
Predictive Distributions

Suppose you would like to predict future observations. How should one proceed?
Here we will see how such predictions are typically constructed from a Bayesian
viewpoint.

As an example, let’s consider again the case of age at first heart attack. Recall
that we had the data below on the diastolic blood pressure of Americans:

76, 71, 82, 63, 76, 64, 64, 74, 70, 64, 75, 81, 75, 78, 66, 62, 79, 82, 78, 62, 72, 83,
79, 41, 80, 77, 67.

From this data, we find x = 71.89, and s2 = 85.18, so that s =
√

85.18 = 9.22

So, one obvious way to proceed, and this is what frequentists might be forced to
do, would be to predict future observations from this distribution, as a best guess:

next observation ∼ N(71.98, 85.15)

This takes our best estimate at the mean and our best estimate of the SD (or
variance), and uses these values to describe the population and to make future
predictions.

Some questions:

• Is this really the best we can do?

• What important factor might be missing from this method?

• Why is it philosophically difficult for frequentists to correct for this missing
factor?

• In what way can Bayesian analysis improve on this situation?



Predictive Distributions

We realize that the uncertainty about the exact mean and variance to plug into
the predictive formula is unclear. If we are uncertain about these values, using
single point estimates will underestimate the uncertainty inherent in making these
predictions, resulting in the spread of the distribution of predictions being too
narrow. Rather than knowing these values exactly, we know them up to our poste-
rior distribution. So, if we average over the posterior distribution, we can restore
the missing uncertainty. The distribution created by averaging future predictions
over the posterior densities of all unknown parameters is called the “predictive
density” in Bayesian analysis.

Note that there is, philosophically speaking, no frequentist equivalent to this con-
cept, since there are no distributions to average over in that paradigm.

In practice, what we need to do is to calculate the following predictive density:

Predictive distribution(z) =
∫
f(z|θ)f(θ|x) dθ

In the above, x is the observed data and θ is the vector of unknown parameters.
Thus f(z|θ) is the prediction we would make for future data if theta were known
exactly, but since it is not, we average this quantity over f(θ|x), the posterior
density of θ after observing the data x.

Note that the above formula is completely general, in that f can be any density or
even an extremely complex model, and θ can represent one, two, or even thousands
of unknown parameters. In practice, this can be a difficult calculation (although it
is actually not very difficult for Normal densities). So, most of the time we simulate
values from the predictive density, rather than getting the exact analytical solution.

To do this, we follow the formula, and proceed in three steps:

1. First, draw a sample from the posterior density of θ, i.e., make a random
draw from f(θ|x).

2. Then, pretend, for a moment, that this is the exactly correct value, and draw
an random value from f(z|θ).

3. Repeat steps 1 and 2 many times, typically 1000 or more. Since a different
value of θ is used each time, we automatically restore the uncertainty missing
when we plug in just a single value, such as x.

Let’s use R to apply this method to our example of first age of MI. Somewhat
unrealistically for now (restriction to be removed within the next week), suppose



we know the variance is equal to 9 exactly, We showed last class that the posterior
density for µ, the unknown mean is µ ∼ N(71.69, 2.68). So this is the distribution
we must average our predictions over.

Further, once the mean µ is “known”, each prediction is made by drawing z ∼
N(µ, SD = 9). [If the SD were also not know, we would also draw randomly from
its posterior distribution.]

In R, this can be implemented as follows:

mu <- rnorm(10000, mean = 71.69, sd = sqrt(2.68))

z <- rnorm(10000, mean = mu, sd = 9)

Once we have z, we can summarize it through quantiles, mreans, variances, graphs,
etc.

> mean(z)

[1] 71.8398

> sqrt(var(z))

[1] 9.197573

> quantile(z, c(0.025, 0.975))

2.5% 97.5%

54.04826 90.22260

Note how this is a density that is more spread out that if we ignore the uncertainty
in µ:

z <- rnorm(10000, mean = 71.69, sd = 9)

> mean(z)

[1] 71.69397

> sqrt(var(z))

[1] 8.981591

> quantile(z, c(0.025, 0.975))

2.5% 97.5%

53.93716 89.28465

It is only slightly too narrow here, since we had only a single unknown parameter
that we are ignoring, and because this parameter was reasonably well estimated.
The differences can be much larger in other situations.

Similarly for other distributions, such as the binomial (see assignment), and for
more complex situations (for example, this is very useful in dealing with missing
data through multiple imputation).


