Multiple Imputation for Missing Data

Missing data arises in virtually every study. No matter what type of study you are
doing, missing data is practically inevitable:

e Survey — Nonresponse arises for many reasons, including lack of interest, lack of
time, deliberate decision to not participate due to subject matter, nonsensical
or out of range responses are often found, coding errors in data entry or data
transfer, etc.

e Data base study — Almost always missing items, for reasons including missed ap-
pointments in clinical data base studies, incomplete or highly inaccurate RAMQ
data (missing diagnoses since physicians get paid by medical act, not by diagno-
sis), not everyone captured in data base (cancer registries are incomplete, more
so for some cancers compared to others), etc.

e Clinical trials — Dropouts, loss to follow-up, machine failures, missed or missing
doses, subject error, data entry errors, etc.

When missing data occurs, it can cause bias in any analyses, as well as loss of statis-
tical efficiency due to lowering of sample size. It is therefore important to consider
whether one needs to adjust for missing data or not. For very small percentages of
missing data with no large bias expected, can sometimes simply ignore missing data.
In probably the majority of cases, however, one should investigate possible biases.

Various ways to adjust, including adjusted maximum through use of the EM algo-
rithm, single and multiple imputation, and various methods proposed over the years
for special situations for example, “last value carried forward” in clinical trials).

We will learn about multiple imputation, the “gold standard” method for dealing
with missing data. Multiple imputation is rather easy to carry out in practice, and
can be used in virtually any missing data problem. Further, as we will see, it can be
used for both “ignorable” and “non-ignorable” missing data problems.

Important: No missing data technique is perfect. All methods carry assump-
tions, and almost always, these assumptions are unverifiable. While adjusting for
missing data remains a good idea, one should consider these adjustments as “help-
ful” in investigating the problem, and not as providing “definitive” answers. Good
statistical practice dictates that one does an analysis without adjustment, and then
usually several adjusted analyses, to investigate a range of possible inferences, and to
investigate robustness to the missing data and assumptions about the missing data.
This topic is delved into in detail in the article by Kmetic et al, which follows these
introductory notes.



We will first see see various types of missing data mechanisms, i.e., ways that data
can go missing, each of which has a different effect on the analyses. We will then see
multiple imputation as a possible solution.

Simulated Regression Data Set

We will look at two different data sets, one simulated in R, the other a real data set
from the Canadian Multicentre Osteoporosis Study (CaMos, see article by Kmetic et
al).

We will use a simulated data set, so that we know the correct inferences, and so can
see the effect of missing data. The Kmetic et al article uses a real data set, so that we
can learn about dealing with missing data in a realistic context, and the extra issues
that arise in practice.

Suppose we have the following (assumed exactly true) regression equation (CRP is a
measure of inflammation, of interest to cardiologists for predicting future MI’s . .. this
is not a particularly realistic data set):

CRP =5+0.2 x age + 0.5 X sex

Assume sex is coded as 1 = male, and 0 = female, so males have slightly higher values
than females, and CRP tends to rise with age, by about 2 points per decade. Suppose
that the residual standard deviation is o = 1.

We will now simulate data on 200 subjects, aged between 50 and 70 years old, and
evenly divided between males and females. We can simulate such a data set in R as
follows:

> age <- sample(50:70, size=200, replace=T)
> age
[1] 58 68 61 59 62 60 69 50 53 56 55 65 55 69 70 56 66 56 64 52
[21] 68 62 52 66 54 60 51 50 63 55 50 63 53 63 60 65 68 68 66 51
[41] 63 68 60 60 67 64 63 70 68 60 62 58 65 59 67 61 50 65 57 65
[61] 64 68 64 64 70 66 50 59 66 62 55 56 68 65 57 56 64 54 69 68
[81] 65 52 54 65 62 69 63 67 62 68 69 64 56 51 50 54 62 67 51 63
[101] 55 67 62 58 53 56 63 54 64 57 67 69 61 54 56 59 63 55 62 59
[121] 67 57 54 51 65 61 68 56 62 56 68 64 55 66 57 50 68 67 67 66
[141] 58 59 57 58 54 54 50 64 70 60 60 51 59 63 56 54 51 65 66 52
[161] 68 68 52 60 62 65 59 57 70 68 62 59 50 68 68 60 64 56 57 61
[181] 53 62 54 62 61 69 52 66 65 57 57 63 62 70 67 65 64 51 61 54
> hist(age)
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[91] 19.15 16.33 17.32 15.97 16.48 17.47 17.29 19.13 14.82 18.03
[101] 16.80 18.44 16.94 16.66 15.90 15.66 16.92 16.92 18.26 17.79
[111] 19.46 18.19 19.81 17.23 16.00 16.01 18.19 16.75 17.23 16.77
[121] 18.08 17.25 14.91 15.23 20.11 15.99 21.11 13.88 15.90 16.09
[131] 17.29 16.88 16.52 18.21 16.15 14.88 18.66 18.79 20.12 17.31
[141] 18.02 18.36 17.04 16.07 16.32 15.47 13.41 19.06 18.60 15.11
[151] 16.85 16.47 17.45 17.78 16.42 16.11 15.54 18.98 19.34 15.06
[161] 18.15 17.05 15.25 16.01 17.06 17.71 17.29 17.16 18.51 18.60
[171] 17.69 17.92 15.34 19.19 19.93 18.31 19.10 17.77 16.46 17.68
[181] 15.41 18.79 16.89 17.92 18.03 18.29 16.20 18.30 19.16 16.29
[191] 15.84 18.59 17.10 18.43 17.49 19.55 18.73 16.93 17.24 16.34
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We can examine the scatter plots in both males and females:

> plot(age[sex==1], crplsex==1], main
> plot(agel[sex==0], crplsex==0], main

"CRP versus age in males")
"CRP versus age in females")



CRP versus age in males
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Finally, we can do a frequentist regression analysis in R to check that the two coeffi-
cients are well estimated by least squares, and with no missing data:

> crp.results <-lm(crp ~ age + sex)
> summary (crp.results)

Call: 1lm(formula = crp ~ age + sex)

Max

Pr(>|tl)
2.79%9e-11 *xx
< 2e-16 *xx
0.00125 =*x
(*)

0.06 .2 0.1 ° 1

Residuals:
Min 1Q Median 3Q
-2.83628 -0.63559 -0.02836 0.66047 3.31742
Coefficients:
Estimate Std. Error t value
(Intercept) 5.2049 0.7373 7.060
age 0.1973 0.0120 16.442
sex 0.4587 0.1400 3.276
Signif. codes: O “**x’ 0.001 ‘*x’ 0.01

Residual standard error: 0.9865 on 197 degrees of freedom Multiple

R-Squared: 0.5839,
F-statistic: 138.2 on 2 and 197 DF,

Adjusted R-squared: 0.5797
p-value: < 2.2e-16

So everything seems to have worked extremely well. This is not at all surprising, since
we simulated data via an exactly linear equation, and then estimated coefficients from

a model that was exactly correct.

What happens if we have missing data?



Suppose that, in particular, 1/3 of the age and 1/3 of the sex data are in fact missing.
First suppose they are missing completely at random (MCAR). As the name implies,
under MCAR, the data points are simply missing completely at random, with no
relation of the probability of being missing to any values in the data set (or outside
of the data set).

To create a data set that is MCAR, we simply need to delete some items in each of
the age and sex variables. To do this in R:

> mcar.for.age <- rbinom(200, 1, prob=0.33333)
> mcar.for.age

[1] 0010000100001 01001110001100101
31 001 000100000001 000010100000000
611 100000001001010001011110010100
911 1001 01101010001000000111000100

[121] 001 000101011010110001100101000
[151] 01 0000010101011100000000010101
[181] 0110000100001 1010100

> mcar.for.sex <- rbinom(200, 1, prob=0.33333)

> mcar.for.sex

[11 010001001001 100010011000011001
311 000100000000000101001010000000
61] 1110100010001 00100001001001101
911 011 0001000111101 10011000011000

[121] 1110111000011 11110010010010001
[151] 11 0110100000000110101010101000
[181] 00001011000000010100

> age.mcar <- age
sex.mcar <- sex
age.mcar [mcar.for.age==1] <- NA
age.mcar
[1] 58 68 NA 59 62 60 69 NA 53 56 55 65 NA 69 NA 56 66 NA NA NA
[21] 68 62 52 NA NA 60 51 NA 63 NA 50 63 NA 63 60 65 NA 68 66 51
[41] 63 68 60 60 NA 64 63 70 68 NA 62 NA 65 59 67 61 50 65 57 65
[61] NA 68 64 64 70 66 50 59 NA 62 55 NA 68 NA 57 56 64 NA 69 NA
[81] NA NA NA 65 62 NA 63 NA 62 68 NA 64 56 NA 50 NA NA 67 NA 63
[101] NA 67 62 58 NA 56 63 54 64 57 67 NA NA NA 56 59 63 NA 62 59
[121] 67 57 NA 51 65 61 NA 56 NA 56 NA NA 55 NA 57 NA NA 67 67 66
[141] NA NA 57 58 NA 54 NA 64 70 60 60 NA 59 63 56 54 51 NA 66 NA
[161] 68 NA 52 NA NA NA 59 57 70 68 62 59 50 68 68 NA 64 NA 57 NA
[181] 53 NA NA 62 61 69 52 NA 65 57 57 63 NA NA 67 NA 64 NA 61 54
> sex.mcar [mcar.for.sex==1] <- NA
> sex.mcar

[1] 1 NA 1 1 1NA 1 ONA 1 ONANA O O 1DNA 1 ONA

vV V V



[21] NA. 0 0 1 ONANA O 1NA 1 O O NA
[41] 1 1 0 O O NA NA O ONA 1DNA O
[61] NA NA NA 1 NA O ONA O 1 O NA
[81] NA 0 ONA O ONANA 1 NA 1 NA NA
[101] NA NA NANA ONANA O 1 NANA O O 1
[121] NA NA NA 1 NANANA 1 O O O NA NA NA NA NA NA
[141] 1 ONA O ONA 1 1 ONANANA 1 NANA O NA
[161] 0O 0 0 1NANA ONA 1 NA 1 NA ONA 1 NA
[181] 1 1 1NA ONANA O O 1 1 O O 1NA ONA
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Now try the regression again:

> crp.results.mcar <-lm(crp ~ age.mcar + sex.mcar)
> summary (crp.results.mcar)

Call: 1lm(formula = crp ~ age.mcar + sex.mcar)

Residuals:
Min 1Q Median 3Q Max
-2.45138 -0.57833 -0.05643 0.53546 3.43273

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 3.88059 1.13373 3.423 0.00100 *x*
age.mcar 0.21977 0.01855 11.847 < 2e-16 *x*x
sex.mcar 0.14001 0.20568 0.681 0.49813

Signif. codes: 0 ‘**x’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 “.” 0.1 “ > 1

Residual standard error: 0.9118 on 76 degrees of freedom Multiple
R-Squared: 0.6505, Adjusted R-squared: 0.6413
F-statistic: 0.74 on 2 and 76 DF, p-value: < 2.2e-16

Note two effects of the MCAR missing data: First, much “power” is lost, as estimation
now based on only 76 DF, rather than the 197 we had before, i.e., only 79 subjects
were used in the analysis. Thus, standard errors have increased considerably. Age
still reasonably well estimated, but not sex. 95% CI still easily includes both effects
of age and sex, however, so no evidence of bias in the analysis.

In general, under MCAR, expect loss of power, but no bias. We can do a similar
analysis, but with MAR rather than MCAR. In MCAR, the missing data probabilities
are completely unrelated to the values of the missing items or any other values in the
data set. In contrast, for MAR missing data, the probability that an item is missing



can be related to values, but only observed values, not unobserved values. The idea
is that under MAR data, one can use observed values to “recapture” the essence of
the missing data, and so still derive valid inferences.

Both MCAR and MAR missing data mechanisms are termed ignorable, because con-
ditional on the observed data set, one can derive valid inferences. Missing data mech-
anisms are termed non-ignorable if the missing data can depend on unobserved values,
so that even conditioning on the observed data does not produce valid inferences.

In practice, one can never know if missing data mechanisms are ignorable or not, so it
is wise to present several analyses considering both cases, and investigate robustness
of inferences to various assumptions. Again, see paper by Kmetic et al. for an example
of this.

Going back to our MCAR data, note that CRP itself is still well estimated, in terms
of its mean, but with increased SE:

> t.test(crp)

95 percent confidence interval:
17.17438 17.59874

sample estimates: mean of x
17.38656

> t.test(crplmcar.for.age==0 & mcar.for.sex==0 ])
95 percent confidence interval:

16.96929 17.65130

sample estimates: mean of x

17.31030

Note that the width of the CI went from about 0.42 (no missing data) to 0.68 with
the missing data, an increase of more than 50%, but there was no bias, the mean
being about 17.3 in both cases.

To simulate a data set that is MAR, we need to delete missing data not at random,
but in a systematic and biased fashion. To remain ignorable, we need to delete values
such that the bias can (more or less, in real practice) be corrected with the observed
data at hand. So, what happens if we delete CRP values from higher age values,
and delete more CRP values from males compared to females? Clearly, this will
cause a bias in estimated CRP values (but not necessarily in the regression values, as
regression coefficients are the same regardless of age, sex, or CRP values). Can we
adjust back to recapture the “true” mean values of CRP?

First, let’s create a data set with an MAR missing mechanism, where CRP values
tend to be missing from persons with higher ages. Age ranges from 50 to 70 in our
data set. We will delete CRP values in the range from 50 to 59 with a rate of 10%,



while CRP values from ages in the range 60 to 70 will be deleted with a probability
of 60%. In R, we can code this as:

> mar.for.crp <- rep(NA, 200) # Just to create a blank vector
> for(i in 1:200)

+ A

+ if(ageli] < 60) { mar.for.crpl[i] <- rbinom(1l, 1, prob=0.1) }
+ if(ageli] >= 60) { mar.for.crpli] <- rbinom(1l, 1, prob=0.6) }
+ }

> mean(mar.for.crp)

[1] 0.43

So our overall rate of deletions is 43%, close to expectations. Our CRP data set now
looks like this:

> crp.mar <- crp
> crp.mar [mar.for.crp==1] <- NA
> round(crp.mar,2)

[1] NA NA NA 16.53 17.19 16.59 NA 14.51 16.79 16.47
[11] NA NA 16.94 19.80 NA 16.12 NA NA 17.12 16.23
[21] 21.17 19.04 14.46 NA 17.27 15.82 14.98 17.16 NA 14.96
[31] 16.30 NA 14.05 NA 16.13 17.41 NA 22.40 NA 15.32
[41] NA NA NA NA NA NA NA NA NA 18.40
[61] 17.02 19.11 19.20 15.59 NA 17.56 15.48 NA 16.77 17.91
[61] 18.80 NA NA 17.87 NA NA 15.31 15.63 NA 16.90
[71] 13.87 17.65 NA 17.54 17.30 NA 16.96 15.97 19.31 NA
[81] NA NA 16.23 17.82 NA NA 16.99 17.73 16.52 NA
[91] 19.15 16.33 17.32 NA 16.48 17.47 NA 19.13 14.82 NA

[101] 16.80 18.44 NA 16.66 15.90 15.66 NA 16.92 NA 17.79
[111] NA NA NA NA 16.00 16.01 NA NA 17.23 NA
[121] 18.08 17.25 14.91 15.23 20.11 NA NA 13.88 NA 16.09
[131] 17.29 16.88 16.52 NA NA 14.88 NA 18.79 NA NA
[141] 18.02 18.36 17.04 NA 16.32 15.47 13.41 NA 18.60 NA
[151] NA 16.47 17.45 NA 16.42 16.11 15.54 NA NA 15.06
[161] 18.15 NA 15.25 16.01 17.06 NA 17.29 17.16 NA 18.60
[171] NA 17.92 15.34 19.19 NA 18.31 NA 17.77 NA NA
[181] 15.41 NA NA NA NA 18.29 16.20 NA 19.16 NA
[191] 15.84 18.59 NA NA NA NA NA 16.93 17.24 16.34

Note that we now have very biased estimation of CRP, if no adjustments are made:

> t.test(crp.mar)



95 percent confidence interval:
16.65344 17.21744

sample estimates:

mean of x

16.93544

Note that the mean point estimate is quite far from the“true” value of 17.39, and
even the 95% CI misses the true value by quite a large margin.

So, here we have seen two problems associated with missing data: Lack of precision
is estimated values due to lower sample size, and biased estimation due to data not
being missing completely at random.

We will now see how multiple imputation can solve both of these problems, as well
as seeing how easy it is to program multiple imputation is WinBUGS.

In anticipation of using WinBUGS, we will now prepare our data set for use in

WinBUGS:

crp.list <- list(crp=crp, age=age, sex=sex, Crp.mar=crp.mar,
age.mcar = age.mcar, sex.mcar = sex.mcar)
> dput(crp.list,
file="c://lawrence//work//courses//677//notes//missing data//crp.txt")

You may need to slightly edit this file, but crp.txt is essentially ready for importation
of the data into WinBUGS.

Multiple Imputation

Multiple imputation is a very easy technique, both in theory and in practice. The
basic idea is to fill in the missing data with a “best guess”, based on any information
at hand. Here, for example, we assume a relationship between age, CRP, and sex, so
any of these can be predicted from a model using the other two.

Of course, any predictions will not be perfectly correct. That is why single imputation
does not work well, as it assumes you know more about the missing data than you
really do. Thus, any inferences are “too accurate”, with SD’s that are too small. In
contrast, multiple imputation predicts several missing values for each missing item,
creating several “complete” data sets. In each of these different “complete” data sets,
an analysis is carried out. Final inferences are then created by averaging each of
these separate analyses, and the mistake of “too accurate” inferences is avoided by



summing the variance within each analysis with the variance of parameter estimates
across each analysis.

Basic multiple imputation steps are:

1. Make a model that predicts every missing data item from whatever other infor-
mation is at hand that can be useful for that prediction. Model can be linear
regression, logistic regression, non-linear models, etc, anything goes.

2. Use the above models to create a “complete” data set. Since no model is
perfect, imputing each single item requires a two-step process: First, draw a
set of parameter values from the models to be used for prediction, second, use
those parameter values to make a prediction of any missing data.

3. Each time you create a “complete” data set, do an analysis of that complete
data set, keeping the mean and SE of each parameter of interest.

4. Repeat this anywhere between 2 and tens of thousands of times (two or four
is often enough, but need to worry about convergence if WinBUGS is used, so
often do many thousands).

5. To form final inferences, for each repetition (iteration in WinBUGS), average
across means, and sum the within and between variances for each parame-
ter. WinBUGS essentially does this automatically, this step is only needed if
programming the entire process yourself in another program (and, of course,
conceptually).

WinBUGS performs multiple imputation as the default analysis, as we will now see.
We will run several WinBUGS programs, as follows:

1. Using all of the data, first show that WinBUGS can more or less exactly recreate
the R regression analysis of the full data set.

2. Using the age.mcar and sex.mcar data sets, show that not too much precision is
lost if multiple imputation is used, compared to ignoring the missing data (i.e.,
case deletion, which is the default in R, SAS, SPSS, Stata, and almost every
other statistics package except WinBUGS).

3. In using the crp.mar data, show that both bias is reduced and accuracy is
gained when using multiple imputation compared to an analysis that ignores
the missing data.



Multiple Imputation in WinBUGS

Here is a WinBUGS program (and the results) for regression of all the data (note
that I have edited the data saved from R to just use the items needed in this program,
and deleted the rest):

model

{

for (i in 1:200)

{

crp.mean[i] <- alpha + beta.agexagel[i] + beta.sex*sex[i]
crp[i] ~ dnorm(crp.mean[i], tau.crp)
}

alpha ~ dnorm(0, 0.0001)

beta.age ~ dnorm(0, 0.0001)

beta.sex ~ dnorm(0, 0.0001)

tau.crp <- 1/(sd.crp#*sd.crp)

sd.crp ~ dunif(0.00001, 10)

}

# Inits
list(alpha = 0, beta.sex = 0, beta.age = 0, sd.crp = 5)
# Data

list(crp = c(15.4973371597009, 17.6877628162003, 17.7975848672349,
16.5265487264035, 17.1912821304663, 16.5865348180380, 19.2341946673035,
14.5100078038022, 16.7887532493483, 16.4676879355468, 17.0602948092325,
17.1975083550762, 16.9447418113014, ..... etc...))

node mean sd MC error  2.5% median 97.5% start sample
alpha  5.214  0.7407  0.006965  3.745 5.222 6.66 1001 10000
beta.age 0.1971 0.01204 1.156E-4 0.1735 0.197 0.2209 1001 10000
beta.sex 0.4595  0.1411 0.001432 0.1815 0.4592 0.7366 1001 10000
sd.crp  0.9926 0.05103 5.17E-4 0.8999 0.9898  1.099 1001 10000
tau.crp  1.023  0.1043 0.001037 0.8276 1.021  1.235 1001 10000

As expected, we see that the results here very closely match (almost identical) those
from the standard regression results we saw above from R. Next, let’s compare the



results from the regression with and without multiple imputation when the data are
MCAR:

Here is the WinBUGS program and results:

model

{

for (i in 1:200)
{

# Basic Regression

crp.mean[i] <- alpha.crp + beta.age*age.mcar[i] +
beta.sex*sex.mcar [i]
crpli] ~ dnorm(crp.mean[i], tau.crp)

# Regression for Imputing Missing Age Variables

age.mean[i] <- alpha.age + beta.age.crp*crpl[il
age.mcar[i] ~ dnorm(age.mean[i], tau.age)

# Logistic Regression for Imputing Missing Sex Variables

sex.mcar[i] ~ dbern(p.sex[i])
logit(p.sex[i]) <- alpha.sex + beta.sex.crp * crpli]

}

alpha.crp ~ dnorm(0, 0.0001)
beta.age ~ dnorm(0, 0.0001)
beta.sex ~ dnorm(0, 0.0001)
tau.crp <- 1/(sd.crp*sd.crp)
sd.crp ~ dunif(0.00001, 10)

alpha.age ~ dnorm(0, 0.0001)
beta.age.crp ~ dnorm(0, 0.0001)
tau.age <- 1/(sd.agex*sd.age)
sd.age ~ dunif(0.00001, 20)

alpha.sex ~ dnorm(0, 0.01)
beta.sex.crp ~ dnorm(0, 0.01) }

# Inits

list(alpha.crp = 0, beta.sex = 0, beta.age = 0, sd.crp = 5,



alpha.age =
sd.age = 5)

# Data

0, beta.age.crp = 0, alpha.sex =

0, beta.sex.crp =0,

list(crp = c(15.4973371597009, 17.6877628162003, 17.7975848672349,

16.5265487264035,
19.2341946673035,

17.1912821304663,
14.5100078038022,

16.3402398342744) , age.mcar

16.5865348180380,
16.7887532493483,

..etc...

c(58, 68, NA, 59, 62, 60, 69, NA,
53, 56, 55, 65, NA, 69, NA, 56, 66, NA, NA, NA, 68, 62, 52, NA,

., NA, 61, 54), sex.mcar
1, NA, 1, O, NA,

0, NA, 0, 1))

NA, 60, 51, NA, 63, NA, ...etc..

NA, 1, 1, 1, NA, 1, O, NA, 1, O, NA, NA, O, O,

NA, O, O, 1, O, NA, NA, O, 1, ...etc...
node mean sd  MC error 2.5%
alpha.age 5.827 3.011 0.02805  -0.1028
alpha.crp 3.928  0.6937 0.007073 2.571
alpha.sex  -3.882 2.192 0.1676 -8.545
beta.age  0.2184 0.01138 1.25E-4 0.1962
beta.age.crp 3.179  0.1726  0.001608 2.843
beta.sex  0.2514  0.1663 0.004195 -0.08144
beta.sex.crp  0.2145  0.1259  0.009613 -0.03951
sd.age 3.195  0.1798  0.001423 2.864
sd.crp  0.8311 0.04514 4.432E-4 0.7481
tau.age 0.09892 0.01108 8.638E-5 0.07866
tau.crp 1.46  0.1575 0.001509 1.165

median
5.864
3.928
-3.855
0.2184
3.177
0.2553
0.2134
3.187
0.8294
0.09842
1.454

= c(1,

97.5%
11.69
5.273

0.5329

0.2406
3.518

0.5685

0.4823
3.566

0.9263
0.122
1.787

start
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001

sample
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000

Note that all true parameter values of the original regression are well within their
95% credible intervals, and in this case the results are not all that much different
compared to simply leaving out all cases with missing data. This is not surprising,
given that the data were missing completely at random, and an exact model was
used for the MCAR analyses. In other cases there will be more gained, especially if
the data are NOT completely missing at random (see this week’s assignment for an
example of this phenomenon).

One could argue in the above example that multiple imputation was hardly worth
the trouble, and this sometimes is the case with MCAR data. However, now consider
estimating the mean value of CRP in the population, using the CRP data that were
MAR, rather than MCAR. Recall that standard analyses, ignoring the missing data,



did very badly in this case, with the 95% interval missing the true parameter value.

model

{

mean.crp <- mean(crp.meanl[])

for (i in 1:200)
{

# Basic Regression

crp.mean[i] <- alpha.crp + beta.agexagel[i] + beta.sex*sex[i]
crp.mar[i] ~ dnorm(crp.mean[i], tau.crp)

}

alpha.crp ~ dnorm(0, 0.01)
beta.age ~ dnorm(0, 0.01)
beta.sex ~ dnorm(0, 0.01)
tau.crp <- 1/(sd.crp#*sd.crp)
sd.crp 7 dunif(0.01, 10)

}

# Inits

list(alpha.crp = 0, beta.sex = 0, beta.age = 0, sd.crp = 1)
# Data

list(age = c(58, 68, 61, 59, 62, 60,

69, 50, 53, 56, 55, 65, 55, 69, 70, 56, 66, 56, 64, 52, 68, 62,
52, 66, 54, 60, 51, 50, ...etc...

61, 54),
sex = c(1, 0,1, 1,1,1,1,0, 1,1, 0, 0,1, 0,0,
1, 0, 1,0, 1,1, ...etc...1, 1, 0, 0, O, 1),

crp.mar=c(NA, NA, NA, 16.5265487264035, 17.1912821304663, 16.5865348180380,
NA, 14.5100078038022, 16.7887532493483, 16.4676879355468, NA,

NA, 16.9447418113014, 19.7999455207252, NA, 16.1233945211970,

NA, NA, 17.1211685477801, 16.2339325019515, 21.1724598527071,
19.0446227087453, ....etc.... 18.58905635269482,

NA, NA, NA, NA, NA, 16.9331262768319, 17.2364188500370, 16.3402398342744

))



The results are:

node mean sd  MC error 2.5% median 97.5% start sample
alpha.crp  5.391  0.9821 0.01003 3.465 5.384  7.305 1001 10000
beta.age  0.195 0.01665 1.7E-4 0.162 0.1952 0.2272 1001 10000
beta.sex 0.2857  0.1923 0.001943 -0.09571 0.2856 0.6611 1001 10000
mean.crp  17.35  0.1027 0.00101 17.15 17.35 17.55 1001 10000
sd.crp  1.028 0.07162 7.522E-4 0.8986 1.024 1.18 1001 10000
tau.crp 0.9604  0.1327  0.001387 0.7179  0.9543 1.239 1001 10000

Note the near perfect reult for mean CRP, 17.35, 95% Crl (17.15, 17.55), and compare
it to the non-imputed result we had before, of 16.93, 95% CI (16.65, 17.21), which
missed the true value completely. The imputed value even compares very well to the
value with NO missing data, which was 17.39, 95% CI (17.17, 17.60). Note that the
imputed interval is narrower than when the whole data set was used, even though
more than 40% of the data went missing!! This has occurred because the model
was MAR, so assumptions behind multiple imputation were perfectly satisfied, and
because we used a good model.

Concluding Comments

We have seen two extremes of the use of multiple imputation: In the first case, not
much was gained, as with MCAR data the case deletion method did quite well. In the
second case multiple was extremely useful, adjusting for bias in the MAR data, AND
increasing precision beyond what was in the original data set by itself. Conclusion:
While multiple imputation is sometimes useful, it can also sometimes do worse than
other methods. Further, except for simulated data sets, one cannot usually tell which
sort of situation we are in.

All of the above have assumed MCAR or MAR missing data mechanisms. Under
MCAR or MAR, the missing data mechanism is “ignorable”, meaning in practice
that the data analyst can derive valid inferences from the data, provided a technique
like multiple imputation is used. The following article discusses these concepts in
further detail, and demonstrates something the analyst can do in the case of non-
ignorable missing data. In practice, one never knows if data are MAR or not, so
checking assumptions is very important.



