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Introduction to Probability Theory 
and Sampling Distributions

 

tatistical inference allows one to
draw conclusions about the char-
acteristics of a population on the

basis of data collected from a sample of sub-
jects from that population. Almost all the sta-
tistical inferences typically seen in the
medical literature are based on probability
models that connect summary statistics cal-
culated using the observed data to estimates
of parameter values in the population. This
article will cover the basic principles behind
probability theory and examine a few simple
probability models that are commonly used,
including the binomial, normal, and Poisson
distributions. We will then see how sampling
distributions are used as the basis for statisti-
cal inference and how they are related to
simple probability models. Thus, this article
forms the foundation for future articles in the
series that will present the details of statisti-
cal inference in particular clinical situations.

Making medical decisions on the basis of
findings from various radiologic diagnostic
tools is an everyday occurrence in clinical
practice. In radiologic research, one often
needs to draw conclusions about the relative
performance of one diagnostic tool com-
pared with another for the detection of a
given condition of interest. Both of these
tasks depend, in large part, on probability
theory and its applications. In diagnosis, we
are interested in calculating the probability
that the condition of interest is present on the
basis of results of a radiologic test. This
probability depends on how sensitive and
specific that test is in diagnosing the condi-
tion and on the background rate of the condi-
tion in the population.

This calculation largely depends on a result
from probability called Bayes’ theorem. Simi-
larly, all statistical inferences, whether compari-
sons of two proportions representing diagnostic
accuracies from two instruments or inferences
from a more complex model, are based on
probabilistic reasoning. Therefore, a thorough
understanding of the meaning and proper inter-
pretation of statistical inferences, crucial to
daily decision making in a radiology depart-
ment, depends on an understanding of probabil-
ity and probability models.

This article is composed of three main parts.
We begin with an introduction to probability,
including the definitions of probability, the dif-
ferent schools of thought about the interpreta-
tion of probabilities, and some simple
examples. We continue by defining conditional
probabilities and present Bayes’ theorem,
which is used to manipulate conditional proba-
bilities. The most common simple probability
models, including the binomial, normal, and
Poisson distributions, are presented next, along
with the types of situations in which we would
be most likely to use them. Finally, sampling
strategies are examined. Armed with these ba-
sics of probability and sampling, we conclude
with a discussion of how the outcome of inter-
est defines the model parameter on which to
focus inferences and how the sampling distri-
bution of the estimator of that parameter en-
ables valid inferences from the data collected
in the sample about the population at large.
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first definition, which represents the view of the
frequentist school of statistics, defines the proba-
bility of an event as the number of times the
event occurs divided by the number of trials in
which it could have occurred, 

 

n

 

, as 

 

n

 

 approaches
infinity. For example, the probability that a coin
will come up heads is 0.5 because, assuming the
coin is fair, as the number of trials (flips of the
coin) gets larger and larger, the observed propor-
tion will be, on average, closer and closer to 0.5.
Similarly, the probability that an intervention for
back pain is successful would be defined as the
number of times it is observed to be successful
in a large (theoretically infinite) number of trials
in patients with back pain. 

Although this definition has a certain logic,
it has some problems. For example, what is the
probability that team A will beat team B in their
game tonight? Because this is a unique event
that will not happen an infinite number of
times, the definition cannot be applied. Never-
theless, we often hear statements such as
“There is a 60% chance that team A will win
tonight.” Similarly, suppose that a new inter-
vention for back pain has just been developed,
and a radiologist is debating whether to apply it
to his or her next patient. Surely the probability
of success of the new intervention compared
with the probability of success of the standard
procedure for back pain will play a large role in
the decision. However, no trials (and certainly
not an infinite number of trials) as yet exist on
which to define the probability. Although we
can conceptualize an infinite number of trials
that may occur in the future, this projection
does not help in defining a probability for to-
day’s decision. Clearly, this definition is lim-
ited, not only because some events can happen
only once, but also because one cannot observe
an infinite number of like events.

The second definition, often referred to as
the Bayesian school, defines the probability of
any event occurring as the personal degree of
belief that the event will occur. Therefore, if I
personally believe that there is a 70% chance
that team A will win tonight’s game, then that
is my probability for this event. In coin tossing,
a Bayesian may assert, on the basis of the
physics of the problem and perhaps a number
of test flips, that the probability of a coin flip
coming up heads should be close to 0.5. Simi-
larly, on the basis of an assessment that may
include both previously available data and sub-
jective beliefs about the new technique, a radi-
ologist may assert that the probability that a
procedure will be successful is 85%.

The obvious objection to Bayesian proba-
bility statements is that they are subjective,

and thus different radiologists may state dif-
ferent probabilities for the success rate of the
new technique. In general, no single “correct”
probability statement may be made about any
event, because such statements reflect per-
sonal subjective beliefs. Supporters of the
Bayesian viewpoint counter that the frequen-
tist definition of probability is difficult to ap-
ply in practice and does not pertain to many
important situations. Furthermore, the possi-
ble lack of agreement as to the correct proba-
bility for any given event can be viewed as an
advantage, because it will correctly mirror the
range of beliefs that may exist about any
event that does not have a large amount of
data from which to accurately estimate its
probability. Hence, having a range of proba-
bilities depending on the personal beliefs of a
community of clinicians is a useful reflection
of reality. As more data accumulate, Bayesian
and frequentists probabilities tend to agree,
each essentially converging to the mean of
the data. When this occurs, similar inferences
will be reached from either viewpoint.

Discussion of these two ways of defining
probability may seem to be of little relevance
to radiologists but, later in this series, it will
become apparent that it has direct implications
for the type of statistical analysis to be per-
formed. Different definitions of probability
lead to different schools of statistical inference
and, most importantly, often to different con-
clusions based on the same set of data. Any
given statistical problem can be approached
from either a frequentist or a Bayesian view-
point, and the choice often depends on the ex-
perience of the user more than it does on one
or the other approach being more appropriate
for a given situation. In general, Bayesian
analyses are more informative and allow one
to place results into the context of previous re-
sults in the area [2], whereas frequentist meth-
ods are often easier to carry out, especially
with currently available commercial statistical
packages. Although most analyses in medical
journals currently follow the frequentist defini-
tion, the Bayesian school is increasingly
present, and it will be important for readers of
medical journals to understand both. 

The lack of a single definition of probability
may be disconcerting, but it is reassuring to
know that whichever definition one chooses,
the basic rules of probability are the same. 

 

Rules of Probability

 

Four basic rules of probability exist. These
rules are usually expressed more rigorously
than is necessary for the purposes of this arti-

cle, through the use of set theory and proba-
bility notation. 

The first rule states that, by convention, all
probabilities are numbers between 0 and 1. A
probability of 0 indicates an impossible event,
and a probability of 1 indicates an event cer-
tain to happen. Most events of interest have
probabilities that fall between these extremes. 

The second rule is that events are termed
“disjoint” if they have no outcomes in com-
mon. For example, the event of a patient hav-
ing cancer is disjoint from the event of the
same patient not having cancer, because both
cannot happen simultaneously. On the other
hand, the event of cancer is not disjoint from
the event that the patient has cancer with me-
tastases because in both cases the outcome of
cancer is present. If events are disjoint, then
the probability that one or the other of these
events occurs is given by the sum of the indi-
vidual probabilities of these events. For exam-
ple, in looking at an MR image of the liver, if
the probability that the diagnosis is a hepatoma
is 0.5 (meaning 50%) and the probability of a
metastases is 0.3, then the probability of either
hepatoma or metastases must be 0.8, or 80%.

The third rule is expressed as follows: If one
could list the set of all possible disjoint events
of an experiment, then the probability of one of
these events happening is 1. For example, if a
patient is diagnosed according to a 5-point
scale in which 1 is defined as no disease; 2, as
probably no disease; 3, as uncertain disease sta-
tus; 4, as probably diseased; and 5, as definitely
diseased, then the probability that one of these
states is chosen is 1.

The fourth rule states that, if two events are
independent (i.e., knowing the outcome of one
provides no information concerning the likeli-
hood that the other will occur), then the proba-
bility that both events will occur is given by
the product of their individual probabilities.
Thus, if the probability that findings on an MR
image will result in a diagnosis of a malignant
tumor is 0.1, and the probability that it will
rain today is 0.3 (an independent event, pre-
sumably, from the results of the MR imaging),
then the probability of a malignant tumor and
rain today is 0.1 

 

×

 

 0.3 = 0.03, or 3%.
In summary, probabilities for events al-

ways follow these four rules, which are com-
patible with common sense. Such probability
calculations can be useful clinically, for ex-
ample, in deriving the probability of a certain
diagnosis given one or more diagnostic test
results. Many probability calculations used
in clinical research involve conditional prob-
abilities. These are explained next.
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Conditional Probabilities and Bayes’ Theorem 

 

What is the probability that a given patient
has endometrial cancer? Clearly, this depends
on a number of factors, including age, the pres-
ence or absence of postmenopausal bleeding,
and others. In addition, our assessment of this
probability may drastically change between
the time of the patient’s initial clinic visit and
the point at which diagnostic test results be-
come known. Thus, the probability of endome-
trial cancer is conditional on other factors and
is not a single constant number by itself. Such
probabilities are known as conditional proba-
bilities. Notationally, if unconditional probabil-
ities can be denoted by 

 

Pr

 

(cancer), then
conditional probabilities can be denoted by

 

Pr

 

(cancer | diagnostic test is positive), read as
“the probability of cancer given or conditional
on a positive diagnostic test result,” and, simi-
larly, 

 

Pr

 

(cancer | diagnostic test is negative),
read as “the probability of cancer given a nega-
tive diagnostic test result.” These probabilities
are highly relevant to radiologic practice and
clinical research in radiology.

Because they are a form of probability, con-
ditional probabilities must follow all rules as
outlined in the previous section. In addition,
however, there is an important result that links
conditional probabilities to unconditional
probability statements. In general, if we denote
one event by 

 

A,

 

 and a second event by 

 

B,

 

 then
we can write

 

Pr

 

 (

 

A

 

 and 

 

B

 

) 

 

Pr

 

(

 

B

 

). 

In words, the probability that event 

 

A

 

 occurs,
given that we already know that event 

 

B

 

 has
occurred, denoted by 

 

Pr

 

 (

 

A

 

 | 

 

B

 

), is given by
dividing the unconditional probability that
these two events occur together by the un-
conditional probability that 

 

B

 

 occurs. Of
course, this formula can be algebraically ma-
nipulated, so that it must also be true that

 

Pr

 

 (

 

A

 

 and 

 

B

 

) = 

 

Pr

 

(

 

B

 

) 

 

×

 

 

 

Pr

 

 (

 

A

 

 | 

 

B

 

).

For example, suppose that in a clinic dedi-
cated to evaluating patients with postmeno-
pausal bleeding, endovaginal sonography is
often used for the detection of endometrial
cancer. Assume that the overall probability of
a patient in the clinic having endometrial can-
cer is 10%. This probability is unconditional,
that is, it is calculated from the overall preva-
lence in the clinic; before any test results are
known. Furthermore, suppose that the sensi-
tivity of endovaginal sonography for diagnos-

ing endometrial cancer is 90%. If we let 

 

A

 

represent the event that the patient has a posi-
tive endovaginal sonography, and let 

 

B

 

 repre-
sent the probability of endometrial cancer in
this patient population, then we can summa-
rize the above information as 

 

Pr

 

(

 

B

 

) = 0.1 and

 

Pr

 

(

 

A

 

 | 

 

B

 

) = 0.9. By using the formula de-
scribed, we can deduce that the probability
that a patient in this clinic has both endome-
trial cancer and positive results on endovagi-
nal sonography is 0.1 

 

×

 

 0.9 = 0.09 or 9%.
In typical clinical situations, we may know

the background rate of the disease in question in
the population referred to a particular clinic
(which may differ from clinic to clinic), and we
may have some idea of the sensitivity and speci-
ficity of the test. Notice that in the terms used,
sensitivity and specificity may be considered
conditional probabilities because they provide
the probability of testing positive given a subject
who truly has the condition of interest (i.e., 

 

Pr

 

 [

 

A

 

| 

 

B

 

], which is the sensitivity), and the probability
of not testing positive given the absence of the
condition of interest (i.e., the specificity, 

 

Pr

 

 [not

 

A

 

 | not 

 

B

 

]). What should a clinician conclude if a
patient walks through the door with a “positive”
test result in hand? In this case, one would like to
know the probability of the patient’s being truly
positive for the condition, given that he or she
has just had a test with positive findings. Of
course, if the diagnostic test is a perfect gold
standard, one can simply look at the test result
and be confident of the conclusion.

However, most tests do not have perfect sen-
sitivity and specificity, and thus a probability
calculation is needed to find the probability of a
true-positive, given the positive test result. In
our notation, we know the prevalence of the
condition in our population, 

 

Pr

 

(

 

B

 

), and we
know the sensitivity and specificity of our test,
given by 

 

Pr

 

 (

 

A

 

 | 

 

B

 

) and 

 

Pr

 

 (not 

 

A

 

 | not 

 

B

 

), but we
want to know 

 

Pr

 

(

 

B

 

 | 

 

A

 

), which is opposite in
terms of what is being conditioned on. How
does one reverse the conditioning argument, in
effect making statements about 

 

Pr

 

(

 

B

 

 | 

 

A

 

) when
we only know 

 

Pr

 

 (

 

A

 

 | 

 

B

 

)? The answer is to use a
general result from probability theory, called
Bayes’ theorem, which states 

 

Pr

 

 (

 

B

 

 | 

 

A

 

) = 

 

Pr

 

 (

 

B

 

) 

 

× 

 

Pr 

 

(

 

A

 

 | 

 

B

 

) 

 

Pr

 

 (

 

B

 

) 

 

×

 

 

 

Pr

 

(

 

A 

 

| 

 

B

 

) + 

 

Pr

 

(not 

 

B

 

) 

 

×

 

 

 

Pr

 

(

 

A

 

 | not 

 

B

 

).

Suppose that the background rate of en-
dometrial cancer seen in patients referred to a
particular radiology clinic is 10% and that a di-
agnostic test is applied that has 

 

Pr

 

(

 

A

 

 | 

 

B

 

) =

90% sensitivity and 

 

Pr

 

(not 

 

A

 

 | not 

 

B

 

) = 80%
specificity. What is the probability that a pa-
tient with positive test results in fact has en-
dometrial cancer? According to Bayes’
theorem, we calculate 

 

Pr

 

 (

 

B 

 

| 

 

A

 

) = 

 

Pr

 

 (

 

B

 

) 

 

×

 

 

 

Pr

 

 (

 

A

 

 | 

 

B

 

) 

 

Pr

 

 (

 

B

 

) 

 

×

 

 

 

Pr

 

 (

 

A

 

 | 

 

B

 

) + 

 

Pr

 

 (not 

 

B

 

) 

 

×

 

 

 

Pr 

 

(

 

A

 

 | not B)

0.1 

 

×

 

 0.9 
0.1 

 

×

 

 0.9 + 0.9 

 

×

 

 0.2 

= 0.33

or about 33%. In this case, even when a pa-
tient has a positive test result, the chances
that the disease is present are less than 50%.

Similarly, what is the probability that a
subject testing negative has endometrial can-
cer? Again using Bayes’ theorem, 

 

Pr

 

 (

 

B

 

 | not 

 

A

 

) = 

Pr (B) × Pr (not A | B) 
Pr (B) × Pr (not A | B) + Pr (not B) × Pr (not A | not B) 

0.1 × 0.1 
0.1 × 0.1 + 0.9 × 0.8 

= 0.013.

Thus, starting from a background rate of
10% (pretest probability), the probability of
cancer rises to 33% after a positive diagnosis
and falls to approximately 1% after a nega-
tive test (posttest probabilities). Thus, Bayes’
theorem allows us to update our probabilities
after learning the test result, and it is thus of
great usefulness to practicing radiologists.
The next module in this series covers Bayes’
theorem and diagnostic tests in more detail.

Probability Models 

Rather than working out all problems in-
volving probabilities by first principles using
the basic probability rules as we have dis-
cussed, it is possible to use short cuts that
have been devised for common situations,
leading to probability functions and proba-
bility densities. Here we review three of the
most common distributions: the binomial,
the normal, and the Poisson. Which distribu-
tion to use depends on many situation-spe-
cific factors, but we provide some general
guidelines for the appropriate use of each.

=

=

Pr (A | B) = 
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The Binomial Distribution

One of the most commonly used probabil-
ity functions is the binomial. The binomial
distribution allows one to calculate the prob-
ability of obtaining a given number of “suc-
cesses” in a given number of trials, wherein
the probability of a success on each trial is
assumed to be p. In general, the formula for
the binomial probability function is 

where n! is read “n factorial” and is short-
hand for

n × (n – 1) × (n – 2) × (n – 3) × . . . × 3 × 2 × 1. 

For example, 5! = 5 × 4 × 3 × 2 × 1 = 120,
and so on. By convention, 0! = 1. Suppose
we wish to calculate the probability of x = 8
successful angioplasty procedures in n = 10
patients with unilateral renal artery stenosis,
wherein the probability of a successful an-
gioplasty each time is 70%. From the bino-
mial formula, we can calculate

so that there is slightly less than a one-in-four
chance of getting eight successful angioplasty
procedures in 10 trials. Of course, these days
such calculations are usually done by com-
puter, but seeing the formula and calculating a
probability using it at least once helps to avoid
that “black box” feeling one can often get
when using a computer and adds to the under-
standing of the basic principles behind statisti-
cal inference. Similarly, the probability of
getting eight or more (that is, eight or nine or
10) successful angioplasty procedures is found
by adding three probabilities of the type
shown, using the second probability rule be-
cause these events are disjoint. As an exercise,
one can check that this probability is 0.3829.
See Figure 1 for a look at all probabilities for
this problem, in which x varies from zero to 10
successes for n = 10 and p = 0.7.

The binomial distribution has a theoretic
mean of n × p, which is a nice intuitive result.
For example, if one performs n = 100 trials,
and on each trial the probability of success is
p = 0.4 or 40%, then one would intuitively ex-
pect 100 × 0.4 = 40 successes. The variance,
σ2, of a binomial distribution is n × p × (1 –
p), so that in the example just given it would
be 100 × 0.4 × 0.6 = 24. Thus, the SD is

 = σ =  = 4.90, 

roughly meaning that although on average
one expects approximately 40 successes, one
also expects each result to deviate from 40 by
an average of approximately five successes. 

The binomial distribution can be used any
time one has a series of independent trials (dif-
ferent patients in any trial can usually be consid-
ered as independent) wherein the probability of
success remains the same for each patient. For
example, suppose that one has a series of 100
patients, all with known endometrial cancer. If
each patient is asked to undergo MR imaging,
for example, and if the true sensitivity of this
test is 80%, what is the probability that 80 of
them will in fact test positive? By plugging p =
0.8, n = 100, and x = 80 into the binomial prob-
ability formula as discussed, one finds that this
probability is 0.0993, or about 10%. (One
would probably want to do this calculation on a
computer because 100!, for example, would be
a tedious calculation.)

Normal Distribution 

Perhaps the most common distribution used
in statistical practice is the normal distribution,
the familiar bell-shaped curve, as seen in Fig-
ure 2. Many clinical measurements follow nor-
mal or approximately normal distributions
(e.g., tumor sizes). Technically, the curve is
traced out by the normal density function 

where “exp” denotes the exponential func-
tion to the base e = 2.71828. The Greek letter
µ is the mean of the normal distribution set
to zero in the SD curve of Figure 2, and the
SD is σ, set to 1 in the standard normal
curve. Although Figure 2 presents the stan-
dard version of the normal curve (µ = 0, σ 2 =
σ  = 1), more generally, the mean µ can be
any real number and the SD can be any num-
ber greater than zero. Changing the mean
shifts the curve depicted in Figure 2 to the
left or right so that it remains centered at the
mean, whereas changing the SD stretches or
shrinks the curve around the mean, all while
keeping its bell shape. Note that the mean
(usual arithmetic average), median (middle
value, i.e., point at which 50% of the area un-
der the curve lies above and below), and
mode (most likely value, i.e., highest point
on the curve) of a normal distribution are al-
ways the same and equal to µ. Approxi-
mately 95% of the area under the curve falls

n!
x! n x–( )!
-----------------------px 1 p–( )n x–

Pr(x successes in n trials) =

,

10!
8!2!
----------0.78 1 0.7–( )2 0.2335= , σ2 24

1

2πσ
-------------- 1

2
--- x µ–( )2

σ2
-------------------–
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Fig. 1.—Graph shows binomial distribution with sample size of 10 and probability of success p = 0.7.
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within 2 SDs on either side of the mean, and
approximately 68% of the area falls within 1
SD of the mean.

The normal density function has been used
to represent the distribution of many measures
in medicine. For example, tumor size, bipari-
etal diameter, or bone mineral density in a
given population may be said to follow a nor-
mal distribution with a given mean and SD. It
is highly unlikely that any of these or other
quantities exactly follow a normal distribu-
tion. For instance, none of these quantities can
have negative numbers, whereas the range of
the normal distribution always includes all
negative (and all positive) numbers. Neverthe-
less, for appropriately chosen mean and SD,
the probability of out-of-range numbers will
be vanishingly small, so that this may be of
little concern in practice. We may say, for ex-
ample, that tumor size in a given population
follows a normal distribution with a mean of
20 mm and an SD of 10 mm, so that the prob-
ability of a value less than zero is only approx-
imately 2.5%. In the words of statistician
George Box [3], “All models are wrong, but
some are useful.” 

To calculate probabilities associated with
the normal distribution, one must find the
area under the normal curve. Because doing
so is mathematically difficult, normal tables
or a computer program are usually used. For
example, the area under the standard normal
curve between –1 and 2 is 0.8186, as calcu-
lated via normal tables or via a computer
package for statistics.

The normal distribution is central to statis-
tical inference for an additional reason. Con-
sider taking a random sample of 500 patients
visiting their family physicians for periodic
health examinations. If the blood pressure of
each patient were recorded and an average
were taken, one could use this value as an es-
timate of the average in the population of all
patients who might visit their family physi-
cians for routine checkups. However, if the
experiment were repeated, it would be unex-
pected for the second average of 500 patients
to be identical to the first average, although
one could expect it to be close.

How these averages vary from one sample
to another is given by the central limit theo-
rem, which in its simplest form is explained
as follows. Suppose that a population charac-
teristic has true (but possibly unknown) mean
µ and standard deviation σ. The distribution
of the sample average, x, based on a sample
of size n, approaches a normal distribution as
the sample size grows large, with mean µ and

SD σ / . As will be explained in future ar-
ticles, the sample average, x, is used to esti-
mate the true (but unknown) population mean
µ. The SD about a sample mean, σ / , is
often called the standard error (SE). 

This useful theorem has two immediate
consequences. First, it accounts for the popu-
larity of the normal distribution in statistical
practice. Even if an underlying distribution
in a population is nonnormal (e.g., if it is
skewed or binomial), the distribution of the
sample average from this population be-
comes close to normal if the sample size is
large enough. Thus, statistical inferences can
often be based on the normal distribution,
even if the underlying population distribu-
tion is nonnormal. Second, the result con-
nects the sample mean to the population

mean, forming the basis for much of the sta-
tistical inference. In particular, notice that as
the sample size n increases, the SD (SE) σ /

 of the sample mean around the true
mean decreases so that on average the sam-
ple mean x gets closer and closer to µ. We re-
turn to this important point later, but first
look at our last distribution, the Poisson.

Poisson Distribution 

Suppose that we would like to calculate
probabilities relating to numbers of cancers over
a given period of time in a given population. In
principle, we can consider using a binomial dis-
tribution because we are talking about numbers
of events in a given number of trials. However,
the numbers of events may be enormous (num-
ber of persons in the population times the num-
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Fig. 2.—Graph shows the
standard normal distribu-
tion with mean µ = 0 and
SD σ = 1. Approximately
95% of area under curve
falls within 2 SDs on either
side of mean, and about
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SD from mean.
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ber of time periods). Furthermore, we may not
even be certain of the denominator but may
have some idea of the rate (e.g., per year) of
cancers in this population from previous data. In
such cases in which we have counts of events
through time rather than counts of successes in
a given number of trials, we can consider using
the Poisson distribution. More precisely, we
make the following assumptions: 

First, we assume that the probability of an
event (e.g., a cancer) is proportional to the time
of observation. We can notate this as Pr (cancer
occurs in time t) = λ × t, wherein λ is the rate
parameter, indicating the event rate in units of
events per time. Second, we assume that the
time t is small enough that two events cannot
occur in time t. For cancer in a population, t
may be, for example, 1 min. The event rate λ is
assumed to be constant through time (homoge-
neous Poisson process). Finally, we assume that
events (cancers) occur independently.

If all of these assumptions are true, then
we can derive the distribution of the number
of counts in any given period of time. Let µ =
λ × t be the rate multiplied by time, which is
the Poisson mean number of events in time t.
Then the Poisson distribution is given by

Pr (x events occur in time t) =

e–µ µx

x! ,

where e = 2.71828. . . , and x denotes factorial of
x (the same as in the binomial distribution). Both
the mean and the variance of the Poisson distri-
bution are equal to µ. The graph of the Poisson
distribution for µ = 10 is given in Figure 3.

As an example of the use of the Poisson dis-
tribution, suppose that the incidence of a certain
type of cancer in a given region is 250 cases per
year. What is the probability that there will be
exactly 135 cancer cases in the next 6 months?
Let t =1 year, then µ = 250 cancers per year. We
are interested, however, in t = 0.5, which means
that µ = 125 cancers per 6-month period. Using
the Poisson distribution, we can calculate

Pr (135 cancers | µ = 125) = 

e– 125 125135

135! 

= 0.0232. 

Therefore, approximately 2.3% of a chance
exists of observing 135 cancers in the next 6
months.

Summary

The binomial distribution is used for yes/
no or success/fail dichotomous variables, the
normal distribution is often used for proba-
bilities concerning continuous variables, and
the Poisson distribution is used for outcomes
arising from counts. These three distribu-
tions, of course, are by no means the only
ones available, but they are among the most
commonly used in practice. Deciding
whether they are appropriate in any given sit-
uation requires careful consideration of
many factors and verification of the assump-
tions behind each distribution and its use.

This ends our brief tour of the world of
probability and probability distributions.
Armed with these basics, we are now ready to
consider some simple statistical inferences.

Sampling Distributions

So far, we have seen the definitions of prob-
ability, the rules probabilities must follow, and
three probability distributions. These ideas
form the basis for statistical inferences, but
how? The key is sampling distributions.

First, we must distinguish sampling distri-
butions from probability distributions and
population distributions, which can be ex-
plained through an example: Suppose we
would like to measure the average tumor size
on detection at MR imaging for a certain
type of cancer. If we were able to collect the
tumor size for all patients with this disease
(i.e., a complete census) and create a histo-
gram of these values, then these data would
represent the population distribution. The
mean of this distribution would represent the
true average tumor size in this population.

It is rare, if not impossible, for anyone to
perform a complete census, however. One will
usually have the opportunity to observe only a
subset of the subjects in the target population
(i.e., a sample). Suppose that we are able to
take a random sample of subjects from this
population, of, for example, n = 100 patients.
In each case, we observe the tumor size and
record the average value. Suppose this average
value is x = 20 mm, with a SD of σ = 10 mm.
We can thus conclude that 20 mm, the average
value in our sample, is a reasonable (unbiased)
point estimate of the average tumor value in
our population, but how accurate is it? How
does this accuracy vary if we change the sam-
ple size to only 10 patients? What about if we
increase it to 1000 patients?

The answer to these questions lies in the
sampling distribution of the estimator, x. First of

all, what is the sampling distribution of x? Sup-
pose we were to take a second random sample
of size 100 and record its mean. It would not
likely be exactly 20 mm but perhaps be close to
that value, for example, 18 mm. If we repeated
this process for a third sample, we might get a
mean of 21 mm, and so on. Now imagine the
thought experiment in which we would repeat
this process an infinite number of times and
draw the histogram of these means of 100 sub-
jects. The resulting histogram would represent
the sampling distribution of x for this problem.

According to the central limit theorem, the
sampling distribution of x is a normal distribu-
tion, with mean µ representing the true but un-
known mean tumor size (available only if a
complete census is taken), and with an SE σ /

. Therefore, the SE in our example is 10 /
 = 1 mm. So the sampling distribution of

x is normal, with unknown mean µ, and SE of
1. Although we do not know the mean of the
sampling distribution, we do know, from our
facts about the normal distribution, that 95%
of all x’s sampled in this experiment will be
within ± 2 × 1 = 2 SEs from µ. Thus, although
µ remains unknown, we do expect it to be near
x in this sense. Chances are very good that x
will be within 2 mm of µ, allowing statements
called confidence intervals about µ that we
will examine more closely in subsequent arti-
cles in this series. If we observed only 10 tu-
mors rather than 100, our SE would have been
10 / = 3.2 mm, leading to less accuracy in
estimating µ, whereas a sample size of 1000
would lead to an SE of 0.32, leading to in-
creased accuracy compared with a size of 100.

To summarize, population distributions rep-
resent the spread of values of the variable of in-
terest across individuals in the target population,
whereas sampling distributions show how the
estimate of the population mean varies from one
sample to the next if the experiment were to be
repeated and the mean calculated each time.
The sampling distribution connects the estima-
tor, here x, to the parameter of interest, here µ,
the mean tumor size in the population. Larger
sample sizes lead to more accurate estimation.

Similar inferences can be made from ob-
servations that are dichotomous using the bi-
nomial distribution or for count data using
the Poisson distribution. Again, these topics
are relegated to a future article in this series.

Notice that we had to make various assump-
tions in the previous discussion—for example,
that the distribution of tumor sizes in the popu-
lation is approximately normal and, most im-
portantly, that the subjects are representative of
the population to whom we wish to make infer-
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ences. The easiest way to ensure representative-
ness is through random selection, but this may
not be possible in some situations for practical
reasons. For true random selection to occur, one
must have a list of all members of the popula-
tion and select subjects to form the study sam-
ple by random number generation or another
random process. Lists of all members of the tar-
get population are rare, however, so that differ-
ent mechanisms of subject selection are often
necessary. Case series, or consecutive patients
in a clinic, may or may not be representative,
depending on the particularities of the selection
process. Similarly, convenience samples—tak-
ing the subjects most easily available—are often
not completely representative, because the very
fact that subjects are easily available often tends
to make them younger, less sick, and living near
the clinic.

Because many outcomes of interest may
differ between, for example, young and old or
urban and rural patients, convenience sam-
ples and often case series are always suspect
in terms of selection bias. In other words, al-

though a tumor size of 20 mm may in fact be
the average in your sample, this estimate is
biased if patients with smaller or larger tu-
mors are systematically left out. For example,
subjects with preclinical symptoms may not
visit your clinic, even if their tumors might
have been detectable on MR imaging, result-
ing in 20 mm being an overestimate of the
true average tumor size detectable on MR im-
aging in the clinic. Similarly, if patients with
advanced disease do not visit the clinic be-
cause their tumors were clinically detected by
other means, 20 mm may in fact be an under-
estimate of the true average. Selection bias
should always be kept in mind when reading
the medical literature.

Conclusion

This brief tour of probability, distributions,
and the roots of statistical inferences barely
scratches the surface. Many of these ideas
will be amplified in future articles of this se-
ries. For the impatient, or those who want
more detailed explanations of the concepts

presented here, countless books explain basic
statistical concepts—dozens with a focus on
biostatistics. Among them are the works of
Armitage and Berry [4], Colton [5], Rosen-
berg et al. [6], and Rosner [7].
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