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Abstract

Background: Converging international evidence suggests that diabetes incidence is lower among adults living in
more walkable neighbourhoods. The association between walkability and physical activity (PA), the presumed mediator
of this relationship, has not been carefully examined in adults with type 2 diabetes. We investigated the associations of
walkability with total PA occurring within home neighbourhoods and overall PA, irrespective of location.

Methods: Participants (n = 97; 59.5 ± 10.5 years) were recruited through clinics in Montreal (QC, Canada) and wore a
GPS-accelerometer device for 7 days. Total PA was expressed as the total Vector of the Dynamic Body Acceleration. PA
location was determined using a Global Positioning System (GPS) device (SIRF IV chip). Walkability (street connectivity,
land use mix, population density) was assessed using Geographical Information Systems software. The cross-sectional
associations between walkability and location-based PA were estimated using robust linear regressions adjusted for
age, body mass index, sex, university education, season, car access, residential self-selection, and wear-time.

Results: A one standard deviation (SD) increment in walkability was associated with 10.4 % of a SD increment in
neighbourhood-based PA (95 % confidence interval (CI) 1.2, 19.7) – equivalent to 165 more steps/day (95 % 19, 312).
Car access emerged as an important predictor of neighbourhood-based PA (Not having car access: 38.6 % of a SD
increment in neighbourhood-based PA, 95 % CI 17.9, 59.3). Neither walkability nor car access were conclusively
associated with overall PA.

Conclusions: Higher neighbourhood walkability is associated with higher home neighbourhood-based PA but
not with higher overall PA. Other factors will need to be leveraged to facilitate meaningful increases in overall PA
among adults with type 2 diabetes.
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Background
Adults with type 2 diabetes have low average levels of
physical activity [1, 2]. Even modest increases may lead
to important reductions in the risk for diabetes-related
complications [3, 4]. It has been suggested that enhan-
cing neighbourhood walkability may help facilitate in-
creases in physical activity, particularly in older adults
and/or in those living with chronic conditions [5–7].
Urban planners consider walkable neighbourhoods to

be characterized by a variety of services and destinations
easily accessed through well-connected street networks
[8, 9]. These emerge when demand for services is high,
as in more densely populated areas [10, 11]. Based on
data from general adult populations, residents of such
neighbourhoods report higher levels of utilitarian walk-
ing (e.g., walking to work) [12, 13]. There is a less con-
sistent relationship between neighbourhood walkability
and physical activity assessed objectively (i.e., with bio-
sensor devices such as pedometers and accelerometers).
While positive relationships have been delineated in
Japan and in some European countries [14], the findings
from North American studies are less clear [15, 16]. The
relationship between neighbourhood walkability and
physical activity has not been well-studied in type 2 dia-
betes, despite evidence of lower diabetes incidence in
more walkable neighbourhoods [17, 18].
In the present study, we isolated the subset of total

physical activity that occurs within home neighbour-
hoods and linked this to neighbourhood walkability in a
cohort of adults with type 2 diabetes. We hypothesized
that a relationship between neighbourhood walkability
and physical activity would be more apparent if physical
activity occurring specifically within neighbourhoods
was considered. Two previous studies have investigated
the relationship between neighbourhood walkability and
home neighbourhood-based physical activity intensity in
adults and demonstrated a positive relationship [19, 20].
We build on this work by examining total levels of phys-
ical activity occurring both within home neighbourhoods
(excluding inside homes) and overall physical activity ir-
respective of location in adults with type 2 diabetes.

Methods
Participants and recruitment procedures
The study cohort was recruited between November 2012
and February 2015 during the baseline evaluations of an
ongoing randomized controlled trial (Step Monitoring to
Improve ARTERial Health, SMARTER; NCT0147520)
[21]. The objective of SMARTER is to determine if
physician-delivered step prescriptions lead to improve-
ments in vascular disease risk among adults with type 2
diabetes or hypertension. Participants were ≥18 years of
age at recruitment, under the care of a collaborating
physician, and had a body mass index (BMI) between

25 and 40 kg/m2. Participants with co-morbid condi-
tions that would impede accurate measurement of
physical activity (e.g., visual impairments) or adherence
to study procedures were excluded from the study. We
enrolled SMARTER participants with a physician-
diagnosis of type 2 diabetes and willing to wear an
additional unit that combined an accelerometer with a
GPS sensor for seven consecutive days as part of their
baseline assessment. The SMARTER baseline assessment
also included wearing a Yamax SW-701 pedometer with
concealed viewing window for seven days. All participants
provided written informed consent. Procedures were ap-
proved by McGill University’s Institutional Review Board
(A08-M70-12B) and all participating institutions.

Geographic Information System-derived neighbourhood
walkability
Home neighbourhoods were approximated using 500-m
polygonal street network buffers around home addresses
using Geographic Information System (GIS) software
(ArcMap 10.1; ESRI, Redlands, CA) and digital maps.
Street connectivity within each buffer was computed as the
number of ≥3-way intersections/km2. Land use mix was
calculated using the entropy formula (−1) Σk(pklnpk)/ln N,
where p represented the proportion of land area devoted to
a specific land use (k) in each buffer and N represented the
number of land uses that were being assessed (i.e., four;
residential, commercial, institutional/governmental and rec-
reational land uses). Street and land use files were obtained
from DMTI CanMap Streetfiles [22]. Population density
equaled the number of people per km2 of the census
dissemination block where the home was located (2011
Canada Census Population Counts File). A walkability
index was calculated by summing the z-scores of the
street connectivity, land use mix, and population density
measures. A higher index indicated greater walkability.

Location-based physical activity
Physical activity and location were assessed with research-
grade devices that integrate a GPS monitor (SIRF IV chip)
and a tri-axial accelerometer (ADXL 345, Analog Devices)
into one unit (96 × 80 × 31.80 mm, 125 g). Participants
wore the GPS-accelerometer device on their hip for
seven days during waking hours, except when showering,
bathing, or swimming. They were instructed to connect
their unit to a charger every night before going to bed.
After the seven-day monitoring period, the device was
mailed back to the research center in a postage-paid enve-
lope. Physical activity was expressed as total Vector of
the Dynamic Body Acceleration (VeDBA) accumulated
over the total valid wear-period. Dynamic Body Acceler-
ation correlates well with the rate of oxygen consumption
[23, 24]. For the purposes of our study, VeDBA (i.e.,
the dynamic component of body acceleration (m/s2)
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integrated over a one-minute epoch) was summed over
each participant’s valid wear time. In line with previously
established methods [25, 26], we retained only individuals
with four or more valid wear days (i.e., at least 10 h of
valid data per day). Periods with one hour or more of con-
secutive accelerometer counts equal to zero were defined
as non-wear time.
The GPS-accelerometer devices collected time-stamped

latitudes and longitudes at 5-s intervals and raw acceler-
ometer data at 50Hz on three axes. The location and ac-
celerometer data were time-matched at the minute level.
Participants’ homes were identified based on the density
and distribution of GPS fixes using a ‘hot spot’ kernel-
based detection algorithm [27]. Each hot-spot was verified
to ensure that it matched the residential address that was
provided by the participants. Participants with a mis-
matched home addresses were removed from the analyses.
A spatial join was performed between the neighbourhood
buffers and the GPS tracks of each participant to iden-
tify all GPS coordinates falling within the neighbour-
hood buffer but outside of the homes. Total VeDBA
associated with these “inside neighbourhood” coordi-
nates was computed.

Pedometer-assessed daily steps
Daily steps were assessed for seven consecutive days at the
baseline SMARTER evaluation (Yamax SW-701; viewing
windows concealed). Participants were provided with two
pedometers. Pedometer A was worn for seven consecutive
days. Pedometer B remained in the postage-paid envelope
and accounted for extra steps accumulated during the
mailing process. Average daily steps were calculated as the
number of steps accumulated on Pedometer A minus the
number of steps accumulated on Pedometer B divided by
the number of days the pedometer was worn. We created
a robust linear regression model with which we estab-
lished the relationship between the number of daily steps
and the observed increments in VeDBA.

Covariates
Season (spring/summer versus fall/winter) was defined
based on the evaluation start date. Body mass index
(BMI, kg/m2) was computed from weight and height
measurements taken by a trained research assistant.
The following were queried by questionnaire: age, sex,
time since diabetes diagnosis, home address, married/
common-law status, university education, employment,
ethnicity, immigrant status, dog ownership, smoking
status, insulin use, ownership and/or regular access to a
motorized vehicle, depressed mood (Center for Epide-
miologic Studies-Depression Scale score ≥16) [28], per-
ceived neighbourhood walkability, and the importance
of a neighbourhood’s walkability when choosing to
move there.

Statistical analyses
Descriptive statistics were produced, overall and by quar-
tile of walkability. Associations between GIS-derived walk-
ability and physical activity were assessed using robust
linear regressions (m estimation with bisquare weighting)
before and after adjustment for the following variables:
age, BMI, sex, education, season, car access, residential
self-selection and valid wear-time accumulated within
neighbourhoods. Higher overall wear-time may allow an
individual a greater opportunity to accumulate physical
activity. Variables were retained based on theoretical im-
portance and/or if they were identified based on correl-
ation analyses (i.e., R ≥ 0.2) as potential confounders or
predictors of neighbourhood-based physical activity. All
variables were standardized so that the effect estimates of
the linear regression models represented the percent
change in 1-standard deviation (SD) of physical activity
for a 1-SD increment in the GIS-derived walkability index.
We approximated the number of pedometer-assessed
daily steps associated with the observed increment in
accelerometer-assessed VeDBA using robust linear re-
gression models. To aid in the interpretation of our re-
sults, the relationship between BMI across quartiles of
neighbourhood walkability was assessed using robust
linear regressions. All statistical analyses were conducted
using SAS 9.3 (SAS Institute Inc., Cary, NC, USA).

Results
Characteristics of study population
Over 70 % of SMARTER participants eligible at the time of
recruitment for this study agreed to participate (156/220)
of whom 71.2 % had ≥ 4 valid wear days and 62.2 % had
complete data on all variables of interest (Fig. 1). Most
were married/common-law (69.1 %), university-educated

Fig. 1 Selection of study cohort
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(53.6 %), employed (61.9 %), and lived in the greater Mon-
treal area (68.0 %). Just over half were men (56.7 %). The
average age was 59.5 years (SD 10.5) and mean BMI was
31.5 kg/m2 (SD 4.5). On average, participants had diabetes
diagnosis for 10.3 years (SD 7.6) and accumulated 4980
steps/day (SD 2798 steps/day). The rates of employment
were similar among men (63.6 %) and women (59.5 %).
VeDBA occurring anywhere was 615,687 (SD 240,065) and
VeDBA occurring specifically within the residential neigh-
bourhoods (excluding at home) was 26,113 (SD 39149).
Neighbourhoods had an average land use mix of 0.3

(SD 0.2), 27 three or more-way intersections/km2 (SD 14),
and 8915 residents/km2 (SD 8351). Street connectivity,
land use mix and population density increased across
quartiles of neighbourhood walkability. The least walk-
able neighbourhoods had an average of 14 intersections
per km2 (SD = 6), a land use mix of 0.04 (SD = 0.07), and a
population density of 3920 people per km2 (SD = 2480). In
Quartile 2 neighbourhoods there were 26 intersections/km2

(SD = 9), a land use mix of 0.21 (SD = 0.16), and population
density of 4422 people/km2 (2421). In Quartile 3 neigh-
bourhoods there were 30 intersections/km2 (SD = 8), a
land use mix of 0.44 (SD = 0.15), and population density
of 8462 people/km2 (SD = 5090). The most walkable
neighbourhoods had an average of 37 intersections per
km2 (SD = 18), a land use mix of 0.50 (SD = 0.17), and a
population density of 18,621 people per km2 (9958). Neigh-
bourhood walkability was moderate overall (average GIS-
derived walkability score = 0, SD 2.15, Range: −3.5, 5.3).
The least walkable neighbourhoods (Quartile 1 versus 4)
had the highest proportions university education (70.8 %
versus 52.0 %), dog owners (29.2 % versus 12.0 %), and par-
ticipants with regular car access (91.7 % versus 64.0 %)
(Table 1). No graded patterns were observed for VeDBA
across quartiles of neighbourhood walkability. People liv-
ing in the higher quartiles of neighbourhood walkability
placed more importance on the walkability of a neigh-
bourhood in selecting to move to a neighbourhood com-
pared to people living in lower quartiles of neighbourhood
walkability. Participants who were excluded from the final
analyses (59/156) lived in less walkable neighbourhoods
and included a larger proportion of women and a lower
proportion of participants who were university educated,
employed, immigrants, and/or had depressed mood
(see Additional file 1). Those participants who were also
excluded due to insufficient valid wear-time (i.e., 45 of
these 59) included a larger proportion of individuals who
had regular access to a car compared to those who
were not excluded (n = 97) (i.e., 81.8 % versus
74.2 %) (See Additional file 1).

Multivariate analyses
Before and after adjustment for age, BMI and sex (Models
1 and 2), small but clinically important associations were

observed between neighbourhood walkability and daily
steps taken in home neighbourhoods. After further adjust-
ment, these associations remained positive but included
possibly clinically unimportant effects. In the fully ad-
justed model (Model 5) a 1-SD increment in walkability
was associated with 10.4 % of a SD increment in
neighbourhood-based physical activity (95 % confidence
interval (CI) 1.2 to 19.7 %; Table 2). This would be similar
to taking 165 more steps per day (95 % CI 19 to 312)
within home neighbourhoods. No conclusive associations
were observed between neighbourhood walkability and
overall physical activity (i.e., that occurred anywhere;
0.7 %, 95 % CI −13.7 to 15.2 %; see Additional file 2).
Not having access to a car emerged as the strongest

predictor of higher home neighbourhood-based physical
activity after adjustment for factors identified a priori as
potential confounders and covariates (Table 3). Those
participants who did not have regular car access accu-
mulated 38.5 % of a SD more in home neighbourhood-
based physical activity (95 % CI 17.9, 59.3) compared to
people who did have regular car access. This is equiva-
lent to an increment of approximately 613 steps per day
(95 % CI 284 to 942). No conclusive association was ob-
served between car access and overall levels of physical
activity (11.1 % of a SD increment in neighbourhood-
based physical activity for participants with regular car
access compared to participants without regular car access,
95 % CI −21.3 to 43.5).
After adjustment for age, sex and education, there was

a signaled but inconclusive association between neigh-
bourhood walkability and BMI: Participants who lived in
the most compared to the least walkable neighbour-
hoods (Quartile 4 versus Quartile 1) had a 1.6 kg/m2

decrement in BMI (95 % CI −4.1 to 0.9). This signaled
association remained after further adjustment for total
physical activity occurring anywhere (i.e., −1.5 kg/m2,
95 % CI −3.9 to 1.0).

Discussion
Our study population achieved an average of 4980 steps/
day, placing them in the “sedentary” category according
to the cut-offs proposed by Tudor-Locke [29] and well
below the recommended target of 10,000 steps per day
[26]. This step count is consistent with the findings of
previous studies of adults with type 2 diabetes [2, 7]. Im-
proving neighbourhood walkability has been suggested
as a means of facilitating increases in walking [5–7]. Our
analyses demonstrate that higher neighbourhood walk-
ability is associated with somewhat higher levels of
neighbourhood-based physical activity in adults with
type 2 diabetes after adjustment for age, BMI, sex, edu-
cation, season, car access, and residential self-selection.
There was no conclusive evidence, however, that indi-
viduals living in walkable neighbourhoods accumulated
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higher levels of overall physical activity (i.e., activity in-
side the neighbourhoods and elsewhere). Not having
regular access to a car was the most important pre-
dictor of home neighbourhood-based physical activity.
These findings are consistent with our previous ana-

lysis of 2949 Canadian adults who participated in Cycle
1 of the Canadian Health Measures Survey [16], but in
contrast to data from Europe and Asia. Our recent
meta-analysis of European and Japanese studies which
made use of objective measures of neighbourhood walk-
ability and walking showed that adults who live in high
compared to low walkable neighbourhoods accumulate
overall 766 more steps per day [14]. Socio-environmental
contexts may modify the neighbourhood walkability-
total physical activity relationship. The beneficial role
of neighbourhood walkability on physical activity may

be smaller in North America than in Europe/Asia, due
to sociocultural differences in physical activity preferences
and greater reliance on cars in North America [30].
While some previous studies have demonstrated that

not having a car [31, 32], is associated with higher levels
of total physical activity, we are the first to show that
this factor is associated with greater levels of physical
activity occurring specifically within home neighbour-
hoods. Participants who had regular access to a car
achieved approximately 613 fewer steps/day in their
home neighbourhoods (95 % CI 284 to 942) than those
who did not have regular access to a car. This effect is
on par with seasonal deficits in daily steps counts that
we observed in another cohort of adults with type 2
diabetes living in Montreal [2]. There we found a deficit
of 758 steps per day in the fall/winter compared to the

Table 1 Characteristics of study population (n = 97)

Overall Quartile of neighbourhood walkabilitya

Quartile 1 Quartile 2 Quartile 3 Quartile 4

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Age, years 59.5 (10.5) 60.6 (12.5) 58.8 (7.9) 57.7 (11.0) 60.6 (10.5)

Body mass index, kg/m2 31.5 (4.5) 32.2 (4.9) 32.6 (4.9) 30.9 (4.0) 30.5 (3.9)

Time since diabetes diagnosis, years 10.3 (7.6) 9.9 (8.3) 9.6 (8.3) 10.8 (5.7) 11.1 (8.0)

Years at current residential address 18.9 (13.9) 22.9 (14.1) 15.9 (10.8) 20.1 (14.4) 17.0 (15.7)

Daily steps, count 4980 (2798) 4261 (1970) 5957 (3214) 4256 (2548) 5359 (3026)

Residential self-selection 0.001 (0.93) −0.48 (0.71) −0.12 (0.90) 0.06 (0.85) 0.53 (0.96)

Valid wear time, days 5.9 (1.0) 6.0 (1.0) 5.8 (1.1) 5.6 (0.9) 6.0 (1.1)

Total valid monitoring wear-time overall, hours 86.1 (21.1) 90.6 (21.0) 84.3 (21.8) 83.7 (20.3) 85.9 (21.7)

Total valid monitoring wear-time in
neighbourhoods, hours

1.7 (2.8) 0.8 (0.5) 1.5 (1.3) 2.6 (5.3) 1.9 (1.5)

Time in neighbourhood, % 1.9 (2.4) 0.8 (0.6) 1.9 (2.1) 2.6 (3.7) 2.3 (2.0)

Total VeDBA

Overall 615,687 (240,065) 601,822 (292,986) 619,913 (218,942) 611,492 (229,354) 628,632 (227,385)

In residential neighbourhoods (excluding home) 26,113 (39,149) 12,021 (13,781) 23,811 (27,747) 36,999 (67,888) 31,929 (24,518)

% % % % %

Women 43.3 33.3 32.0 60.9 48.0

Married/common-law 69.1 70.8 68.0 73.9 64.0

University education 53.6 70.8 60.0 30.4 52.0

Employed 61.9 58.3 64.0 65.2 60.0

Immigrant 51.6 45.8 44.0 56.5 60.0

Depressed mood 30.9 29.2 16.0 43.5 36.0

Dog ownership 16.5 29.2 12.0 13.0 12.0

Ever smoker 44.3 54.2 48.0 26.1 48.0

Insulin use 30.9 33.3 20.0 26.1 44.0

Car access 74.2 91.7 80.0 60.9 64.0

Spring/summer assessment (versus fall/winter) 40.2 33.3 24.0 47.8 56.0
aQuartile cut-offs for the GIS-derived walkability index: Quartile 1: < −1.91 (n = 24); Quartile 2: ≥ − 1.91 < −0.04 (n = 25); Quartile 3: ≥ − 0.04 < 1.40 (n = 23);
Quartile 4: ≥1.40 (n = 25); Neighbourhood walkability was based on polygonal-shaped buffers
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spring/summer (95 % CI −1037 to −479). An increase of
613 steps per day represents 12.3 % of this group’s total
daily steps (95 % CI 5.7 to 18.9). With the vast majority
of our cohort having regular access to a car, reducing re-
liance on cars may be an effective way of facilitating in-
creases in neighbourhood-based physical activity among
adults with type 2 diabetes, an increase that if sufficient
in magnitude might actually increase total physical activity.
It is important to note, however, that car access was not
conclusively associated with overall physical activity in this
population.

International evidence points to remarkably consistent
lower diabetes incidence in more walkable neighbourhoods
[17, 18, 33]. In a study of 214,882 recent immigrants and
1,024,380 long-term residents living in Toronto (Canada)
living in less walkable neighbourhoods (based on popula-
tion density, residential density, street connectivity, and the
availability of retail stores and services) was associated with
a higher incidence of diabetes after adjustment for age and
area-level poverty (Lowest versus highest walkability quin-
tile; Immigrant men: relative risk [RR] 1.58, 95 % CI 1.42
to 1.75, Immigrant women: RR 1.67, 95 % CI 1.48 to 1.88,
Long-term resident men: RR 1.32, 95 % CI 1.26 to 1.38,
Long-term resident women: RR 1.24, 95 % CI 1.18 to 1.31)
[17]. Similarly, in an analysis of 512,061 adults living in
Sweden, adults who live in the lowest decile of neighbour-
hood walkability (based on street connectivity, land use
mix, and residential density) were found to have a 33 %
higher odds of developing incident type 2 diabetes over
four years of follow-up (Odds Ratio (OR): 1.33; 95 % CI
1.13 to 1.55) after adjustment for neighbourhood
deprivation [18]. Total physical activity is the presumed
link between neighbourhood walkability and diabetes inci-
dence [17, 18]. It is surprising then that we did not
observe an association between neighbourhood walk-
ability and total physical activity. There are several
possible explanations for this. First, the positive associ-
ation between neighbourhood walkability and diabetes
incidence may be due to unmeasured variables such as
the food environment. More walkable neighbourhoods
may have a greater availability of healthy food outlets
that may reduce the risk of cardiometabolic complica-
tions. This theory is supported by our signaled albeit
inconclusive finding that participants living in a more
walkable neighbourhood may have lower BMIs than
participants living in less walkable neighbourhoods, even

Table 3 Regression estimates for the full-adjusted neighbourhood-based total VeDBA model with corresponding changes in daily
steps (n = 97)a

Percent change in one SD of total VeDBA
(95 % confidence intervals)b

Corresponding change in daily steps
(95 % confidence intervals)c

Age, years −0.01 (−0.9 to 0.8) −0.1 (−14 to 14)

Women −8.5 (−26.5 to 9.4) −135 (−421 to 150)

Body mass index, kg/m2 −1.2 (−3.2 to 0.9) −19 (−51 to 14)

University educated (yes versus no) −8.8 (−26.8 to 9.1) −140 (−425 to 144)

Spring/summer assessment (versus fall/winter) 16.1 (−1.2 to 33.4) 256 (−19 to 531)

Regular car access (yes versus no) −38.6 (−59.3 to −17.9) −613 (−942 to −284)

Residential self-selection score 5.3 (−4.5 to 15.1) 84 (−72 to 240)

Valid wear-time, minutes 0.01 (−0.002 to 0.01) 0.1 (−0.03 to 0.2)
aThis fully adjusted model is additionally adjusted for GIS-derived neighbourhood walkability
bEffect estimates represent the percent change in one standard deviation of total VeDBA occurring in home neighbourhoods (excluding homes) for every one-unit
increase in the predictor of interest. Calculated by dividing the original beta estimate by the standard deviation of VeDBA (occurring within home neighbourhoods but
excluding homes) (i.e., 39,149.22) and multiplying by 100
cCalculated using the following formula: daily steps = −548 + 0.0089*total VeDBA occurring anywhere)*(% change in one SD of VeDBA occurring in
neighbourhood/100) where VeDBA occurring anywhere equals one SD of VeDBA occurring anywhere (i.e., 240,065.36)

Table 2 Regression estimates for the association between
neighbourhood walkability and neighbourhood-based total
VeDBA (n = 97)

Percent change in
one SD of total VeDBA
(95 % confidence intervals)a,b

Corresponding
change in daily steps
(95 % confidence intervals)c

Model 1 21.2 (12.8 to 29.6) 337 (203 to 470)

Model 2 17.6 (9.3 to 26.0) 280 (148 to 413)

Model 3 13.9 (5.2 to 22.6) 221 (83 to 359)

Model 4 10.0 (0.7 to 19.3) 159 (11 to 307)

Model 5 10.4 (1.2 to 19.7) 165 (19 to 312)
aModel 1: Unadjusted. Model 2: Adjusted for age, BMI, sex. Model 3: Adjusted
for age, BMI, sex, university, and season. Model 4: Adjusted for age, BMI, sex,
university, season, car access and residential self-selection. Model 5: Adjusted
for age, BMI, sex, university, season, car access, residential self-selection and
valid wear-time
bEstimates represent the percent change in one standard deviation of total
VeDBA (95 % confidence interval) occurring within home neighbourhoods
(excluding homes) for every one-standard deviation increase in the GIS-derived
neighbourhood walkability index. Calculated by multiplying the original estimate
by the standard deviation of the walkability index (i.e., 2.16), dividing the result
by the SD of the outcome (i.e., 39,149.22) and multiplying by 100
cCalculated using the following formula: daily steps = −548 + 0.0089*total
VeDBA occurring anywhere)*(% change in one SD of VeDBA occurring in
neighbourhood/100) where VeDBA occurring anywhere equals one SD of
VeDBA occurring anywhere (i.e., 240,065.36)
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after adjustment for total physical activity. Another explan-
ation may be confounding by socioeconomic status. In the
Toronto-based study, residual confounding was a possibil-
ity since area-level poverty was used as a proxy for
individual-level income. This is supported by the fact that
the association in the Swedish study was attenuated after
additional adjustment for individual-level income as well as
age, sex, and education (Adjusted OR: 1.16; 95 % CI 1.00
to 1.34) [17]. Lastly, it is possible that our exclusion of a
large subset of participants due to insufficient wear-time
(i.e., 28.8 %) may have biased our results towards the null.
Participants who did not accumulate sufficient wear-time
had greater car access (i.e., were likely less active) and lived
in less walkable neighbourhoods. Had we been able to
include these participants in our analyses a stronger as-
sociation may have emerged.
There are several strengths to our study. First, we avoided

biases arising from participants forgetting to wear one of
the devices by using a device that combined an accelerom-
eter and a GPS into one device. This is an improvement
over the two previously conducted studies [18], in which
participants wore two separate devices. Other strengths in-
clude the use of objective measures of walkability and phys-
ical activity, and consideration of individual-level covariates
and confounders. Some limitations should also be noted.
First, our results may not be generalizable to all individuals
with type 2 diabetes since only a unique subset of adults
with type 2 diabetes may have agreed to participant in this
study. Second, 28.8 % of participants did not accumulate
enough valid GPS-accelerometer data to be included in
the final analyses. Although the mechanism by which
these data are missing is unknown, not including these
participants in our analyses may have biased our associ-
ation towards the null as noted above. Third, our sample
size limited our ability to assess effect modification. It is
possible that factors such as gender or employment status
modify the walkability-physical activity relationship. Effect
modification by these factors should be assessed in future
studies. Lastly, our pedometer-assessed daily steps were
not location specific and this means that our daily step es-
timates represent only approximations of the correspond-
ing changes in VeDBA.

Conclusions
Our study determined neighbourhood walkability to in-
crease home neighbourhood-based physical activity but
no conclusive influence on total activity was discerned in
this cohort of adults with type 2 diabetes. Other factors, in
combination with walking friendly environments, will
need to be leveraged to facilitate meaningful increases in
overall PA among adults with diabetes. More research is
needed to identify the suite of possible interventions that
will facilitate home neighbourhood-based physical activity
and ultimately higher levels of overall physical activity.
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