the sensitivity and
the specificity of the jth test (j = 1, 2), respectively. Similarly,
the preposterior predictive distribution for the data is

f(n11, n10, n01, n00)

=

∫
π,S1,C1,S2,C2

L× παπ−1(1 − π)βπ−1S
αS1−1
1

× (1 − S1)
βS1−1C

αC1−1
1 (1 − C1)

βC1−1

×S
αS2−1
2 (1 − S2)

βS2−1C
αC2−1
2

× (1 − C2)
βC2−1 dπ dS1 dC1 dS2 dC2. (7)

Finding the ACC sample size becomes the computational
challenge of finding the minimum N such that∑

{
(n11,n10,n01,n00)

∣∣ ∑
u,v

nuv=N

}

×
{∫ a(x,N)+l

a(x,N)

f(π |x) dπ
}
f(x) ≥ 1 − α,

where x = (n11, n10, n01, n00) is the data vector, f(π | x) is
given by (6), and f(x) is given by (7). This implies that for
each possible sample size N, and for each data vector (n11, n10,
n01, n00), we must derive f(x), f(π | x), and the corresponding
HPD interval for π of length l. Finally, the average coverage
of these intervals, weighted by f(x), must be calculated, and
compared to the desired average coverage. For each data set,
x, we used the Gibbs sampler to sample from the posterior
density f(π | x). To estimate the highest posterior density re-
gion we tried two methods: (1) An exact method based on
the true posterior density, which is a mixture of beta densi-
ties, and (2) an approximate method based on a single best
fitting beta density. The parameters of this density were found
by matching the first two moments of the sample to the mean
and variance of a beta distribution. The single beta approxi-

mation provided the best compromise between accuracy and
efficiency for all criteria, except for the MWOC with very
small γ. We found the average coverage corresponding to a
range of N values, and fit a curve through these points to esti-
mate the required sample size (Müller and Parmigiani, 1995).
Full details of the algorithms used for all criteria are given in
the Appendix.

3.2 Limits on Coverage and Length of Posterior
Credible Interval

The problem of estimating disease prevalence based on the re-
sults of two non–gold standard diagnostic tests is nonidentifi-
able since we have three degrees of freedom but five unknown
parameters (Walter and Irwig, 1988). In order to convert the
problem to an identifiable one, frequentist methods generally
fix two of the five parameters as exactly known. Bayesians are
able to obtain the joint posterior density over all five parame-
ters by using informative prior distributions over at least two
of the five parameters (Joseph et al., 1995a). The marginal
posterior density of each parameter, however, does not con-
verge to a unique point estimate even with an infinite sample
size. This issue can be usefully examined by reparameterizing
the joint posterior distribution in terms of identifiable and
nonidentifiable parameters, as suggested in a different con-
text by Gustafson et al. (2001). Our derivation is similar to
that first described by Gustafson (2002). Let puv = P (T 1 = u,
T 2 = v), u, v = 0, 1, so that

p11 = πS1S2 + (1 − π)(1 − C1)(1 − C2),

p10 = πS1(1 − S2) + (1 − π)(1 − C1)C2,

p01 = π(1 − S1)S2 + (1 − π)C1(1 − C2), and

p00 = 1 − p11 − p10 − p01. (8)

The transformation from (π, S1, C1, S2, C2) to (π, S1, p11, p10,
p01) then results in a joint posterior distribution of the form

f(π, S1, p11, p10, p01 |n11, n10, n01, n00)

=
f(π, S1 | p11, p10, p01)f(p11, p10, p01 |n11, n10, n01, n00)

|π(1 − π)(p11 + p10 − S1)|
,

where the denominator arises from the Jacobian of the trans-
formation. As the total sample size N = n11 + n10 + n01 + n00

increases to infinity, the true values of (p11, p10, p01) become
known. The expression f(π, S1 | p11, p10, p01) however, remains
unaffected by any increase in the sample size, beyond more
accurate conditioning on the puv ’s. The joint prior distribution
of (π, S1, C1, S2, C2) can be reparameterized as

f(π, S1, C1, S2, C2) = f(π, S1, p11, p10, p01)

∣∣∣∣∂(p11, p10, p01)

∂(C1, S2, C2)

∣∣∣∣
= fπ(π)fS1(S1)fC1

(
(1 − p10 − p11) − π(1 − S1)

1 − π

)

× fS2

(
(p01 + p11)(p10 + p11 − S1π) − p11(1 − π)

(p10 + p11 − S1)π

)

× fC2

(
p10 − (1 − p10 − p11)S1

(p10 + p11 − S1)

)∣∣∣∣ 1

π(1 − π)(p11 + p10 − S1)

∣∣∣∣ ,
where fπ(·) denotes the prior density function of π, and fSj

(·)
and fCj (·) denote the prior densities of the sensitivity and
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specificity of the jth test (j = 1, 2), respectively. The asymp-
totic conditional distribution of (π, S1) given p11, p10, p01 is
then

f(π, S1 | p11, p10, p01) =
f(π, S1, p11, p10, p01)

f(p11, p10, p01)

∝ f(π, S1, p11, p10, p01)I(Sπ,S1 |p11,p10,p01),

(9)

where I(·) is the identity function and Sπ,S1 |p11,p10,p01 is a sub-
set of the unit square determined by the values of (p11, p10,
p01). The set Sπ,S1 |p11,p10,p01 is defined in detail in the Ap-
pendix. Therefore the main effect of the observed data is the
reduction of the range of the prior distribution of (π, S1) from
the unit square to the region defined by Sπ,S1|p11,p10,p01 . Inte-
grating out S1, we see that even with an infinite sample size,
the marginal distribution for π does not converge to a single
point. This implies that there is a limit to the accuracy with
which π can be estimated, even with an infinite sample size,
and this limit largely depends on the prior information about
all five unknown parameters. At one extreme, if at least two of
the five unknown parameters are given degenerate prior dis-
tributions that concentrate on one point, then the problem
becomes identifiable, and the prevalence π can be estimated
with any desired precision. This is in fact the basis for most
frequentist methods for estimation in such problems, as dis-
cussed by Walter and Irwig (1988). On the other hand, if
uniform prior densities are given for all five parameters, then
very little can be said about the prevalence, even with an infi-
nite sample size. The asymptotic value of the average coverage
or the average length of HPD intervals for the prevalence can
be obtained from the asymptotic posterior distribution of π
and the predictive distribution of (p11, p10, p01). We adopt a

Table 2
Asymptotic values of ACC, ALC, and MWOC criteria for prevalence of Strongyloides and

corresponding sample sizes. The single test column indicates that serology testing alone is used, while
two tests indicates that both serology and microscopy tests are used. The ∞ indicates that even an

infinite sample size is insufficient to attain the desired accuracy.

Asymptotic coverage Sample size

ACC (1 − α = 0.95) Length Single test Two tests Single test Two tests

0.1 60.3% 69.7% ∞ ∞
0.2 88.4% 94.2% ∞ ∞
0.3 97.4% 99.2% 70 48
0.4 99.5% 99.9% 0 0

MWOC (1 − α = 0.95) Length Single test Two tests Single test Two tests

0.1 58.3% 49.1% ∞ ∞
0.2 87.2% 81.9% ∞ ∞
0.3 96.9% 96.1% 123 ∼90000
0.4 99.4% 99.6% 0 0

Asymptotic length Sample size

ALC (l = 0.2) Coverage Single test Two tests Single test Two tests

99% 0.358 0.257 ∞ ∞
95% 0.259 0.198 ∞ 32809
90% 0.211 0.167 ∞ 378
80% 0.159 0.130 71 46

numerical approach, described in the Appendix. We next pro-
vide examples of sample sizes calculated from all three criteria
along with a demonstration of the effect of the limits on the
possible accuracy of estimation.

3.3 Sample Size Required to Accurately Estimate
the Prevalence of Strongyloides

Table 1 provides the prior beta parameters we used to find
the required sample size. Note that the two tests are comple-
mentary, with the high specificity of microscopy pairing well
with the high sensitivity of serology. To illustrate the advan-
tage of having results from two non–gold standard diagnostic
tests compared to one, we will first calculate the sample sizes
required when the serology test alone is available, and then
observe the differences when both tests are used.

Table 2 provides the ACC, ALC, and MWOC sample sizes
and asymptotic limits of HPD intervals for the prevalence
of Strongyloides infection for one and two tests. Using l =
0.2, the serology test alone provides an asymptotic value of
the average coverage and lower 5% quantile of the coverage
across all HPD intervals of 88.4% and 87.2%, respectively.
The asymptotic average length across all HPD intervals with
95% coverage is 0.259. Thus, when using the serology test
alone it is not possible to satisfy the ACC, ALC, or MWOC
(1 − γ = 0.95) criteria with l = 0.2 and 1 − α = 0.95, even
with an infinite sample size. The addition of the microscopy
test also leads to infinite sample sizes for l = 0.2 and 1 −
α = 0.95 for the ACC and MWOC, but a finite sample size
is obtained for the ALC. With l = 0.3, the asymptotic cov-
erages for the ACC are 97.4% and 99.2% for one and two
tests, respectively, leading to sample sizes of 70 for one test
and 48 for two tests, a reduction of 31% in sample size re-
quirements. For the ALC with coverage of 1 − α = 0.90, the
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asymptotic average length for one test is 0.211, meaning even
an infinite sample size is insufficient, while the addition of a
second test leads to a sample size of 378, and an asymptotic
average length of 0.167. Because the addition of a second test
leads to many more combinations of possible data sets, de-
pending on the prior distribution used for the properties of
the second test, the MWOC asymptotic coverages do not nec-
essarily decrease with the addition of a second test. Because
of this, two tests lead to a smaller MWOC sample size with
l = 0.4, but a larger size with l = 0.3. From Table 1, the prior
length of the highest density interval with coverage 0.95 for
the prevalence is approximately 0.39. Therefore, it is not sur-
prising that no additional sampling is needed to satisfy 1 −
α = 0.95 according to the ACC and MWOC (0.95) criteria
with l = 0.4, whether one or two tests are used.

Overall, these results illustrate the possible benefits of using
a second test in the presence of an imperfect first test. Note,
however, that the total number of tests performed doubles
when a second test is added, so that if the tests are expensive,
using a larger sample size with a single test may be preferred
to the smaller sample size that can be achieved with two tests.
Researchers are also advised of the severe limitations of some
diagnostic tests or combinations of tests, especially if the test
properties are not very accurately known a priori. Performing
appropriate sample size calculations that fully account for all
uncertainty, including imperfect knowledge of test properties,
is therefore crucial.

4. Sample Size Calculations for Sensitivity
and Specificity

As discussed by Alonzo et al. (2002), studies designed to esti-
mate properties of new diagnostic tests differ from prevalence
studies, in that one must first decide whether to use a “case–
control” or a “cohort design.” Below we discuss methods for
cohort designs, where a single sample is assembled and the
diagnostic tests are applied to each member of the sample.
Care is needed in the choice of prior distributions, since one
needs to consider how subjects were recruited to avoid ver-
ification bias (Begg, 1987). Technically similar methods to
those described below apply to case–control designs, since in
the absence of a gold standard test all samples will potentially
contain both positive and negative subjects.

To implement the sample size criteria for estimating sen-
sitivity and specificity, we use methods similar to those dis-
cussed in Section 3.1, the main difference being that we re-
quire the marginal posterior density for S or C, rather than
for π. The sample sizes and asymptotic values of the average
coverage and average length for these parameters can be esti-
mated using a Monte Carlo algorithm similar to that already
discussed for the prevalence, as discussed in the Appendix.
The ranges over which the asymptotic marginal distributions
of the sensitivity and the specificity are defined are also dis-
cussed in the Appendix.

To illustrate our methods we use data from a recently pub-
lished study on the performance of nucleic acid amplification
tests for the detection of Chlamydia trachomatis infection in
3639 men (Johnson et al., 2000). In that study, simultaneous
results were obtained on three different tests for Chlamydia
trachomatis: tissue culture, polymerase chain reaction (PCR),
and ligase chain reaction. Using latent class analysis (Walter

and Irwig, 1988) of the joint results from the three tests we
found the estimated mean (and standard deviation) for the
sensitivity and specificity of the culture test were 0.70 (0.03)
and 0.995 (0.002), respectively. The culture test is known
to have poor sensitivity, even though it is widely used as a
gold standard reference test for evaluating the sensitivity and
specificity of new tests for Chlamydia (Hadgu, 1997).

For comparison, we calculate sample sizes required to esti-
mate the sensitivity and specificity of a new test for Chlamydia
both when culture is treated as a gold standard, and when
the imperfect nature of culture is accounted for. Applying a
Newton–Raphson method to match 95% intervals from beta
densities to the same intervals from the results of the Johnson
et al. study described above, we derived Beta(155.63, 66.15)
and Beta(906.98, 3.63) prior distributions for the sensitivity
and specificity of the culture test, respectively. We assumed a
cohort design, and used uniform Beta(1, 1) prior distributions
over the prevalence and the sensitivity and specificity of the
new test.

Table 3 lists the sample sizes required for estimation of
the sensitivity and specificity when culture is treated as a
gold standard (S = C = 1) and a non–gold standard test
(using the above prior distributions). The resultant sample
size for a cohort study would be the maximum of the indi-
vidual sample sizes for the sensitivity and specificity. When
culture is assumed to be a gold standard there is no differ-
ence in the sample size required for sensitivity or specificity,
since a uniform prior for the prevalence was used. The table
illustrates that ignoring the imperfect nature of culture will
result in unrealistically small sample sizes in all cases. The
poor sensitivity of the culture test leads to many false nega-
tives, meaning that a larger sample size is required for esti-
mating the specificity of the new test compared to the sen-
sitivity. The near perfect specificity of the culture test leads
to a smaller increase in the sample sizes for the sensitivity
compared to assuming culture is a gold standard. It is impor-
tant to note that despite the reasonably accurate prior infor-
mation available for the culture test, in many cases even an
infinite sample size is insufficient to attain the desired accu-
racy. This is especially true for the most conservative MWOC
criterion.

While we used uniform priors, in practice, researchers may
have some idea of the prevalence in their population, and
something may be known about the properties of the new
diagnostic test from previous work. Other prior distributions
may be selected in such cases.

5. Discussion
The vast majority of studies ignore not only the imperfection
in “gold standard” reference tests used, but, perhaps more
importantly, also ignore the uncertainty in the estimates of
the sensitivity and specificity of these tests. This is true both
at the design and analysis phases, leading to sample sizes that
are typically much too small, and final estimates with confi-
dence intervals that are much too narrow. The situation im-
proves somewhat if three or more conditionally independent
tests are available, where latent class models are identifiable
(Walter and Irwig, 1988). The identifiability guarantees con-
vergence of each parameter estimate to the true values as the
sample size increases, and the extra information provided by



394 Biometrics, June 2004

Table 3
Sample size required for estimating sensitivity and specificity of a new test for Chlamydia

trachomatis when the reference test, tissue culture, is treated as a gold standard or
non–gold standard test. The ∞ indicates that even an infinite sample size is insufficient to

attain the desired accuracy.

Gold Non–gold
standard standard

ACC (1 − α = 0.95) Length Sens & spec Sensitivity Specificity

0.1 1298 2261 ∞
0.2 308 492 ∞
0.3 122 194 2014
0.4 61 94 409

MWOC (1 − α = 0.95) Length Sens & spec Sensitivity Specificity

0.1 5671 ∞ ∞
0.2 1370 2788 ∞
0.3 555 973 ∞
0.4 274 495 ∞

ALC (l = 0.2) Coverage Sens & spec Sensitivity Specificity

99% 403 611 4612
95% 189 287 935
90% 129 193 498
80% 74 109 227

a third test tends to lead to smaller sample sizes compared
to one or two tests. Nevertheless, many studies are carried
out with only one or two tests. The methods discussed here
are important to the planning of such studies, since, as our
examples have shown, prohibitively large sample sizes can of-
ten result. Narrower priors on the test properties will typi-
cally result in smaller sample sizes, so it may be worthwhile
to improve knowledge of the test properties before embark-
ing on a large prevalence study. Our methods assume condi-
tional independence between diagnostic tests, i.e., that given
a subject’s true disease state, the test results from the two
tests are independent. This is a reasonable assumption for
tests based on different mechanisms, but we caution that even
larger sample sizes may be required if this condition does not
hold (Dendukuri and Joseph, 2001). Further, we have only in-
vestigated binary tests; further work is required on designing
studies with imperfect multicategorical or continuous tests.

We have discussed three different sample size criteria, which
lead to different sample sizes for any given problem. A natural
question, therefore, is which one to use. Clearly, the MWOC
criterion is more conservative than either the ACC or ALC,
which guarantee the target values for coverage and length only
on average. We have found it useful to calculate the sample
sizes that result from all criteria, including the MWOC (1 − γ)
for various values of γ, to develop a fuller understanding of
the tradeoffs between sample size and the risk of not meeting
target values for l and 1 − α. Based on this information, a
final sample size may be selected. It is especially important for
study designers to appreciate that in many cases the desired
estimation accuracy cannot be attained even with an infinite
sample size. The addition of a second test sometimes alleviates
the problem.

Software for calculating the sample sizes for all methods
developed in this article is available at www.medicine.mcgill.
ca/epidemiology/Joseph.

Résumé

La planification des études relatives à un test diagnostic
est rendue complexe par le fait que virtuellement aucun
test ne fournit de résultats parfaitement précis. Les er-
reurs de classement induites par l’imperfection des sensi-
bilités et des spécificités des tests diagnostics doivent être
prises en considération, que l’objectif principal de l’étude soit
d’estimer la prévalence d’une maladie dans une population
ou d’investiguer les propriétés d’un nouveau test diagnostic.
Un travail antérieur sur la taille d’échantillon requise pour
estimer la prévalence d’une maladie dans le cas d’un seul test
imparfait a montré des différences très importantes de tailles
en comparaison à des méthodes qui supposent un test par-
fait. Dans cet article nous étendons ces méthodes pour inclure
deux tests imparfaits conditionnellement indépendants, et ap-
pliquons différents critères pour la détermination bayésienne
de la taille d’échantillon pour de telles études. Nous con-
sidérons à la fois les études de prévalence de maladies et
les études conçues pour estimer la sensibilité et la spécificité
des tests diagnostiques. Comme le problème est typiquement
non identifiable, nous investiguons les limites de précision
dans l’estimation de paramètres quand la taille d’échantillon
tend vers l’infini. Au moyen de deux exemples dans les mal-
adies infectieuses, nous illustrons les changements de tailles
d’échantillons résultant de l’application de deux tests aux
individus de l’étude plutôt que d’un test unique. Bien que
l’on trouve souvent des tailles d’échantillons plus faibles dans
le cas de deux tests, celles-ci peuvent néanmoins être beau-
coup trop grandes, à moins qu’une information précise soit
disponible sur la sensibilité et la spécificité des tests utilisés.
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Appendix

We used the following numerical approach to estimate the re-
quired sample sizes. The algorithm presented is for the preva-
lence π; similar algorithms were used for the sensitivity and
specificity.

A.1 Monte Carlo Algorithm for Estimating Sample Sizes
According to ACC, ALC, and MWOC Criteria

(1) Sample M1 random values from the joint prior distribu-
tion of (π, S1, C1, S2, C2).

(2) For each quintuplet (πi, S1i, C1i, S2i, C2i), i =
1, . . . ,M 1:

(a) Calculate the probabilities puvi = P (T 1i = u, T 2i =
v), u, v = 0, 1. These probabilities are given by (8).

(b) Select a value for N, the required sample size.
From the multinomial distribution with parameters
(N, (p11i , p10i , p01i , p00i )) draw M2 random values of
(n11, n10, n01, n00). This is equivalent to sampling
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from the preposterior predictive distribution of the
data.

(3) For each (n11ij , n10ij , n01ij , n00ij), i = 1, . . . ,M 1, j =
1, . . . ,M 2, divide the range of the prevalence into M4

intervals of length w (e.g., 0.01). At the center of the
kth interval, πk , estimate the posterior density of π us-
ing either the exact or approximate methods described
below.
The exact method: The exact posterior density at πk is
a mixture of (n11ij + 1)(n10ij + 1)(n01ij + 1)(n00ij + 1)
Beta densities as follows

fk ∝
n11ij∑
j1=0

n10ij∑
j2=0

n01ij∑
j3=0

n00ij∑
j4=0

1

j1!(n11ij − j1)!

× 1

j2!(n10ij − j2)!

1

j3!(n01ij − j3)!

1

j4!(n00ij − j4)!

Beta(αS1 + j1 + j2, βS1 + j3 + j4)

Beta(αC1 + n01ij + n00ij − j3 − j4,

βC1 + n11ij + n10ij − j1 − j2)

Beta(αS2 + j1 + j3, βS2 + j2 + j4)

Beta(αC2 + n10ij + n00ij − j2 − j4,

βC2 + n01ij + n11ij − j1 − j3)

παπ+j1+j2+j3+j4
k (1 − πk)

βπ+N−j1−j2−j3−j4 ,

k = 1, . . . ,M4. (A.1)

The approximate method: This method was developed as
an alternative to the exact method which is very time
consuming, taking several hours for a single sample size
calculation in some cases. The method below is much
more efficient, typically taking less than an hour to find
a sample size, although this varies depending on the
priors and accuracy desired. The posterior mixture of
beta distributions is approximated by a single beta dis-
tribution. In our experience, this approach is typically
sufficiently precise for implementing the ACC and ALC
but not the MWOC (1 − γ) when γ is small.

(a) For each (n11ij , n10ij , n01ij , n00ij), i = 1, . . . ,M 1,
j = 1, . . . ,M 2, obtain a sample of M3 values from
the posterior distribution of π using the Gibbs sam-
pler (Joseph et al., 1995a). Label these values πijk ,
i = 1, . . . ,M 1, j = 1, . . . ,M 2, k = 1, . . . ,M 3.

(b) Estimate the mean and variance of the posterior
distribution of π given (n11ij , n10ij , n01ij , n00ij) as

µij =
∑M3

k=1 πijk/M3 and σ2
ij =

∑M3
k=1(πijk − µij)

2/
M3 − 1, respectively.

(c) The posterior distribution of π is approxi-
mated by a single beta distribution with pa-
rameters αij = −µij(σ

2
ij + µ2

ij − µij)/σ
2
ij and βij =

(µij − 1)(σ2
ij + µ2

ij − µij)/σ
2
ij .

(4) From either of the above posterior distributions (exact
or approximate), we used a Newton–Raphson type al-
gorithm to find the location of the HPD interval. This
involved choosing a lower limit for the interval, say a,

calculating the height of the density curve for π at a and
a + l, and iterating until f(a) = f(a + l). Coverages
were then given by the area under the curve between a
and a + l, either using standard results from the beta
density (approximate method) or Riemann sums (exact
method).

(5) To implement the ACC criterion, compare the average
coverage of HPD intervals of length l to the predeter-
mined value of 1 − α. If the average coverage is greater
(smaller) than 1 − α we return to step 1 and repeat
the algorithm with a smaller (greater) value for N until
the criterion is met. Similarly, to implement the ALC
criterion the average length of the HPD intervals with
coverage 1 − α is compared to l. To implement the
MWOC (1 − γ) criterion we compare the (1 − γ) ×
100 percentile of the coverages to 1 − α.

For sample sizes N1, N2, . . . ,NT covering a range near the
correct sample size, we generated coverages (ci ) and lengths
(li ) using the above algorithms. We then fit the quadratic
model log(li or ci ) = α + β1log(Ni ) + β2{log(Ni )}2 to the
points (Ni , li ) or (Ni , ci ), for the ALC and ACC, respectively.
The final sample size selected as the smallest N on the curve
satisfying the given criterion (Müller and Parmigiani, 1995a).

Increasing the values of M1, M3, and M4 increases the pre-
cision of the sample size estimate, but increasing M2 while
keeping M1, M3, and M4 fixed has little effect on the preci-
sion. If the required coverage or length criterion was not met
at N = 100,000, we reported a sample size of infinity. In prac-
tice, studies this large are very rare.

A.2 Monte Carlo Algorithm to Determine Asymptotic Values
of ACC, ALC, and MWOC

(1) Draw a random sample of size M1 from f(π, S1, C1, S2,
C2).

(2) For each quintuplet of values (πi , S1i , C1i , S2i , C2i ) cal-
culate (p11i , p10i , p01i , p00i ), as given by (8).

(3) For each (p11i , p10i , p01i , p00i ) the joint posterior distri-
bution of (π, S1) is given by (9). To obtain the marginal
posterior distribution of π we need to integrate (9) with
respect to S1. This can be done using standard numer-
ical integration.

(4) For each (p11i , p10i , p01i , p00i ) the coverage (ci ) of the
HPD interval of length l, or the length (li ) of the HPD
interval with coverage 1 − α can be obtained as follows:
Divide the domain of π into K subintervals of length w.
The probability of π being in the kth interval is esti-
mated by Ak = f(πk | p11i, p10i, p01i, p00i) × w, where
πk is the midpoint of the kth interval. The Ak values
are sorted in descending order as A(1), A(2), . . . ,A(K ).
The coverage of the HPD region of length l is then es-

timated by ci =
∑K∗

1
k=1 A(k), where K

∗
1 = max{k : k ×

w ≤ l}. Similarly, the length of the HPD region of
coverage 1 − α is estimated by li = K

∗
2 × w where

K∗
2 = min{k :

∑k

k′=1 A(k′) ≥ 1 − α}.
(5) The asymptotic value of the average coverage is esti-

mated by 1
M1

∑M1
i=1 ci. The asymptotic value of the aver-

age length is estimated by 1
M1

∑M1
i=1 li. The asymptotic

value of the MWOC (1 − γ) criterion is estimated by
the (1 − γ) × 100 quantile of the ci ’s.
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A.3 Asymptotic Domains of π, S1, and C1 When
a Single Test Used
Let p denote the probability of a positive test. The trans-
formation from (π, S1, C1) to (π, S1, p) implies that C1 =
1 − (p− πS1)/(1 − π). The subset in which the joint poste-
rior distribution, f(π, S1 | p), is defined is given by

Sπ,S1 |p = {(π, S1) : 0 < π,S1, C1 < 1}

= {(π, S1) : 0 < π,S1 < 1}

∩ {(π, S1) : π(1 − S1) < 1 − p} ∩ {(π, S1) : πS1 <p}.

The range of f(π, C1 | p) can be obtained by replacing S1 by
(1 − C1) and π by 1 − π in Sπ,S1 |p above.

A.4 Asymptotic Domains of π, S1, and C1 When
Two Tests Used
Let p1. = p11 + p10, p0. = p01 + p00, p.1 = p11 + p01, and p.0 =
p10 + p00. The transformation from (π, S1, C1, S2, C2) to (π,
S1, p11, p10, p01) gives

C1 =
(1 − p1·) − π(1 − S1)

1 − π
, S2 =

p·1(p1· − S1π) − p11(1 − π)

(p1· − S1)π
,

C2 =
p10 − (1 − p·1)S1

p1· − S1
.

The domain of (π, S1) is

Sπ,S1 |p11,p10,p01

= {(π, S1) : 0 < π,S1, C1, S2, C2 < 1}

= {(π, S1) : 0 < π,S1 < 1}

∩ {(π, S1) : π(1 − S1) < 1 − p1·}

∩ {(π, S1) : p1· > πS1}

∩
{

(π, S1) :

{
S1 > max

(
p1·,

p1·(π − p·0) + p10(1 − π)

πp·1
,

p1·
π

− p10(1 − π)

π(1 − p·1)
,
p11

p·1
,
p10

p·0

)}

∪
{
S1 < min

(
p1·,

p1·(π − p·0) + p10(1 − π)

πp·1
,

p1·
π

− p10(1 − π)

π(1 − p·1)
,
p11

p·1
,
p10

p·0

)}}
.

The range of f(π, C1 | p11, p10, p01) can be obtained by re-
placing S1 by (1 − C1) and π by 1 − π in Sπ,S1 |p11,p10,p01

above.
The above algorithms were realized using a combination

of Splus 6.0 (Mathsoft, Inc, 2000), Visual C++ (version 6.0,
Microsoft), and WinBUGS (version 1.4), linked together
through Perl 5.6 scripts (www.perl.org).


