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Selection bias found in interpreting analyses with missing
data for the prehospital index for trauma
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Abstract

Objective: To evaluate the effects of missing data on analyses of data from trauma databases, and to verify whether commonly used
techniques for handling missing data work well in theses settings.

Study Design and Setting: Measures of trauma severity such as the Pre-Hospital Index (PHI) are used for triage and the evaluation
of trauma care. As conditions of trauma patients can rapidly change over time, estimating the change in PHI from the arrival at the
emergency room to hospital admission is important. We used both simulated and real data to investigate the estimation of PHI data when
some data are missing. Techniques compared include complete case analysis, single imputation, and multiple imputation.

Results: It is well known that complete case analyses and single imputation methods often lead to highly misleading results that can
be corrected by multiple imputation, an increasingly popular method for missing data situations. In practice, unverifiable assumptions may
not hold, meaning that it may not be possible to draw definitive conclusions from any of the methods.

Conclusion: Great care is required whenever missing data arises. This is especially true in trauma databases, which often have much
missing data and where the data may not missing at random. � 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Trauma is a major cause of death and disability [1,2]. A
crucial component of the immediate post-injury phase is the
decision by on-site emergency medical personnel as to
the level of care required. Designated Level I Trauma Cen-
ters provide a more timely and complete range of trauma
care at higher cost than Level II and III Centers.

Various triage protocols have been proposed [3–5]. Mea-
sures of trauma severity, such as the Prehospital Index (PHI)
[6] and the Revised Trauma Score [7], are used both as
triage tools and in trauma research. Research uses include
calculating summaries of the types of patients that are trans-
ported to the various levels of care, and tracking changes in
patient condition over time. Changes over time are im-
portant, because they indicate whether the care provided has
resulted in improvements to the patients’ conditions.

The nature of emergency-scene medical care makes it
common for trauma databases to have large amounts of
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missing data. Data are said to be missing completely at
random (MCAR) if the probability that each data item is
observed is independent of the missing data values them-
selves [8]. This often is not the case. For example, in trauma
databases, a plausible reason for missing data is the severity
of the injury, meaning that the probability that a PHI compo-
nent is missing is directly related to its value. A weaker
condition is that the data are missing at random (MAR).
MAR data occur if the probability that an item is missing
depends on other observed data values, but not on the values
of the unobserved missing data items, given the observed
data. This is more plausible than MCAR data in trauma
research, for example, because other data collected on the
scene may be highly correlated with the missing data, so
that the missing values themselves are uninformative (or
very nearly so) after accounting for what has been observed.
Both MCAR and MAR missing data mechanisms can be
termed ignorable, because valid inferences can be derived
even if the missing data mechanism is ignored (i.e., not
explicitly considered in the analysis).

Non-ignorable data arise when the missing data mecha-
nism depends on unobserved data, even after accounting for
the information in the observed data. Incorrectly assuming
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ignorability can produce biased estimates, and unverifiable
assumptions typically must be made about the missing data
mechanism to account for the missing items. In practice, it is
often very difficult to determine the missing data mechanism.
Various reviews are available [8–12] that define MCAR,
MAR, and ignorability in more technical terms.

Because trauma data are not likely to be missing com-
pletely at random, serious biases may result if an analysis
is performed using only those cases with no missing data,
known as complete case analysis, which is currently common
in trauma (and other) research [13,14]. Furthermore, the
typically large volume of missing data means that com-
plete case analysis can be statistically inefficient, because
data collected on cases with one or more missing items
are not used. Other simple methods of handling missing
data, such as a single imputation of the overall mode, mean,
or median value in the population or sample, can also result
in biased estimates, and can provide confidence intervals
that are too narrow.

More sophisticated techniques developed to handle miss-
ing data include observed data maximum likelihood
[12,15], generalized estimating equations [16,17], and latent
data models, for example, through data augmentation [18].
Multiple imputation [8] is an attractive alternative in missing
data situations, because it is easy to use, can be applied to
simple or complex sampling designs, and provides valid
inferences provided the assumptions behind the model are
correct. Directly checking these assumptions is usually im-
possible, however, because the verification depends on the
data that are, in fact, missing. One way to proceed is to obtain
the missing data on a random subset of non-responders [19],
but this is often not practical. For example, in trauma re-
search, one can never obtain missing PHI data, because
the patients’ condition continually evolves through time.
Therefore, one might carry out indirect verifications, perhaps
based on other similar but more complete data sets, with
the hope that the data set of interest is sufficiently similar
for the assumptions to hold there as well.

The Quebec Trauma Registry [20] was established in
1993, and includes information on patient demographics,
injury description, injury severity scores, prehospital and in-
hospital care, complications and survival. Injury severity
measures can be divided into anatomical [21,22] and phy-
siologic scales. Anatomic scales are obtained from physical
examination, investigative procedures, surgical interventions,
and, in fatal cases, postmortem examination, so cannot
typically be used for triage. Physiologic scales [7,23], includ-
ing the PHI [6,24], measure the acute response to injury.
Physiologic scales can be used for triage, because, in princi-
ple, all data may be quickly collected at the scene of the
injury.

The PHI, which we focus on in this article, consists of
only four components: systolic blood pressure, pulse rate,
respiratory status, and level of consciousness. The PHI is
calculated by assigning a value between 0 and 5 to each of
the above vital signs, with 0 indicating normal functioning,
and 5 indicating maximum physiologic deterioration. An
additional four points are added in the presence of penetrat-
ing abdominal or thoracic trauma. The PHI ranges from 0
to 24 (see Table 1). Values of the PHI between 0 and 3 are
usually considered to indicate minor injuries, values of 9 or
greater indicate major trauma, while intermediate values
point to moderate injuries [22]. When the PHI has missing
components, it is most common in trauma research to simply
delete the case from any subsequent analyses [13,14].

An important component of the evaluation of trauma care
is the change in severity from arrival at the emergency room
to hospital admission. We use estimation of this parameter to
compare three techniques for missing data: complete case
analysis, and single and multiple imputation. There are
large amounts of missing data in the Quebec Trauma Regis-
try, and we do not know whether the missing data are ignor-
able or not. The validity of the ignorability assumption is
unknown, as verification depends on the missing data com-
ponents themselves. Instead, we will carry out an empirical
simulation based on a complete PHI data to gauge whether
it is reasonable to expect near-ignorability or not. Briefly,
we will randomly delete values in our complete data set
by three different missing data mechanisms, and use multiple
imputation to see if we can derive inferences similar to
those available from the complete data set. The main ques-
tion is whether there is sufficient information in the observed
data to recapture enough of the missing information for
reasonably valid inferences, despite nonignorability of the
missing data mechanisms. If yes, one might hope that
multiple imputation could be useful in adjusting for bias due
to missing data in other trauma databases, in particular,
the subset of the Quebec Trauma Registry of interest here.

2. Methods

For the empirical simulations, we used a data set con-
taining complete PHI data on 2,800 subjects. This included
all trauma subjects transported via Montreal’s ambulance

Table 1
Scoring system of the Prehospital Index

Parameter Value Score

Systolic blood pressure �100 0
86–100 1
75–85 2
�75 5

Pulse rate 51–120 0
�120 3
�50 5

Respiratory status Normal 0
Laboured/shallow 3
�10 needs intubation 5

Level of consciousness Normal 0
Confused/combative 3
No intelligible words 5

Final score is the sum of the individual scores in each of the four
categories. Add four points for penetrating abdominal or thoracic injuries
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service, Urgence Santé, to a hospital between the years 1993
to 1995. We simulated missing data according to two
mechanisms:

1. Missing completely at random mechanism: we ran-
domly and independently treated each of the five PHI
components from each subject as missing with a rate
of 20%.

2. Data-dependent mechanism: values of the PHI com-
ponents indicating more severe trauma were assigned
higher probabilities of being treated as missing. In
particular, we used the following two sets of
probabilities:

Probability Set #1:

P{ a value of 0 or 1 is coded as missing } � .175,

P{ a value of 2 or 3 is coded as missing } � .25, and

P{ a value of 4 or 5 is coded as missing } � .35.

Probability Set #2:

P{ a value of 0 or 1 is coded as missing } � .15,

P{ a value of 2 or 3 is coded as missing } � .25, and

P{ a value of 4 or 5 is coded as missing } � .50.

In both cases, these numbers were selected such that the
overall rate of missing data components would again be 20%.
This rate was selected to be typical of trauma databases,
where rates up to 35% are not unusual.

We compared the true value of the mean PHI total score
to the estimates produced by the three missing data methods.
For the data missing completely at random, we expect that
complete case analysis will produce unbiased but ineffi-
cient estimates. Because the rates of missing data were ap-
plied independently to each component, and because there
are five components per subject in the PHI, the proportion
of subjects with one or more missing data components would
be expected to be approximately 1 � 0.85, or 67% of all
cases.

Because our data-dependent mechanism above directly
defines the probability of a given component being missing
conditional on the missing value itself, our mechanism is
by definition non-ignorable. If, however, there are high corre-
lations among the five PHI components within each subject,
then the dependence of the missing data components on their
unobserved values given the non-missing components can
be considerably reduced, producing “near-ignorability” in
practice. If our complete data model (described below) incor-
porates these correlations, then much of the missingness
probability associated with the missing data component will
be accounted for by the relationship between the observed
and missing data, so that little of the missingness probability
is left to be explained by the missing value itself. Looking
at the Spearman correlation matrix of the five components
from the PHI, we find that all 10 pairwise correlations range
from a low of 0.66 to a maximum of 0.86, providing prelimi-
nary evidence that this may be the case for our data.

We applied the following methods of analysis to each
of the data sets created by the missing data mechanisms
described above.

2.1. Complete case analyses

For the complete case analyses, we deleted from consider-
ation all subjects with one or more missing data components.
The average PHI score, then, was simply the average score
among subjects with no missing data. This is the default
type of analysis in the vast majority of statistical packages,
although some packages have recently added a multiple
imputation option [25,26].

2.2. Single imputation of the mode

One simple way to correct for missing data that has often
been used in trauma research is to fill in each missing data
item with the modal value of that component. One then has
a “complete” data set, from which inferences can be drawn
in the usual fashion. It is particularly tempting to use this
method in trauma research, because the default complete
case analysis is very inefficient, and single imputation of
the mode seems plausible, as there is usually one value in
each PHI component that occurs much more frequently
than the others, typically the value indicating the “normal”
state. For example, the median value of each of the five
PHI components was 0, indicating that over 50% of all PHI
components were simply scored as 0. Therefore, one could
expect to impute a correct value a relatively high percentage
of the time. Nevertheless, as Rubin [17] points out, a high
“hit rate” (i.e., a high percentage of correctly imputed items)
does not necessarily ensure valid inferences.

2.3. Multiple imputation

The multiple imputation method we used was embedded
into a data augmentation or Gibbs sampler algorithm [27].
The algorithm can be conceptualized as proceeding itera-
tively by alternating between steps that estimate the values
of polytomous regression parameters [28] for models that
predict individual PHI components from the other compo-
nents, and using these models to impute the missing PHI
data. Technically, this is roughly equivalent to integrating
out the missing data [8,11,18]. The details are as follows.

Start by arbitrarily filling in a value for each missing
component, providing an initial “complete” data set. We used
the modal value of each component for this purpose. Using
the above “complete” data set, estimate parameters in a
polytomous regression model that predicts one component
of the PHI from the remaining components and other covari-
ates. Thus, for example, one could start with a model that
uses pulse rate, respiratory status, level of consciousness, and
penetrating injury data as independent variables to predict
systolic blood pressure. Covariates such as age and sex,
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typically available in trauma databases, could also be added
to the models. Letting Y generically denote the dependent
variable (e.g., systolic blood pressure) in these models, and
X denote the vector of independent variables (we used the
other four PHI variables, here coded using dummy variables
for each possible value of each variable for one model), the
model can be represented as the set of equations:

ln [P(Y � j|X)

P(Y � 0|X)] � β0j � βj × X, j � 1,…, k � 1,

where β0j and βj are the intercept and vector of regression
coefficients for the jth category of the outcome Y, and where
k is the total number of categories for Y. Use this new
model to reimpute the missing systolic blood pressure PHI
components. Repeat the above steps for each of the five
PHI components in turn, so that five polytomous regression
models are fit. Using these models provides a second “com-
plete” data set. In Gibbs sampler terminology, the above is
termed one cycle through the full conditional distributions of
the unknown parameters, and this set of full conditional
distributions defines a unique multivariate model for the data
[29]. A large number of cycles are run, and final inferences
are based on the resulting random values. Inference about
the mean PHI value in the population could be calculated
by using the mean across sets of “complete” data imputations
as a point estimate, whose variance can be conceptualized
as the sum of the average within imputation variance and the
between imputation variance [8]. Some care is required to
ensure that the model converges. We used the method of
Raftery and Lewis [30] to determine the number of iterations
and burn-in required, and ran each analysis several times from
different starting values to ensure convergence to the correct
posterior distributions. All Gibbs samplers were run with
burn-in of 100 iterations followed by 5,000 or 10,000 itera-
tions for inferences, using BUGS software [31]. Diffuse
prior distributions were used for all parameters, so that
posterior distributions are influenced almost exclusively by
the data. The final inferences were calculated as summaries
(means and equal-tailed 95% credible intervals) of the
Gibbs output.

For our analysis of the change in PHI from emergency
room to hospital, our first multiple imputation model was
similar to that used in the empirical simulation, with separate
models applied to fill in the missing data from the emergency
room and that collected at admission to the hospital. Because
data from two time points were available, we added the cor-
responding PHI value at the other time as a covariate.
For example, in imputing missing blood pressure data for
the PHI in the emergency room, we added blood pressure
at admission as a possible predictor. The second imputation
model added the covariates age and sex to the model as
well. A parsimonious model is desirable, given the large
number of possible cross categories across all imputed vari-
ables and their predictors. Therefore, we used approximate
Bayes Factors as calculated by the Bayesian Information
Criterion [32] to determine final models to use for each
submodel in the full imputation program. We also collapsed
some very small categories into neighboring larger catego-
ries when this resulted in little or no loss of predictive power
according to the BIC.

3. Results

3.1. Empirical simulations

Of the 2,800 cases with complete PHI data, the average
age was 35.8 (SD � 20.2) years, and the subjects were
64.6% male. The true observed average PHI value among
these 2,800 cases was 3.68, with 95% credible interval (CI)
of (3.40, 3.96). Table 2 summarizes the results under the
various scenarios considered within our simulations.

As expected, when the data are missing completely at
random, using a complete case analysis to estimate the mean
PHI is valid but inefficient, in that the estimated mean is
close to the mean of the full 2,800 cases, but the CI width
almost doubles compared to the analysis that includes full
data from all 2,800 cases. When the missing mechanism
Table 2
Results from the empirical simulation

Method Mean PHI SD 95% CI CI width Bias % Correct

No missing data (n � 2800) 3.68 7.65 3.40, 3.96 0.56 — —
Missing completely at random mechanism

Complete case (n � 956) 3.63 7.53 3.15, 4.11 0.96 0.05 —
Single imputation 2.95 6.32 2.72, 3.19 0.47 0.73 83.2
Multiple imputation 3.83 7.71 3.54, 4.12 0.57 0.15 87.7

Data dependent missing mechanism #1
Complete case (n � 940) 1.82 5.16 1.49, 2.15 0.66 1.86 —
Single imputation 2.46 5.45 2.26, 2.67 0.41 1.22 72.3
Multiple imputation 3.59 7.62 3.31, 3.88 0.57 0.08 86.1

Data dependent missing mechanism #2
Complete case (n � 1053) 1.01 3.25 0.81, 1.20 0.39 2.67 —
Single imputation 2.01 4.48 1.84, 2.17 0.33 1.67 61.8
Multiple imputation 3.48 7.45 3.20, 3.76 0.56 0.20 83.0

% Correct refers to the percentage of correctly imputed items.
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is data dependent, however, complete case analysis performs
very poorly, with the true mean value located very far from
the upper limit of the 95% CI. Therefore, not surprisingly,
complete case analysis cannot be recommended when ana-
lyzing PHI data, even when the data are completely missing
at random.

Single imputation of the modal value also performed
poorly under all missing data mechanisms, with a bias of
at least 0.73 points on the PHI scale, and with none of the
95% CI’s capturing the true value. This occurred despite very
high percentages of correctly imputed components.

Multiple imputation performed very well under both types
of missing data mechanisms. The correct mean was well
within the 95% CI in all cases, and the increase in CI width
over the full (n � 2800) analysis was minimal. Note that
even under an MCAR mechanism, the inferences were better
for multiple compared to single imputation despite similar
percentages of correct imputations. Because our multiple
imputation model used only the information contained in
the non-missing PHI components, it is clear that within each
patient, the non-missing components are predictive of the
missing components in a meaningful way. The good perfor-
mance of multiple imputation was to be expected, because
the high correlations between individual PHI components
(ranging from a low of 0.66 to a high of 0.86) implied “near
non-ignorability” of our model, as discussed above.

We next apply the above three techniques to estimating
the change in PHI scores recorded in the emergency room to
those measured upon admission to the hospital. The above
simulations suggest that only multiple imputation performs
adequately among the methods tested, but because the non-
simulated missing data analyzed below are again likely to
be non-ignorable, there is no absolute guarantee that multiple
imputation will again perform as well as it did in the
above simulations. We therefore tried two different multi-
ple imputation models, to further investigate robustness of
our final results to bias from missing data.

3.2. Estimating the emergency room to hospital
admission change in PHI

Data from 3,194 subjects were analyzed. The average
age was 49.8 (SD � 22.4) years, with 62.5% male. Table 3
summarizes the results of the analyses of these data.

The complete case analysis for the change in PHI values
from the emergency room to hospital admission used only
374 (11.7%) of the subjects’ data, and both complete case
and single imputation methods estimated both the emergency
room and admission average PHI scores to be approxi-
mately one (to the nearest integer), thereby estimating very
small changes from emergency room to admission. The mul-
tiple imputation models both estimated substantially higher
scores at both time points, with the model that omitted age
and sex estimating higher values compared to the model
that included these additional covariates.
Table 3
Results from the analyses of the change in PHI from admission to the
emergency room

Emergency room Admission Change

Complete case analysis
n 569 672 374
Mean PHI 0.87 1.14 0.09
SD 2.54 2.90 1.43
95% CI 0.66, 1.08 0.92, 1.36 �0.05, 0.24

Single imputation (n � 3194)
Mean PHI 0.75 0.95 0.20
SD 1.96 2.32 1.65
95% CI 0.68, 0.82 0.87, 1.03 0.14, 0.26

Multiple imputation (age and sex omitted) (n � 3194)
Mean PHI 1.53 1.96 0.43
SD 3.20 3.73 2.65
95% CI 1.41, 1.66 1.85, 2.09 0.29, 0.585

Multiple imputation (age and sex included) (n � 3194)
Mean PHI 1.36 1.54 0.18
SD 2.90 3.22 1.66
95% CI 1.30, 1.44 1.47, 1.62 0.12, 0.23

The mean PHI change for the complete case analyses does not corre-
spond to the observed difference between the mean at admission and
the mean recorded at the emergency room, because each column is based on
different numbers of cases.

The estimate of change in PHI was larger in the model
that excluded age and sex compared to the model that in-
cluded these covariates, with point estimates of 0.18 and
0.43 points, respectively. Interestingly, the 95% credible in-
tervals for the mean change from the two different multiple
imputation models did not overlap. As age and sex appeared
to be good predictors of most of the PHI components at
both time points, one might tend to prefer results from
this model, but the fact that two reasonable imputation
models provide somewhat different results raises the issue
of how to interpret the results overall, and whether either
model is providing valid inferences. Looking at the pairwise
correlations between the PHI components among the com-
plete cases in this second data set, we were surprised to find
that they were much lower than in the complete data set.
Across the 20 possible bivariate correlations of the five
components within each of the admission and emergency
times, the range of the Spearman correlation coefficients
was from 0.03 to 0.72, with all but three being less than
0.25. This is in contrast with the much higher values we
found in the first data set. The 2,800 complete cases analyzed
in the empirical simulation were also younger, and therefore
possibly represent a different class of trauma patients com-
pared to the 3,194 subjects analyzed here. In other words, pa-
tients admitted to hospital following emergency care may
differ from patients treated and then discharged from
emergency.

4. Discussion

Confronted with a data set with much missing data, we
decided to use multiple imputation to adjust for possible bias.
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In the absence of any direct evidence that our data were
MAR, however, we wondered how certain we could be that
our final inferences were correct. We decided to use two
additional checks to help verify whether multiple imputation
would likely work well. Using a similar but complete PHI
data set, the empirical simulations we performed confirmed
the well-established result that multiple imputation can work
well when other techniques fail, giving us initial confidence
to proceed with our main analyses. Our assumption was that
if the mean PHI score could be well estimated at each of
two time points, then the difference in PHI between these
time points would also be well estimated.

The dependence of our results upon which imputation
model is selected raises questions about which set of final
inferences is to be preferred. This is especially true because
a case could be made for either model to be chosen. The first
model used PHI data alone, so was a closer replication of
our simulation model, which worked well. The second model
added reasonable covariates, and a simulation study has
suggested that larger models tend to outperform smaller
models [33], at least in the context of data missing at random.
This analysis, however, carries with it the extra assumption
that the relation between these covariates is the same in
those subjects with and without missing data, which is not
guaranteed.

We conclude the following:

1. Different reasonable multiple imputation models can
sometimes lead to different inferences. Robustness to
model choice should be considered. Although in non-
missing data situations a best model (or set of best
models) can be chosen, the choice is less certain
here, owing to the unverifiable extra assumption that
the model fit using the non-missing data also ade-
quately models the missing data items.

2. Because the assumptions are difficult to directly verify,
indirect verifications based on similar data sets may be
useful. This, too, can have drawbacks, as a model
that works well in one database may work less well
in another.

3. If different reasonable models provide different infer-
ences, one needs to use clinical judgement as to
whether the differences are important enough to invali-
date the analyses or not.

In our example, even though the confidence intervals for
the PHI difference from the two models did not overlap,
taking the extreme range from the two intervals given us
an “inclusive interval” of (0.12, 0.585). If this interval is
sufficiently narrow to draw conclusions about changes in
the PHI, then reasonable confidence can be placed in the
final conclusions. If, however, there is a different conclusion
based on whether the PHI difference is above or below 0.25,
say, then definitive conclusions cannot be drawn from this
data set.

Of course, these conclusions do not apply uniquely to
trauma databases, but may carry over to other types of data-
bases with missing data. Although multiple imputation may
be helpful in some cases, it is clearly not always sufficient.
This is an important point, because multiple imputation will
be increasingly used, as evidenced by its recent addition to
popular standard statistical packages [25,26] and articles in
the epidemiologic literature recommending its use [34,35].

In summary, complete case analyses require data that
are completely missing at random, often not the case in
epidemiologic studies, and almost never true for trauma
research. Single imputation models are often no better, and
provide confidence intervals that are too narrow. Multiple
imputation models can provide improved confidence interval
coverage, but their validity depends on unverifiable ignora-
bility conditions, which may not hold even if preliminary
investigations in similar databases suggests that they are
plausible. Recent work on models that do not assume MAR
generally require explicit models for the missing data mecha-
nism, but may be of help in some cases. See Schafer and
Graham [19] for a recent summary.
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