
BUGS examples Vol 2 4713 Pines: Bayes factors for selecting regression modelsGeneral FormulationCarlin and Chib (1995) consider the general problem of havingK models with parameters �1; :::; �K ,and wanting to obtain the posterior probability of each model. If the model indicatorM is speci�edas a variable and hence as a node in the graph, M can then be sampled in a Gibbs run, and hencep̂(M = jjy) is obtained as a frequency of M = j in the sample. However, we need to specify a fullprobability model in order to satisfy MCMC conditions for convergence.Their approach is to make the following assumptions:� y is independent of �k 6=j given that M = j; i.e. M picks which parameters are relevant to y.� �1; :::; �K are independent given the model indicator M .These imply an overall joint distributionp(y; �;M = j) = p(yj�;M = j) p(�jM = j) p(M = j)= p(yj�j;M = j)�Yk p(�kjM = j) p(M = j)When it comes to Gibbs sampling, the full conditional distributions arep(M = jj�; y) / p(y; �;M = j)= p(yj�j ;M = j) �Yk p(�kjM = j) p(M = j)p(�jj� 6=j ; y;M = j) / p(yj�j ;M = j) p(�j jM = j)p(�jj� 6=j; y;M = k) / p(�j jM 6= j)p(�k=jjM 6= j) are known as pseudo-priors, and although their form is theoretically arbitrary, it isconvenient to have them close to p(�jjM = j; y) so that plausible values are generated even whenthe model is being assumed false.Carlin and Chib recommend a two-stage approach to estimation and model choice:� Run each model separately using `estimation priors'.� Use an approximation of the resulting posterior distributions as pseudo-priors for other mod-els.� Run sampler for all models together, monitoring M .� Adjust the prior for M to ensure frequent visitation to all models.� Re-adjust estimate of p(M jy) to allow for the choice of prior on the model.



48One of the examples of Carlin and Chib (1995) concerns data of Williams (1959) on 42 specimensof radiata pine. For each specimen the maximum compressive strength yi was measured, with itsdensity xi and its density adjusted for resin content zi. Part of the data is shown below.Specimen strength yi density xi adjusted zi1 3040 29.2 25.42 2470 24.7 22.23 3610 32.3 32.24 3480 31.3 31.0....41 3030 33.2 29.442 3030 28.2 28.2Two alternative models are being considered:Model 1: yi � Normal(�+ �xi; �1)Model 2: yi � Normal(
 + �zi; �2)The graph for the joint model is shown in Figure 20.
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Figure 20: Graphical model for pines example showing the two models being simultaneouslyhandled within a uni�ed framework.The following BUGS code shows that all variables were standardised to have mean 0 and variance 1before analysis.



BUGS examples Vol 2 49pines : model speci�cation in BUGSmodel pines;constN = 42, # number of data pointsM = 2; # number of modelsvarY[N], Ys[N], # raw and standardised datax[N], xs[N],z[N], zs[N],mu[M,N], # means for each modeltau[M], # precisions for each modelalpha, mu.alpha[M], tau.alpha[M], # priors for parametersbeta, mu.beta[M] , tau.beta[M] ,gamma, mu.gamma[M], tau.gamma[M],delta, mu.delta[M], tau.delta[M],p[M], # prior for modelpM2, # probability of model 2j, # true modelr1[M], l1[M], # priors for tau[1]r2[M], l2[M]; # priors for tau[2]data in "pines.dat";inits in "pines.in";{# standardise datafor(i in 1:N){Ys[i] <- (Y[i] - mean(Y[]))/sd(Y[]);xs[i] <- (x[i] - mean(x[]))/sd(x[]);zs[i] <- (z[i] - mean(z[]))/sd(z[]);}# model nodej ~ dcat(p[]);p[1] <- 0.9995; p[2] <- 0.0005; # use for joint modelling# p[1] <- 1; p[2] <- 0 ; # include for estimating Model 1# p[1] <- 0 ; p[2] <-1; # include for estimating Model 2pM2 <- step(j - 1.5);# model structurefor(i in 1:N){mu[1,i] <- alpha + beta *xs[i];mu[2,i] <- gamma + delta*zs[i];Ys[i] ~ dnorm(mu[j,i],tau[j]);}



50 # Model 1alpha ~ dnorm(mu.alpha[j],tau.alpha[j]);beta ~ dnorm(mu.beta[j],tau.beta[j]);tau[1] ~ dgamma(r1[j],l1[j]);# estimation priorsmu.alpha[1]<- 0; tau.alpha[1] <- 1.0E-6;mu.beta[1] <- 0; tau.beta[1] <- 1.0E-4;r1[1] <- 0.0001; l1[1] <- 0.0001;# pseudo-priorsmu.gamma[1] <- 0; tau.gamma[1] <- 400;mu.delta[1] <- 1; tau.delta[1] <- 400;r2[1] <- 46 ; l2[1] <- 4.5;# Model 2gamma ~ dnorm(mu.gamma[j],tau.gamma[j]);delta ~ dnorm(mu.delta[j],tau.delta[j]);tau[2] ~ dgamma(r2[j],l2[j]);# estimation priorsmu.gamma[2] <- 0; tau.gamma[2] <- 1.0E-6;mu.delta[2] <- 0; tau.delta[2] <- 1.0E-4;r2[2] <- 0.0001; l2[2] <- 0.0001# pseudo-priorsmu.alpha[2]<- 0; tau.alpha[2] <- 256;mu.beta[2] <- 1; tau.beta[2] <- 256;r1[2] <- 30 ; l1[2] <- 4.5;}Running each of the models separately gave the following within-model parameter estimates (pos-terior means and standard deviations). Model 1 (x) Model 2 (z)intercept -.0001 � .06 -.0002� .05gradient .93 � .06 .95 � .05� = ��2 6.8 � 1.5 10.2� 2.2Approximations to these results are then used as the pseudo-priors for the `wrong' model shownin the BUGS code above: for Model 1 we set priors 
 � Norm(0; 400), � � Norm(1; 400), � �Gamma(46; 4:5), while under Model 2 we set priors � � Norm(0; 256), � � Norm(1; 256),� �Gamma(30; 4:5). The prior on the second model has to be adjusted to p(M = 2) = :0005 to ensureM = 1 is visited frequently.A BUGS run of 500 burn-in and 10000 iterations took 1 minute and gave p̂(M = 2jy) = :629.Hence the Bayes factor is :6291�:629 � :9995:0005 = 3389, compared with Carlin and Chib's estimate ofp̂(M = 2jy) = :689 and their Bayes factor of 4420. The di�erences in these results could be due tothe di�erent estimation priors used in our analysis.


