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SUMMARY

Several criteria for Bayesian sample size determination have recently been proposed. Criteria based on highest
posterior density (HPD) intervals from the exact posterior distribution in general lead to smaller sample sizes than
those based on non-HPD intervals and/or normal approximations to the exact density. The economies are variable,
however, and depend both on the prior inputs and the desired posterior accuracy and coverage probability. In our
reply we review several properties of sample size methods and discuss the importance of these properties in the
context of a binomial experiment. A general algorithm for Bayesian sample size determination that is useful for more
complex sampling situations based on Monte Carlo simulations is briefly described.

1. Introduction

We are grateful to Dr Adcock and Professor Pham-Gia for their commentaries, and to the
Editor of The Statistician for providing us with the opportunity to respond. Our position is
this: HPD regions always have the smallest volume for a given credibility level 1 — a. Sample
size calculations for binomial experiments should therefore be based on HPD criteria. The
complexity of the computations required to meet such criteria is no longer an issue as the
software now exists for this problem and calculations can be carried out very quickly. Other
methods should be viewed as a compromise until the HPD software becomes widely available.
To obtain a copy of the Fortran software, send the message ‘send bhpdl from general’ to
statlib@lib.stat.cmu.edu. We shall elaborate on this and other points.

2. Bayesian sample size determination for experiments with binomial outcomes

For convenience in Table 1 we summarize the references on Bayesian binomial sample size
determination along with the criteria on which these determinations are based:

(a) 2,—the criterion is satisfied on average over the preposterior distribution of the data;
(b) 2,—the criterion is conservative, in that it is satisfied even if the worst possible
outcome occurs.
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TABLE 1

Properties of the various sample size criteria
Criterion Reference Property

P P, Py P, P P, P,

PGT() Pham-Gia and Turkkan (1992) N N
PGT(ii) Pham-Gia and Turkkan (1992) N N Vv
CA87 Adcock (1987) N V
CA95(i) Adcock (1995) N N, N
CA95(ii) Adcock (1995) N N N
ALC Joseph et al. (1995) N N N N
ACC Joseph et al. (1995) V N Vv J
woC Joseph et al. (1995) N Vv Vv

Criteria that average over the preposterior distribution of the data Z, can be further
subdivided into

(i) 2;—averages of variable lengths of fixed coverage intervals or
(i) #,—averages of variable coverages of fixed length.

Other properties of interest are

(@) #s—the criterion is based on the exact posterior distribution,
(b) Zs—the criterion is based on an approximation to the posterior distribution and
(c) 2,—HPD intervals are used in calculating interval lengths and coverages.

Decision theoretic and sample information criteria are omitted from the discussion. The
labelling scheme of Adcock (1992) has been retained in Table 1 with the addition of CA95(1)
and CA95(ii), which indicate the criteria defined by equations (15) and (17) of Adcock (1995)
respectively.

Clearly it is theoretically advantageous to use exact rather than approximate densities in
any statistical calculation, and HPD intervals are highly desirable owing to their minimum
length property. We agree with Adcock (1995) that there is a need for balance between
accuracy and complexity in any given problem. However, the use of exact HPD intervals
does not entail any conceptual difficulties in the present problem, whereas the computational
complexities have been overcome in Joseph et al. (1995). As the beta(a, b) density is asymmetric
whenever a # b, surely the use of methods based on the normal approximation could lead,
unnecessarily, to a loss of efficiency. In particular, for a priori very rare or very common
outcomes, the use of the exact posterior density along with HPD regions has been shown
to result in considerable sample size reductions (Joseph et al., 1995). When the two prior beta
parameters are approximately equal, Adcock (1995) has shown in his Table 1 that reductions
in sample size are essentially due to the use of an exact posterior distribution, after which it
makes little difference whether HPD or symmetric intervals are used. This can be explained
by the symmetry of the preposterior distributions when the prior parameters are assumed
equal; the xs sampled from this distribution will produce a family of posterior distributions,
which will be highly asymmetric for x close to 0 or n. However, most of the xs will occur
away from these extremes, where the resulting posterior distributions will be approximately
symmetric. Symmetric and HPD intervals will roughly coincide for such posterior distribu-
tions. Also, when the prior parameters are unequal but such that very small sample sizes
suffice, the choice of criterion is not important. However, in cases of high a priori asymmetry
with larger sample size requirements, such as whena = 1,5 = 100, ¢« = 0.05and | = 2d = 0.02,
- say, significant further reductions are obtained by using HPD rather than symmetric intervals,
even when the symmetric intervals are derived from the exact posterior distribution.
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To summarize, it makes little difference whether the criterion used has properties 25, Z¢
or 2, in the case of approximately symmetric prior distributions. For asymmetric prior
distributions, methods based on the exact posterior density are more efficient than those
based on normal approximations; the efficiency increases directly with the degree of asym-
metry. Further reductions from HPD intervals result for moderate or large sample sizes in
the latter case.

The choice between an average coverage or an average length criterion appears to be
somewhat arbitrary, although sample sizes derived from these two criteria can be substantially
different, even for symmetric priors (see Table 1 of Joseph et al. (1995)). Average length
methods may be somewhat more conventional, since fixed coverage (usually 95%) intervals
are most often reported, regardless of their length.

We have some additional comments regarding sample size determination for binomial
experiments.

(a) Pham-Gia (1995) raises the question of how to.choose between an averaging or worst
outcome type of criterion. In part, this will depend on the degree of risk that one is
willing to take, and how serious the losses might be in the event of an unfortunate
outcome. Graphical summaries that present the coverages or interval lengths over the
outcome space (see Figs 1 and 2 of Joseph et al. (1995)) can be useful in decision-making.

(b) We agree with Pham-Gia (1995) that the methods based on variances and/or normal
approximations have the advantage of analytical tractability, allowing an algebraic
investigation of their properties. It is also pointed out that many practitioners will use
the mean +2 standard deviations rule of thumb in calculating 95% posterior credible
sets. However, widespread practice does not necessarily imply good practice. It is a
theoretical fact that this rule of thumb will rarely if ever provide true 95% coverage
probabilities and will in many cases provide substantially different coverage. Should
statisticians not be advising against the use of such rules of thumb for known
asymmetric distributions, especially when exact quantiles are easily obtained from
tables or many statistical packages? Numerical approaches are increasingly common
in applied statistics and are especially important to Bayesian analysis. Researchers
wishing to maximize the efficiency of their experiments should be advised to use HPD
intervals or at least intervals based on exact beta quantiles.

(c) It is true that a program based on HPD intervals is more complex than a program
based on variances. However, once the programs have been written, it becomes no
more difficult to run one than the other.

(d) Another advantage of numerical techniques can be their generalizability to other
situations. In the next section an efficient Monte Carlo algorithm is described that can
be used to find sample sizes for complex experiments.

3. Bayesian sample size determination for more complex situations

Binomial sampling is simple in that it is one dimensional, and exact closed form expressions
are available for the preposterior and posterior densities. Adcock (1995) raises the issue of the
evaluation of Bayesian sample size criteria for the multinomial distribution, and in general
for any case where the above densities are intractable. In addition to standard Monte Carlo
simulations, recent advances in Bayesian numerical algorithms such as the Gibbs sampler
(Gelfand and Smith, 1990) or sampling—importance resampling (Rubin, 1987), combined with
the increasing speed of modern computers, have shown that it is possible to deal with samples
from posterior densities in cases where the direct use of these densities is not feasible. Suppose,
for example, that we wished to evaluate an average coverage criterion, which has the general

form
j {J f0]x, n)do }f(x) dx=>1-—aqa, (1)
zx R(x,n)
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where 0 is the parameter or parameter vector of interest, 4 is the outcome space and
A(x, n) is a prespecified type of region (e.g. ellipsoid) with an a priori fixed volume. Although
either of these integrals may be intractable, the following algorithm may be feasible.

(a) Draw a random sample (x,, x,, ..., x,) from f(x), the preposterior distribution. This -
can be performed by using any of the above-mentioned techniques. The left-hand side
of inequality (1) can then be approximated by Monte Carlo integration, i.e.

1 i {J f0]|x;, n) d@}. 2
ni=y R(x,,n)

(b) If the remaining integral in expression (2) is also intractable, it can similarly be
approximated by a numerical or Monte Carlo technique. For example, a sample from
f(0]x;, n) can be drawn, and the integral approximated by the number of points falling
inside Z(x;, n). Tanner (1991) presented methods of calculating the boundary and
probability content of HPD regions for multivariate distributions based on random
samples.

(c) As in previous methods, a bisectional or other search method can be used to find the
minimum sample size that satisfies inequality (1).

Note that, in each iteration of the search, the integral in expression (2) is evaluated n
times, so that random errors from each individual calculation may cancel out considerably
when summed. Of course, the accuracy will depend on the Monte Carlo sample sizes drawn
at each step in the procedure. Whether this algorithm is worthwhile, compared with, for
example, a multivariate normal approximation depends on the degree of similarity between
f(0]|x, n) and the multivariate normal distribution, as well as the accuracy required and
computer programming and running times. The running times will also vary depending on
the ease of drawing the appropriate samples required.

We have tested this algorithm in single and two independent binomial sampling experi-
ments. In the former case it is almost as accurate as our exact method for all three of
our HPD criteria. In the latter case we have shown it to be feasible in the more complex
(although still one-dimensional) situation of estimating sample sizes for 8 = n; — =n,, the
difference between two independent binomial parameters (Joseph et al., 1995). Further work
is required to determine whether these or similar techniques are worth pursuing for determin-
ing sample sizes for multinomial and other more complex experiments. Other non-Monte-
Carlo techniques may also be explored, such as those presented in Smith et al. (1985) or
Tierney et al. (1989).

4. Discussion

Many Bayesian criteria for sample size determination have been proposed, and still others
can be defined. For example, one could investigate a mixed Bayesian-likelihood approach,
where the prior information is used to calculate the preposterior marginal distribution but
only the likelihood is used for final inferences. Thus in equation (1) f(x) would include prior
information, but f(6|x, n) would not. This would accommodate investigators who need to
plan according to the best available prior information, but who would prefer to use only the
information in the data when reporting the results of a study.

Another criterion of interest might be a modification of the worst outcome criterion.
Rather than the worst x € Z, we could instead choose the worst x € & < &, where & is a subset
of Z that covers say 95% of the most likely values of x according to f(x). Thus we avoid
choosing unnecessarily high sample size values when the worst outcome is very unlikely, such

. as in example 2 of Joseph et al. (1995).
The choice of which of the many criteria to use in the planning of any particular
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experiment appears situation specific, and no general rule can be given. We believe that the
current evolution in statistics towards computer-intensive methods is pertinent to Bayesian
sample size calculations. Although much work remains to be done for more complex and
especially for multivariate situations, the benefits of these methods have been clearly demon-
strated.
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