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Statistical Inference for Continuous 
Variables

onsider the following statements
from an abstract reporting results
from a study of CT in large cell
neuroendocrine carcinoma of the

lung [1]:
In the 38 patients, six central tumors and

32 peripheral tumors, with diameters rang-
ing from 12 to 92 mm (mean ± SD, 32 ± 19
mm), were identified. None of the tumors
had air bronchograms or calcification in the
mass or nodule… On contrast-enhanced
CT scans, inhomogeneously enhanced tu-
mors appeared to be larger (51 ± 18 mm)
than homogeneously enhanced tumors
(25 ± 10 mm; p < 0.001). 
Proper interpretation of the above results,

and of similar reports from much of the mod-
ern clinical literature, depends in large part on
the understanding of statistical terms. In this
case, terms such as “SD” were used for de-
scriptive purposes, and p values were given to
support evidence of between-group differ-
ences in tumor size. In other reports, one may
see terms such as “confidence intervals,” “t
tests,” “type 1 and type 2 errors,” and so on.
Clearly, radiologists who wish to keep pace
with new technologies must at least have a ba-
sic understanding of statistical language. This
is true not only if they desire to plan and per-
form their own research, but also if they sim-
ply want to read the medical literature with a
keen critical eye or to make informed deci-
sions about which new treatments or diagnos-
tic techniques they may wish to use to treat
their own patients.

Descriptive terms such as “means,” “medi-
ans,” and “SDs” have been covered in a previous
article in this series [2]. Before reading this arti-
cle, reviewing the previous modules on descrip-

tive statistics [2] and probability and sampling [3]
may be a good idea. In this module, we introduce
the basic notions of inferential statistics—that is,
we discuss how to draw inferences about one or
more populations’ characteristics using data from
samples from these populations. We focus on
continuous variables, including inferences for
means and simple nonparametric methods.
Rather than simply providing a catalogue of
which formulas to use in which situation, we ex-
plain the logic behind each technique. In this
way, informed choices and decisions can be
made on the basis of a deeper understanding of
exactly what information each type of statistical
inference provides.

Recall from the discussion in a previous
module [3] that there are two main schools of
statistical inference: the frequentist school and
the Bayesian school. These are each based on a
different definition of probability, the frequen-
tist school based on a long-run frequency defi-
nition and the Bayesian school based on a more
subjective view of probability. We discuss these
paradigms for statistical inference.

In the Statistical Inferences for Means sec-
tion, the classical or frequentist school of sta-
tistical inferences for means is covered, and in
the Nonparametric Inference section, we
present a brief introduction to nonparametric
inferences. In these sections, we explain ex-
actly what is meant by ubiquitous statistical
statements such as “p < 0.05”—which may not
mean what many medical journal readers be-
lieve it to mean—and examine confidence in-
tervals as an attractive alternative to p values.
The problem of choosing an appropriate sam-
ple size for a given experiment is discussed in
the Sample Size Calculations section. Increas-
ingly important Bayesian alternatives to the
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classical statistical techniques are presented in
the Bayesian Inference section.

Statistical Inferences for Means
In this section, we consider how to draw

inferences about populations by statistically
analyzing samples of data using standard
frequentist methods. We first consider infer-
ences for a single mean when the variance in
the population is known. We also initially
assume that the data follow a normal distri-
bution, so we are estimating the mean of this
normal distribution. Once the basic concepts
are understood in this simple case, we indi-
cate how to extend the same ideas to cases in
which the variance is unknown or more than
one mean is of interest and to cases in which
the normal distribution is not assumed.

In addition to the two different schools of
inference (i.e., frequentist or Bayesian), sta-
tistical inferences can be divided into proce-
dures that test a hypothesis and those that
estimate parameters. We begin with hypothe-
sis testing procedures that lead to p values,
and then compare the information they pro-
vide to that provided by parameter estimation
via confidence intervals.

Standard Frequentist Hypothesis Testing
Suppose we wish to test the hypothesis that a

new accelerated radiation schedule for patients
with brain cancer leads to smaller mean tumor
diameters compared with the standard schedule
versus a null hypothesis that the tumor diame-
ters are the same regardless of schedule. Sup-
pose further that it is known that patients on the
standard schedule have a tumor diameter of 3.5
cm, on average, after completing their radiation
therapy. Although it is somewhat unrealistic to
assume this perfect knowledge of past tumor di-
ameters, this example approximates the situa-
tion in which a large case series (e.g., a historical
control series) of tumor diameters is available,
so that most uncertainty arises from the data
from the new schedule. Formally, we can state
the hypotheses as:

H0 (null hypothesis): µ = 3.5

ΗA (alternative hypothesis): µ < 3.5

where µ represents the unknown true average tu-
mor diameter of the accelerated radiation schedule.

There are four possible results when con-
sidering hypothesis testing, depending on the
true state of nature, which is typically un-
known, and the statistical test result, which
depends on the data collected. The four pos-
sibilities are shown in Table 1.

According to Table 1, if the accelerated
schedule in fact leads to smaller tumor diameters
than the standard and we reject the null hypothe-
sis, then we have made a correct decision, as also
happens if the null hypothesis is in fact correct
and we do not reject it. On the other hand, if we
reject the null hypothesis as false when it is in
fact true, we make a so-called type 1 error, which
occurs with probability α, and if we fail to reject
the null hypothesis when it is in fact false, we
make a type 2 error, which occurs with probabil-
ity β. The power of a study is defined as the prob-
ability of rejecting the null hypothesis when the
alternative hypothesis is in fact true, so that the
power is equal to 1 – β. To summarize, we have
equations 1–4:

Recall from a previous module in this series
[3] that probabilities written in the form of Pr{A
| B} are called “conditional probabilities,” and the
notation is read as the probability that the event A
occurs, given that the event B is known to have
occurred. Thus, all of the quantities are condi-
tional on knowing whether the null or alternative
hypotheses are in fact true. Of course, we gener-
ally do not know whether the null hypothesis is
true or not, so these conditional statements are at
best of indirect interest. Once we obtain our data,
we would ideally like to know the probability that
the null hypothesis is true—not assume the null
hypothesis is true. We will discuss this point fur-
ther in the Bayesian Inference section.

Although it is important to understand the
types of errors that can be made when hypoth-
esis testing, the results of a hypothesis test are
usually reported as a p value, which we now

define: The p value is the probability of ob-
taining a result as extreme as or more extreme
than that observed assuming that the null hy-
pothesis is in fact true.

It is important to note that the p value is not
the probability that the null hypothesis is true
after having seen the data, even though many
clinicians often falsely interpret it this way.
The p value does not directly or indirectly
provide this probability and in fact can be or-
ders of magnitude different from it. In other
words, it is possible to have a p value equal to
0.05, when the probability of the null hypoth-
esis is 0.5, different from the p value by a fac-
tor of 10 (see the Bayesian Inference section
for how to calculate a more easily interpreted
hypothesis test from a Bayesian viewpoint).

Given the definition of a p value, how
would we calculate it? Suppose that we per-
form tumor measurements on 10 patients un-
der the accelerated schedule and that these
tumors have a mean diameter of x = 3.0 cm,
with a known SD of σ = 1.5 cm. The defini-
tion implies that we need to calculate the
probability of obtaining mean tumor diame-
ters of 3.0 cm or less (i.e., as extreme as or
more extreme than what was observed), given
that the true mean tumor diameter under the
standard treatment schedule is exactly 3.5 cm
(i.e., given the null hypothesis is true). Now,
recall from a previous article in this series [3]
that the probability density of our mean, x, is
usually considered as normal. Because for
purposes of calculating a p value the null hy-
pothesis is considered as exactly correct, the
mean of our normal distribution is assumed to
be 3.5 cm. The SD of our mean (known as the
SE) is given as the SD in the population (as-
sumed here to be σ = 1.5 cm) divided by the
square root of the sample size [3]. Thus here,
our SE is given by 1.5 / √ 10 = 0.474.

Therefore, we calculate equations 5 and 6: 

This probability can be calculated from tables
of the normal distribution, as explained in Jo-
seph and Reinhold [3]. Normalizing, we find Z =
[(3.0 – 3.5) / 0.474] = –1.05, and looking up
−1.05 on standard normal tables, we find p =
0.147. Thus, there is about a 14.7% chance of
obtaining results as extreme as or more ex-
treme than the 3.0 cm observed, if the true
mean tumor diameter for the new schedule is
exactly 3.5 cm. Therefore, the observed result

(1)

(2)

(3)

(4)

TABLE 1 Results of Hypothesis 
Testing

Test
True State of Nature

HA H0

Reject H0 1 – β α
Do not reject H0 β 1 – α

(5)

(6)
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is not unusual (i.e., it is compatible with the
null hypothesis), so we cannot reject H0.

Notice that if we had observed the same
mean tumor diameter but with a larger sample
size of 100, say, the p value would have been
0.0004. With a sample size of 100, the event of
the observed data or data more extreme occur-
ring would be a rare event if the null hypothesis
were true, so the null hypothesis could be re-
jected. Therefore, p values depend not only on
the observed mean tumor diameter, but also on
the sample size.

The test described earlier was one-sided—
that is, we a priori believed (perhaps from pre-
liminary data or theoretic considerations) that
the accelerated schedule would lead to equal or
better results and not larger tumor sizes. To
generalize, to perform a one-sided test of the
null hypothesis that a single mean µ has value
µ0, calculate the statistic in equation 7: 

and determine the p value from normal distribu-
tion tables as in equation 8:

On the other hand, often we may not want to
specify the direction ahead of time. In this case,
the alternative hypothesis is two-sided (i.e., the
alternative hypothesis is HA: µ ≠ µ0 rather than
the one-sided HA: µ < µ0), and one performs the
calculation in equation 9:

where | a | indicates the absolute value of a, and
one determines the p value from normal distri-
bution tables as in equation 10:

In the one-sided case, we reject the null hy-
pothesis only if we observe an extreme result in
the direction specified by the alternative hypoth-
esis. In the two-sided case, we reject if we ob-
serve an extreme result in either direction (larger
or smaller tumor sizes). This results in a doubling
of the p value, so for a two-sided alternative hy-

pothesis (HA: µ ≠ 3.5 in this case), we find p = 2 ×
0.147 = 0.294. The doubling results from add-
ing the areas under the normal curve both below
−1.05 (as in the one-sided case) and above 1.05.

Similar methods are available for tests in-
volving comparisons between two means. For
example, to test the null hypothesis that
means in two different groups are equal to
each other versus a two-sided alternative hy-
pothesis, calculate as in equation 11:

For example, suppose we wish to again look
at the difference in mean tumor diameter be-
tween two groups of patients with brain can-
cer, but this time in a clinical trial setting, with
subjects randomized into accelerated and
standard schedule groups (this would, of
course, be a better design because concurrent
groups are compared, minimizing potential
confounding). Suppose we observe a mean
tumor diameter of x1 = 3.0 cm (σ1 = 1.5 cm)
in 200 subjects under the new schedule, and a
mean tumor diameter of x2 = 3.7 cm (σ2 = 1.4
cm) in 200 subjects under the standard sched-
ule. Plugging into the above formula, we get
equation 12:

Looking up 4.82 on normal tables gives a p
value of 2 × (0.0000007) = 0.0000014. Be-
cause this indicates a very rare event under
H0, we can reject the null hypothesis that the
two means are equal.

These formulas can be extended in a vari-
ety of directions, which we describe in the
subsequent sections.

Paired versus unpaired tests.—In compar-
ing the two mean tumor diameters, we have as-
sumed that the design of this study was unpaired,
meaning that the data were composed of two in-
dependent samples, one from each treatment
group. In some experiments, for example, if one
wishes to compare quality of life before and after
any medical procedure is performed, a paired de-
sign is appropriate because the patient is being
compared with him- or herself—that is, the pa-
tient serves as his or her own control. Here, one
would subtract the value measured on an appro-
priate quality-of-life scale before the procedure

from that measured on the same scale after the
procedure to create a single set of before-to-after
differences. Once this subtraction has been done
for each patient, one in fact has reduced the two
measures on each patient (i.e., before and after)
to a single set of numbers representing the differ-
ences. Therefore, paired data can be analyzed us-
ing the same formulas as used for single-sample
analyses. Paired designs are often more efficient
than unpaired designs, as between-group vari-
ability is reduced by the pairing.

Assumptions behind the Z tests.—For ease of
exposition, we have presented all of the test for-
mulas using percentiles that came from the nor-
mal distribution, but in practice there are two
assumptions behind this use of the normal dis-
tribution. The first assumption is that the data
arise either from a normal distribution or the
sample size is large enough for the central limit
theorem [3] to apply. The second assumption is
that the variance or variances involved in the
calculations are known exactly.

The first of these assumptions is often satis-
fied at least approximately in practice, but the
second assumption almost never holds in real
applications. We usually have to use estimates
s2, s1

2, and s2
2 in the above formulas rather

than the exact values σ2, σ1
2, and σ2

2, respec-
tively, because the variances would usually be
estimated from the data rather than being
known exactly. To account for the extra uncer-
tainty due to the fact that the variance is esti-
mated rather than known, the distribution of
our test statistic changes. We thus use t distri-
bution tables rather than normal distribution ta-
bles. In calculations, this means that the z
values used in all of the formulas need to be
switched to the corresponding values from t ta-
bles. This requires knowledge of the degrees of
freedom (df), which for single-mean problems
is simply the sample size minus 1. This of
course applies to paired designs as well, be-
cause they reduce to single-sample problems.
For two sample unpaired problems, a conser-
vative number for the df is the minimum of the
two sample sizes minus 1 (n – 1, where n is the
sample size) [4]. These tests are called t tests.

Equal or unequal variances.—The tests
described earlier assume that the variances in
the two groups are unequal. Slightly more ef-
ficient formulas can be derived if the vari-
ances are the same, as a single pooled
estimate of the variance can be derived from
combining the information in both samples
together. We do not discuss pooled variances
further here, in part because in practice the
difference in analyses done with pooled or
unpooled variances is usually quite small and

(11)

(12)

(7)

(8)

(9)

(10)
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in part because it is rarely appropriate to pool
the variances, because the variability is usu-
ally not exactly the same in both groups.

Analysis of variance: more than two
means.—We have seen tests for one or two
means, but sometimes one wishes to test the
equality of three or more means. Although this
topic is not covered here, readers should be
aware that analysis of variance is a technique
that extends our two-sample procedure to three
or more means. See, for example, Armitage and
Berry [5] or Rosner [6] for details.

Table 2 provides the test statistics used for
all possible cases with one or two means, as
discussed earlier.

How Useful Are p Values for Medical 
Decision Making?

Although p values are still often found in the
literature, there are several major problems as-
sociated with their use. First, as mentioned ear-
lier, they are often misinterpreted as the
probability of the null hypothesis given the
data, when in fact they are calculated assuming
the null hypothesis to be true. Second, clini-
cians often use them to dichotomize results into
important or unimportant depending on
whether p < 0.05 or p > 0.05, respectively.
However, there is not much difference between
p values of 0.049 and 0.051, so the cutoff of
0.05 is arbitrary. Third, p values concentrate at-
tention away from the magnitude of treatment
differences. For example, one could have a p
value that is very small but is associated with a

clinically unimportant difference. This is espe-
cially prone to occur in cases in which the sam-
ple size is large. Conversely, results of
potentially great clinical interest are not neces-
sarily ruled out if p > 0.05, especially in studies
with small sample sizes. Therefore, one should
not confuse statistical significance (i.e., p <
0.05) with practical or clinical importance.
Fourth, the null hypothesis is almost never ex-
actly true. In the example described, does one
seriously think that the mean tumor diameter of
the patients on the standard treatment schedule
could be exactly 3.5 cm (rather than, say,
3.50001 cm)? Because one knows the null hy-
pothesis is almost surely false to begin with, it
makes little sense to test it. Instead, one should
concern oneself with the question, By how
much are the two treatments different?

There are so many problems associated
with p values that most statisticians now rec-
ommend against their use, in favor of confi-
dence intervals or Bayesian methods. In fact,
some prominent journals have virtually ban-
ished p values from publication [7], others
strongly discourage their use [8], and many
others have published articles and editorials
encouraging the use of Bayesian methodol-
ogy [9, 10]. We cover these more informative
techniques for drawing statistical inferences,
starting with confidence intervals.

Frequentist Confidence Intervals
Although the p value provides some infor-

mation concerning the rarity of events as ex-

treme as or more extreme than that observed
assuming the null hypothesis to be exactly
true, it provides no information about what
the true parameter values might be. In the
two-mean example described earlier, we ob-
served a tumor diameter difference of 0.7 cm,
which was shown to be “statistically signi-
ficant,” with a p value of approximately
0.000001. Although we observed a difference
of 0.7 cm, we know that our data are from a
random sample of patients to whom this pro-
cedure could be applied, so the true mean dif-
ference could in fact be higher or lower than
our observed difference. How likely is it that
the true mean difference in tumor diameter is
clinically important?

One way to answer this question is with a
confidence interval. The formula in equation 13
provides 95% confidence interval limits for
means (the value 1.96 could be changed to other
values if intervals with coverage other than 95%
are of interest) [3]:

where x is the sample mean and σ is the known
SD from a sample of size n. As before, if σ is not
known, it is replaced by its estimate from the
data, s, and 1.96 is increased somewhat, as a per-
centile from the t distribution replaces the nor-
mal percentile.

TABLE 2 Tests and Confidence Intervals Required for One and Two Sample Problems for Continues Variables

Note.—In all cases, the data are assumed to be normally distributed or the sample size large enough for the central limit theorem to apply. The data are assumed to be
represented by xi, i = 1,…, n for a single-sample problem or by xi, i = 1,…, n1 and yi, i = 1,…, n2 for a two-sample problem. Sample sizes are n for a single-sample problem and
n1 and n2 for the two-sample problem. The z indicates a normal table is used, t indicates a t table is required. When a t table is required, the degrees of freedom are equal to
n – 1 for a single-sample problem, while the degrees of freedom are n1 + n2 – 2 for a two-sample problem with equal variances, and min(n1 – 1, n2 – 1) for unequal variances
(conservative value). The  x0 and y0 indicate null values under the null hypothesis (usually but not always equal to zero). For paired two-sample problems, form the within-
individual differences, and use the formulas for the one-sample case. N/A = not applicable.

(13)
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Applying this formula to the single-mean
example we first discussed, where x = 3.0, n =
10, and σ = 1.5, we obtain a 95% confidence
interval of (2.1–3.9 cm). We cannot conclude
very much from this interval because we have
not ruled out mean tumor diameters as small
as 2.1 cm, which is clinically superior to the
3.5 cm from the old schedule; however, on the
other hand, diameters as large as 3.9 cm have
also not been ruled out, which is even worse
than the tumor diameter in the standard
group. Thus, further data would need to be
collected before any conclusions could be
drawn about this new schedule.

Our two-group clinical trial example had
larger sizes, so it will presumably provide a more
accurate estimate. We can calculate a 95% confi-
dence interval for the difference in means for the
two groups using the formula in equation 14,

where the same comment regarding unknown
variances again applies. Plugging in the values
we obtained from our clinical trial example
given earlier, we find a confidence interval of
−0.46 to –0.94 cm. Thus, roughly speaking, it is
likely that the true tumor diameter difference
between our two schedules is between ap-
proximately 0.5 cm less under the new
schedule (−0.46 cm) and up to almost a 1-cm
reduction (−0.94 cm). Although our p value for
this same data set was small, which enabled us
to reject the null hypothesis, we can see that the
confidence interval provides more clinically
useful information about the magnitude of the
difference. We can also see that, in contrast to
what may be believed after seeing the p value,
we are still uncertain about the clinical utility of
the new schedule, because values near the lower
limit of the confidence interval would not be in-
teresting clinically—it would represent less
than a 30% change from the mean baseline tu-
mor size—while differences near 1 cm may be
clinically interesting. Therefore, our conclu-
sions from the confidence interval are more de-
tailed than those from the p value. This is true in
general, as we now discuss.

Interpreting Confidence Intervals
Confidence intervals are derived from pro-

cedures that are set up to “work” 95% of the

time (if a 95% confidence interval is used).
The two confidence interval equations dis-
cussed earlier provide procedures that, when
used repeatedly across different problems,
will capture the true value of the mean (or dif-
ference in means) 95% of the time and fail to
capture the true value 5% of the time. In this
sense, we have confidence that the procedure
works well in the long run, although in any
single application, of course, the interval ei-
ther does or does not contain the true mean.
Note that we are careful not to say that our
confidence interval has a 95% probability of
containing the true parameter value. For ex-
ample, we did not say that the true difference
in mean tumor diameter is in the interval
−0.49 to −0.94 cm with 95% probability. This
is because the confidence limits and the true
mean tumor diameters are both fixed num-
bers, and it makes no more sense to say that
the true mean is in this interval than it does to
say that the number 2 is inside the interval (1,
6) with probability 95%. Of course, 2 is inside
this interval, just like the number 8 is outside
of the interval (1, 6). However, the procedure
used to calculate confidence intervals pro-
vides random upper and lower limits that de-
pend on the data collected; in repeated uses of
this formula across a range of problems, we
expect the random limits to capture the true
value 95% of the time and exclude the true
mean 5% of the time. Refer to Figure 1. If we
look at the set of confidence intervals as a
whole, we see that about 95% of them include
the true parameter value. However, if we pick
out a single trial, it either contains the true
value (≈ 95% of the time) or excludes this
value (≈ 5% of the time).

Despite their somewhat unnatural inter-
pretation, confidence intervals are gener-
ally preferred to p values. This is because
confidence intervals focus attention on the
range of values compatible with the data on
a scale of direct clinical interest. Given a
confidence interval, one can assess the clin-
ical meaningfulness of the result, as can be
seen in Figure 2.

Depending on where the upper and lower
confidence interval limits fall in relation to
the upper and lower limits of the region of
clinical equivalence, different conclusions
should be drawn. The region of clinical
equivalence, sometimes called the region of
clinical indifference, is the region inside of
which two treatments, say, would be consid-
ered to be the same for all practical purposes.
The point 0, indicating no difference in re-
sults between the two treatments, is usually
included in the region of clinical equivalence,
but values above and below 0 are usually also
included. How wide this region is depends on
each individual clinical situation. For exam-
ple, if one treatment schedule is much more
expensive than another, one may want at least
a 50% reduction in tumor diameter to con-
sider it the preferred treatment.

There are five different conclusions that
can be made after a confidence interval has
been calculated, as illustrated by the five hy-
pothetic intervals displayed in Figure 2. The
first conclusion (interval 1) is that the confi-
dence interval includes zero and that both up-
per and lower confidence interval limits, if
they were the true values, would not be clini-
cally interesting. Therefore, this variable has
been shown to have no important effect.

(14)

Fig. 1.—Drawing shows series of 95% confi-
dence intervals for unknown parameter.



Joseph and Reinhold

1052 AJR:184, April 2005

The second conclusion (interval 2) is that
the confidence interval includes zero but that
one or both of the upper or lower confidence
interval limits, if they were the true values,
would be interesting clinically. Therefore,
the results of this variable in this study are
inconclusive, and further evidence needs to
be collected.

The third conclusion (interval 3) is that the
confidence interval does not include zero and
that all values inside the upper and lower confi-
dence interval limits, if they were the true val-
ues, would be clinically interesting. Therefore,
this study shows this variable to be important.

The fourth conclusion (interval 4) is that
the confidence interval does not include zero
but that all values inside the upper and lower
confidence interval limits, if they were the
true values, would not be clinically interest-
ing. Therefore, this study shows this variable,
although having some small effect, is not
clinically important.

The fifth conclusion (interval 5) is that the
confidence interval does not include zero but
that only some of the values inside the upper
and lower confidence interval limits, if they
were the true values, would be clinically in-
teresting. Therefore, this study shows this
variable has at least a small effect and may be
clinically important. Further study is required
to better estimate the magnitude of this effect.

Revisiting the two confidence intervals
discussed earlier in light of Figure 2, we see
that the interval based on our single-sample

experiment, which ranged from 2.1 to 3.9 cm,
is clearly of type 2 and the interval based on
the two-group clinical trial is of type 5. Once
again, note that these confidence intervals
provide much more detailed conclusions than
the information contained in a p value.

The p values group together intervals 1 and
2 as “nonsignificant” and intervals 3, 4, and 5
as “significant.” This can lead to misleading
conclusions from a clinical viewpoint. For ex-
ample, similar clinical conclusions should be
drawn from intervals 1 and 4, even though
one is “significant” and the other is not. It
should now be clear why many journals dis-
courage reporting results in terms of p values
and encourage confidence intervals.

Summary of Frequentist Statistical Inference
The main tools for statistical inference

from the frequentist point of view are p val-
ues and confidence intervals. The p values
have fallen out of favor among statisticians,
and although they continue to appear in
medical journal articles, their use is likely to
greatly diminish in the coming years. Confi-
dence intervals provide more clinically use-
ful information than p values, so confidence
intervals are to be preferred in practice. Con-
fidence intervals still do not allow the formal
incorporation of preexisting knowledge into
any final conclusions. For example, in some
cases there may be compelling medical rea-
sons why a new technique may be better than
a standard technique, so if faced with an in-
conclusive confidence interval, a radiologist
may still wish to switch to the new tech-
nique, at least until more data become avail-
able. On what basis could this decision be
justified? We return to this question in the
Bayesian Inference section, which appears
later in this article.

Nonparametric Inference
Thus far, statistical inferences on popula-

tions have been made by assuming a mathe-
matic model for the population (e.g., a normal
distribution) and estimating parameters from
that distribution based on a sample. Once the
parameters have been estimated—for exam-
ple, the mean or variance for a normal distri-
bution—the distribution is fully specified.
This is known as parametric inference.

Sometimes we may be unwilling to specify
the general shape of the distribution in ad-
vance and prefer to base the inference only on
the data, without a parametric model. In this
case, we have distribution-free or nonpara-
metric methods.

For example, consider the following data,
which represent the tumor diameters of the
marker liver metastases for two different che-
motherapy regimens in patients with colorec-
tal carcinoma: conventional treatment, 21, 12,
11, 28, 3, 10, 9, 5, 7, 10, 6; new treatment, 4,
3, 4, 5, 20, 22, 5, 12, 15, 5, 1, 14, 13.

Because we are making nonparametric in-
ferences, we no longer refer to tests of simi-
larity of group means. Rather, the null and
alternative hypotheses here are defined as fol-
lows: For the null hypothesis (H0), there is no
treatment effect—that is, conventional treat-
ment tends to give rise to tumor sizes similar
to those from the new treatment. For the alter-
native hypothesis (HA), the new treatment
tends to give rise to different values for tumor
sizes compared with those from the conven-
tional treatment group.

The first step to nonparametrically test
these hypotheses is to order and rank the data
from lowest to highest values, keeping track
of which data points belong to each treatment
group, as shown in Table 3.

Thus, in ranking the data, we simply sort
the data from the smallest to the largest value
regardless of group membership and assign
a rank to each data point depending on where
its value lies in relation to other values in the
data set. Hence, the lowest value receives a
rank of 1, the second lowest a rank of 2, and
so on. Because there are many “ties” in this
data set, we need to rank the data accounting
for the ties, which we do by grouping all tied
values together and distributing the sum of
the available ranks evenly among the tied
values. For example, the second and third
lowest values in this data set are both 3, and
there is a total of five ranks (2 + 3) to be di-
vided among them. Hence, each of these val-
ues receives a rank of 2.5 (5 / 2). Similarly,
the sixth through ninth values are all tied at
5. There are 30 total ranks (6 + 7 + 8 + 9) to
divide up among four tied values, so each re-
ceives a value of 7.5 (30 / 4), and so on.

The next step is to sum the ranks for the values
belonging to the conventional treatment group,
which yields a total of 147.5 (2.5 + 7.5 + 10 +
11 + 12 + 13.5 + 13.5 + 15 + 16.5 + 22 + 24).

We now reason as follows: There is a total
of 300 ranks (1 + 2 + 3 + …+ 23 + 24) that can
be distributed among the conventional and
new treatment groups. If the sample sizes
were equal, therefore, and if the null hypothe-
sis were exactly true, we would expect that
these ranks should divide equally among the
two groups, so each would have a sum of
ranks of 150. Now, the sample sizes are not

Fig. 2.—Drawing shows how to interpret confidence
intervals. Depending on where confidence interval lies
in relation to region of clinical equivalence, different
conclusions can be drawn.
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quite equal, so here we expect 300 × (11 / 24)
= 137.5 of the ranks to go to the conventional
group, and 300 × (13 / 24) = 162.5 of the ranks
to go to the new treatment group. Note that
137.5 + 162.5 = 300, which is the total sum of
ranks available. We have in fact observed a
sum of ranks of 147.5 in the conventional
group, which is higher than expected. Is it high
enough that we can reject the null hypothesis?
To answer this question, we must refer to
computer programs that will calculate the
probability of obtaining a sum of ranks of
147.5 or greater given that the null hypothesis
of no treatment difference is true (remember
the definition of the p value discussed earlier).
Most statistical computer packages will per-
form this calculation, which in this case gives
p = 0.58. Hence, the null hypothesis cannot be
rejected, because our result and those more ex-
treme are not rare under the null hypothesis.

This nonparametric test is called the Wil-
coxon’s rank sum test. An exactly equivalent
test can be based on counts rather than ranks,
and it is called the Mann-Whitney test. The
Mann-Whitney test always provides the same
p value as the Wilcoxon’s rank sum test, so ei-
ther can be used. The analogous parametric
test, the unpaired t test for the same data, also
gives a p value of 0.58, so the same conclu-
sion is reached.

Because the two tests do not always pro-
vide the same conclusions, which of these
tests is to be preferred? The answer is situa-
tion-specific. Remember that the t test as-
sumes either that the data are from a normal
distribution—here, it would imply that the tu-
mor diameters are approximately normally
distributed—or that the sample size is large.
A histogram would show that the data are
skewed toward the right, so that normality is
unlikely, and the sample sizes are 11 and 13,
hardly large. Hence, in this example the non-
parametric test is preferred because the as-
sumptions behind the t test do not seem to
hold. In general, if the assumptions required
by a parametric test may not hold, a nonpara-
metric test is to be preferred, whereas if the
distributional assumptions do likely hold, a
parametric test provides slightly increased
power compared with a nonparametric test.

The Wilcoxon’s rank sum test is appropriate
for unpaired designs. A similar test exists for
paired designs, called the Wilcoxon’s signed
rank test. Nonparametric confidence intervals are
also available, as are tests for two or more groups,
such as the Kruskal-Wallis test. See Sprent [11]
for further details about these methods.

Sample Size Calculations
As previously discussed, there has been a

strong trend away from hypothesis testing
and p values toward the use of confidence in-
tervals in the reporting of results from bio-
medical research. Because the design phase
of a study should be in sync with the analysis
that will eventually be performed, sample size
calculations should be performed on the basis
of ensuring adequate numbers for accurate es-
timation of important quantities that will be
estimated in the study, rather than by power
calculations. This distinction is important be-
cause it has been shown [12] that sample sizes
calculated from a power viewpoint are often
insufficient when viewed from a confidence
interval viewpoint. In other words, although
high power ensures rejection of the null hy-
pothesis with high probability, it does not en-
sure than the confidence interval will be
narrow enough to allow good clinical deci-
sion making. Therefore, in this section, we fo-
cus on sample size methods based on
confidence interval width. For similar meth-
ods based on power, see the book by Leme-
show et al. [13].

The question of how accurate is “accurate
enough” can be addressed by carefully con-
sidering the results you would expect to get
(a bit of a catch-22 situation, because if you
knew the results you will get, there would be
no need to perform the experiment) and
making sure your interval will be small
enough to land in intervals numbered 1, 3, or
4 of Figure 2. The determination of an appro-
priate width is a nontrivial exercise, but a
reasonable target confidence interval width
can usually be found.

For estimating the sample size require-
ments in experiments involving population
means, two different formulas are available,
depending on whether there is a single sample

or two samples. These are derived by solving
for the sample size n in the formulas for the
confidence intervals discussed.

Single Sample
Let µ be the mean that is to be estimated,

and assume that we wish to estimate µ to an
accuracy of a total confidence interval width
of w (so that the confidence interval will be x ±
d, where 2 × d = w). Let σ be the SD in the
population.

Then the required sample size, n, is given
by equation 15, 

where, as usual, z is replaced by the appropri-
ate normal distribution quantile (z = 1.96,
1.64, or 2.58 for 95%, 90%, or 99% intervals,
respectively).

For example, suppose that we would like to
estimate average tumor size to an accuracy of
d = 2 mm with a 95% confidence interval and
that we expect the patient-to-patient variabil-
ity will be σ = 10 mm. Then, from the previ-
ous formula, we need to perform the
calculation in equation 16, 

rounding up to the next highest integer. The
most difficult problem in using this equation
is to decide on a value for the SD σ, because
it is usually unknown. A conservative ap-
proach would be to use the maximum value of
σ that seems reasonably likely to occur in the
experiment.

Two Samples
Let µ1 and µ2 be the means of two popula-

tions, and suppose that we would like an ac-
curate estimate of µ1 – µ2. Again assume a
total confidence interval width of w (so that
again 2 × d = w). Let σ1 and σ2 be the SD in each
population, respectively.

TABLE 3 First Step to Nonparametrically Test Null and Alternative Hypotheses: Order and Rank the Data

Treatment Group N N C N N N N N C C C C C C C C N N N N N C N C

Data 1 3 3 4 4 5 5 5 5 6 7 9 10 10 11 12 12 13 14 15 20 21 22 28

Ranks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ranks with ties 1 2.5 2.5 4.5 4.5 7.5 7.5 7.5 7.5 10 11 12 13.5 13.5 15 16.5 16.5 18 19 20 21 22 23 24

Note.—N = new treatment, C = conventional treatment.

(15)
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Then the sample size is given in equation 17, 

where now n represents the required sample
size for each group. As usual, z is chosen as
we did earlier and is usually 1.96, correspond-
ing to a 95% confidence interval.

Bayesian Inference
Consider again the single-sample tumor di-

ameter problem introduced in the Statistical In-
ferences for Means section. Recall that in this
example patients undergoing the standard radi-
ation therapy schedule are assumed to have a
mean of 3.5 cm, whereas the data collected so
far for the new accelerated schedule indicate a
mean of 3.0 cm, but are based on only 10 sub-
jects. The frequentist confidence interval was
wide, ranging from approximately 2.1 to 3.9
cm, so it has not been particularly helpful in
making a decision about which technique to use
for the next patient. At this point, with the data
being relatively uninformative, the treating phy-
sician may decide to be conservative and remain
with the standard schedule until more informa-
tion becomes available about the new schedule
or may go with their “gut feeling” as to the like-
lihood that the new schedule is truly better or
not. If there have been data from animal exper-
iments or strong theoretic reasons why the new
schedule may be better, there may be temptation
to try the new one. Can anything be done to aid
in this decision-making process?

Bayesian analysis has several advantages
over the standard or frequentist statistical
analyses discussed in this article so far, in-
cluding the ability to formally incorporate rel-
evant information not directly contained in
the current data set into any statistical analy-
sis. We will see how this can help with the
problem discussed earlier, but first we will
cover some basics of Bayesian analysis.

Let us generically denote our parameter of
interest by θ. Hence, θ can be a binomial pa-
rameter, the mean from a normal distribution,
an odds ratio, a set of regression coefficients,
and so on. Note in particular that θ can be two
or more dimensional. The parameter of inter-
est is sometimes usefully thought of as the
“true state of nature.”

The three basic elements of any Bayesian
analysis are, first, the prior probability distribu-
tion, f (θ). This prior distribution summarizes
what is known about θ before the experiment is
performed. It is based on a “subjective” assess-

ment of the available past information, so may
vary from investigator to investigator.

The second basic element of Bayesian
analysis is the likelihood function: f (x | θ).
The likelihood function summarizes the in-
formation contained in the data, x. For in-
stance, it may be created from a normal
distribution for a mean. It is important to re-
alize that Bayesians and frequentists can use
the same likelihood function because both
need to calculate the probability of data given
various values for the parameter θ. The way
the likelihood function is used, however, dif-
fers between the two paradigms.

The third basic element is the posterior dis-
tribution: f (θ | x). The posterior distribution
summarizes the information in the data, x, to-
gether with the information in the prior distri-
bution. Thus, it summarizes what is known
about the parameter of interest θ after the data
are collected.

Bayes’ theorem, posthumously published
by Thomas Bayes [14] in 1763, relates the
three quantities: posterior distribution = [like-
lihood of the data × prior distribution] / a nor-
malizing constant, or using our notation
above in equation 18, 

or, omitting the normalizing constant in equa-
tion 19,

where ∝ indicates “is proportional to.”
Thus, we update the prior distribution to a

posterior distribution after seeing the data via
Bayes’ theorem. The current posterior distri-
bution can be used as a prior distribution for
the next study, so Bayesian inference pro-
vides a natural way to represent the learning
that occurs as science progresses.

Radiologists are already familiar with the
Bayesian way of thinking, using it every day in
the context of interpreting diagnostic tests. The
prior probability used in Bayes’ theorem is anal-
ogous to the background rate of a condition in
the population, which is updated to a positive or
negative predictive value (analogous to a poste-
rior distribution) after seeing the results of a di-
agnostic test (analogous to seeing the data). It is
thus just a short step from using predictive val-
ues in a clinical setting to using Bayes’ theorem
in a research setting.

The most contentious element in Bayesian
analysis is the need to specify a prior distribu-
tion. Because there is no unique way to derive
prior distributions, they are necessarily sub-
jective, in the sense that one radiologist may
derive a different prior distribution than an-
other and, hence, arrive at a different poste-
rior distribution. Several points can be made
regarding this controversy.

First, Bayesians can use diffuse, flat, or ref-
erence prior distributions that, for all practical
purposes, consider all values in the feasible
range as equally likely. Hence, if little prior
information exists or if a Bayesian wishes to
see what information the data themselves pro-
vide, this choice of prior distribution can be
used. In fact, in many situations, a Bayesian
analysis using reference priors will result in
similar interval estimates as those provided
by frequentist confidence intervals, but with a
more natural interpretation: Unlike confi-
dence intervals, Bayesian intervals (often
called credible intervals) can be directly inter-
preted as containing the true parameter value
with the indicated probability. Thus, no refer-
ences to long runs of other trials are necessary
to properly interpret a credible interval.

Second, although many frequentists have
been quick to criticize Bayesian analysis be-
cause of the difficulty in deriving prior distri-
butions, frequentist analysis formally ignores
this information, which can hardly be consid-
ered as a better solution.

Third, if different clinicians have a range of
prior opinions and hence a range of prior dis-
tributions, there will also be a range of poste-
rior distributions. Presenting several Bayesian
analyses matching this range of prior opinions
helps to raise the level of debate after the pub-
lication of results in medical journals, because
it accurately reflects the range of clinical opin-
ion that exists in the community. Furthermore,
it can be shown that as more data accumulate,
the posterior distributions from different priors
tend to converge toward a single distribution,
accurately mirroring the process of eventual
consensus among clinicians as data accumu-
late. When viewed in this light, prior distribu-
tions can be seen as a great advantage. See
Spiegelhalter et al. [15] or a more introductory
level article [9] for more information on using
a range of prior distributions when carrying out
a Bayesian analysis.

Having discussed the basic elements, let us
see how Bayesian analysis works in practice by
again considering our example of tumor diame-
ters after radiation for brain cancer. We will dis-
cuss the three elements that lead to the posterior

(18)
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distribution calculated from Bayes’ theorem,
which are listed in the previous section.

Recall that in our data set we had x = 3.0,
σ = 1.5, and n = 10, so that our likelihood
function is a normal distribution with mean
3.5 and SE of 0.474, the same as was used in
the frequentist inferences discussed previ-
ously. In general, the choice of prior distri-
bution is based on any information that is
available at the time of the experiment. We
will consider two different prior distribu-
tions. The first (prior distribution 1 in Fig. 3)
will be a normal distribution with a mean of
3.5 cm and a very large variance, say,
10,000. This is a noninformative prior, be-
cause all values in the likely range have an
approximately equal chance of being the true
value, the curve being quite flat over a wide
range. Note that an equal 50% chance is
given to both the null and alternative hypoth-
eses that the new schedule is superior to that
of the old, because the distribution is cen-
tered at 3.5 cm. The second prior distribution
(prior distribution 2 in Fig. 3) will be cen-
tered at 3.0, with an SD of 0.5 (variance of
0.25). This would represent the opinion of a
radiologist who is enthusiastic about the new
schedule, with a prior opinion that the new
mean tumor diameter will be between about
2.0 and 4.0 cm, with 95% probability (as cal-
culated from the range of the normal [µ =
3.0, τ2 = 0.25] distribution, where τ2 is our
prior variance). Do not be confused by the
two distinct SDs that are used here: σ repre-
sents the variability of the tumor diameters
among the patients, whereas τ represents
how certain we are of our prior mean value.

We now wish to combine this prior density
with the information in the data as repre-
sented by the likelihood function to derive the
posterior distribution, using Bayes’ theorem.
After some algebra, the posterior distribution
can be shown to be given by a normal distri-
bution shown in equation 20,

where A = [(σ2 / n) / (τ 2 + σ2 / n)] and B = [(τ2)
/ (τ2 + σ2 / n)]. Note that the posterior mean
value depends on both the prior mean, µ, and
the observed mean in the data set, x. Plugging
these values into the previous equation and
using the first (very flat) prior distribution, we
find that the posterior distribution for our
mean tumor diameter is N (A × µ + B × x =
3.0, [(τ2σ2) / (nτ2 + σ2)] = 0.225). For the sec-

ond more informative prior, the correspond-
ing posterior distribution is N (3.0, 0.118).

The two prior and two posterior densities
are displayed in Figure 3. Note that the sec-
ond posterior distribution is narrower, be-
cause a stronger prior distribution was used.
These posterior distributions can be used to
derive 95% credible intervals and to test hy-
pothesis from a Bayesian viewpoint. These
calculations can be done using normal ta-
bles. Because these posterior distributions
directly represent the probability distribu-
tion for our unknown parameter, interpreta-
tion of these quantities is straightforward.

For example, a 95% credible interval from
posterior distribution 1 is given by (2.1–3.9).
In comparing this interval to the prior 95%
confidence interval calculated in the Statisti-
cal Inferences for Means section, we see that
they are numerically identical (at least to one
decimal place). However, the interpretations
of these two intervals are different because
the Bayesian credible interval is directly in-
terpreted as the probability that the true mean
tumor diameter lies in the given interval,
given the data and the prior information used.
This is in contrast to the less direct interpreta-
tion of a confidence interval, discussed ear-
lier. Many people misinterpret confidence
intervals as if they were Bayesian intervals.
This error is often not too serious, because if
little prior information is available, the two
intervals are numerically similar. Therefore,
even though it is technically incorrect, one does
not go too far wrong thinking of confidence in-
tervals as approximate Bayesian intervals, when
there is little prior information. A 95% credible

interval from our second posterior distribution
is given by (2.3–3.7), which is somewhat nar-
rower than the first interval.

We can also perform Bayesian hypothesis
tests, again just using the posterior distribu-
tions. For example, suppose we wish to test
H0 (µ ≥ 3.5) versus HA: (µ < 3.5). We can cal-
culate Pr{H0 | data} = Pr{µ ≥ 3.5 | data},
which is equal to 14.5% for posterior 1 and
7.3% for posterior 2. Thus, we are approxi-
mately 85.5% or 92.7% sure that the tumor di-
ameter under the accelerated schedule is
better than the standard schedule, depending
on which prior we use. Based on this, each cli-
nician can make a decision about which
schedule to apply to the next patient. Note
again the very direct statements available for
Bayesian hypothesis tests, compared with the
nonintuitive interpretation of a p value. This
clarity, however, comes at the expense of
having to specify a prior distribution.

Carrying out Bayesian analyses is made
easier via the use of freely available custom-
ized software. The posterior distributions
shown earlier were performed using the First
Bayes package [16], and more complex Bayes-
ian analyses can be done via specialized
Monte Carlo numeric routines implemented
in WinBUGS software [17] made freely
available by the Medical Research Council of
Great Britain [18]. An excellent introductory
text on Bayesian analysis is one written by
Gelman et al. [19].

Conclusions
This module has introduced some of the ma-

jor ideas behind statistical inference, with em-

Fig. 3.—Graph shows two prior
and corresponding posterior den-
sities for tumor diameter example.
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phasis on the simple methods for continuous
variables. Rather than a simple catalogue list-
ing of which tests to use for which types of
data, we have tried to explain the logic behind
the common statistical procedures seen in the
medical literature, the correct way to interpret
the results, and what their advantages and
drawbacks may be. We have also introduced
Bayesian inference as a strong alternative to
standard frequentist statistical methods, both
for its ability to incorporate the available prior
information into the analysis and for its ability
to address questions of direct clinical interest.

The next few modules in this series will
cover techniques suitable for other types of
data, including proportions and regression
methods.
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