
1

Bayesian Inference for Regression Parameters

Bayesian inference for simple linear regression parameters follows the usual
pattern for all Bayesian analyses:

1. Form a prior distribution over all unknown parameters.

2. Write down the likelihood function of the data.

3. Use Bayes theorem to find the posterior distribution of all parameters.

• We have applied this generic formulation so far to problems with bino-
mial distributions, normal means (with variance known), multinomial
parameters, and to the Poisson mean parameter. All of these problems
involved only one parameter at a time (strictly speaking, more than one
in the multinomial case, but only a single Dirichlet distribution was used,
so all parameters were treated together, as if it were just one parameter).

• What makes regression different is that we have three unknown parame-
ters, since the intercept and slope of the line, α and β are unknown, and
the residual standard deviation, σ is also unknown.

• Hence our Bayesian problem becomes slightly more complicated, since
we are in a multi-parameter situation.

• Before detailing the steps involved in Bayes Theorem for regression prob-
lems, we need to look at multi-parameter problems in general.

Joint and Marginal Distributions

When we have only one parameter, we speak of its density. For example, if
x ∼ N(0, 1), then the graph of the probability density is:

2

0.1

0.2

0.3

0.4

–4 –3 –2 –1 1 2 3 4
x

When we have two or more parameters, we speak of a joint probability density.
For example, let x and y be jointly multivariately normally distributed, which
is notated by:

(
x
y

)
∼ N

([
µx
µy

]
,Σ

)

where

Σ =

(
σ2
x ρxy

ρxy σ2
y

)

Example: Suppose (
x
y

)
∼ N

([
0
0

]
,

(
1 0
0 1

))

which is equivalent to two independently normally distributed variables, with
no correlation between them. Then the picture is:

3

Note how the “slices” resemble univariate normal densities in all directions.
These “slices” are conditional densities, which are averaged over to produce
marginal densities, which will be defined later. In the presence of correlations,
for example a correlation of 0.5, we have

(
x
y

)
∼ N

([
0
0

]
,

(
1 0.5

0.5 1

))

and the picture is:

4

Similarly, with very high correlation of 0.9, we have(
x
y

)
∼ N

([
0
0

]
,

(
1 0.9

0.9 1

))

and the picture is:

The bivariate normal density formula is:

f(x, y) =
exp

{
− 1

2(1−ρ2xy)

[(
x−µx
σx

)2
− 2ρxy

(
x−µx
σx

) (
y−µy
σy

)
+
(
y−µy
σy

)2]}
2πσxσy

√
1− ρ2xy

This is a joint density between two variables, since we look at the distribution
of x and y at the same time, i.e., jointly. An example where such a distribution
might be useful would be looking at both age and height together. (Another
example is looking at the joint posterior distribution of α and β, which is
where we are heading with all of this!!)

When one starts with a joint density, it is often of interest to calculate marginal
densities from the joint densities. Marginal densities look at each variable
one at a time, and can be directly calculated from joint densities through
integration:

f(x) =
∫
f(x, y)dy, and

5

f(y) =
∫
f(x, y)dx.

In higher dimensions,

f(x) =
∫
f(x, y, z)dydz,

and so on.

Normal Marginals are Normal

If f(x, y) is a bivariate normal density, for example, it can be proven that both
the marginal densities for x and y are also normally distributed. For example,
if

(
x
y

)
∼ N

([
µx
µy

]
,

(
σ2
x ρxy

ρxy σ2
y

))

then

x ∼ N(µx, σ
2
x)

and

y ∼ N(µy, σ
2
y)

Summary

• Joint densities describe multi-dimensional probability distributions for
two or more variables.

6

• If one has a joint density, then if it is of interest to look at each variable
separately, one can find marginal probability distributions by integrat-
ing the joint densities. If one wants the marginal distribution of x, for
example, then one would “integrate out” all of the parameters except x,
and so on.

• For multivariate normal distributions, all marginal densities are again
normal distributions, with the same means and variances as the variables
have in the joint density.

Before considering Bayesian regression, we will first look at Bayesian inference
for a simpler (but related) two parameter model, estimation of a normal mean
with variance also unknown. We will then see how to extend this model to a
regression model.

Simple Bayesian two parameter problem - nor-

mal mean with variance unknown

Recall that we last looked a Bayesian analysis of a normal mean when the
variance was known, through the following problem:

Example: Consider the situation where we are trying to estimate the mean
diastolic blood pressure of Americans living in the United States from a sample
of 27 patients. The data are:

76, 71, 82, 63, 76, 64, 64, 74, 70, 64, 75, 81, 75, 78, 66, 62, 79, 82, 78, 62, 72,
83, 79, 41, 80, 77, 67.

We found x = 71.89, and s2 = 85.18, so that s =
√

85.18 = 9.22, but we in
fact assumed that σ was known exactly, and just did inference in the unknown
mean µ. For that, we found the posterior distribution µ ∼ N(71.69, 2.68), so
that the standard deviation was

√
2.68 = 1.64.

However, in real practice, σ is unknown, so we have a two parameter problem.
Following the usual Bayesian steps, we need to:

Write down the likelihood function for the data: We have already seen
the likelihood function for this problem, when we looked at the single

7

parameter normal mean problem, and it is the same here (but now σ is
viewed as a variable, rather than as a known constant):

f(x1, x2, . . . , xn|µ) =
n∏
i=1

1√
2πσ

exp(−(xi − µ)2

2σ2
) =

(
1√

2πσ2

)n
exp(−

∑n
i=1(xi − µ)2

2σ2
).

Write down the prior distribution for the unknown parameters, µ and σ:
As before, we will use a normal prior for µ, and we will use the same one
as we used previously,

µ ∼ N(θ, τ 2) = N(70, 52 = 25)

We also need a prior distribution for σ. Many choices are possible, the
most popular, however, is a uniform over an appropriate range. Here we
will use the range

σ ∼ Uniform(0, 50)

We doubt the standard deviation can be more than 50, since that implies
a very large range.

Use Bayes theorem to derive the posterior distribution: With the
choice of priors given above, there is no simple conjugate solution similar
to those we have seen for one parameter problems. There is in fact a
conjugate solution, if one uses an inverse gamma prior distribution on
σ2, but for various technical reasons this is not as good a choice as a
uniform prior.

With no “closed form” analytical formula to write down, we need to use
computer methods to find the posterior distributions for our unknown
parameters µ and σ. We will use a computer algorithm called the Gibbs
sampler as implemented automatically in software called WinBUGS. We
will now see details about how WinBUGS works.

Introduction to WinBUGS

WinBUGS is a free program available from the Biostatistics Unit of the Med-
ical Research Council in the UK (see link on course web page). Installing

8

WinBUGS is straightforward, one downloads the single file required, typically
called winbugs14.exe, and runs that file to install in typical windows fashion.
However, this allows only a limited use of WinBUGS, and one also need to
install a key (again, this is free) for unlimited use. Instructions are on the
WinBUGS home page, and please let me know if you experience any difficulty
installing the program or the key. All computers in the basement of Purvis
Hall have WinBUGS installed on them for your use.

Once installed, a WinBUGS program consists of three parts, all of which can
be placed into a single file, or as three separate files (or two files):

Main program: A set of lines that let WinBUGS know what the prior and
likelihood of the model are.

Data set: The data that will be used, either formatted as an R like list, or
in rectangular format. Note that you can have as many data sets as you
wish, and can mix formatting types when entering data.

Initial Values: These are optional (but generally a good idea to include),
and are used by WinBUGS to start its algorithm.

WinBUGS solves problems in Bayesian analysis by multiplying the prior by
the likelihood, and then taking samples from the posterior distributions via an
iterative algorithm called the Gibbs sampler. Thus, rather than get an exact
formula for the posterior distribution, WinBUGS returns samples from it, as
shown below:

9

WinBUGS can be used to solve a very wide class of problems, much wider than
standard software packages. It must be used carefully, as the Gibbs sampler
algorithm does not always converge. Good practice dictates to run WinBUGS
several times (say, three times) to ensure that the answer is always the same
(or extremely close). For problems in this course, convergence will seldom, if
ever, be a problem.

Running WinBUGS

Follow these steps to produce analyses in WinBUGS:

1. Open WinBUGS by clicking on the WinBUGS icon on desktop (after
installation).

2. Either open an existing WinBUGS file (typical extension is *.odc) if
continuing from an already created file, or open a new window from the
file menu.

10

3. Type in the program (or cut and paste if a program already exists,
typically will be the case in this course).

4. Below the program (or if you prefer, in another window inside of Win-
BUGS), type in or cut and paste in the data set, remembering that the
format must be either rectangular or list-like (see examples on course
web page).

5. In list format, type in initial values (see examples on web page).

For our normal problem with unknown variance, the WinBUGS window
will typically look like this:

model

{ # Program must start with model

statement and open {

for (i in 1:27) # Loop over number of data points

{

x[i] ~ dnorm(mu,tau) # Enter the 27 likelihood terms

}

mu ~ dnorm(70,0.04) # Prior for the normal mean, mu, 0.04=1/25

sigma ~ dunif(0,50) # Prior for the normal standard deviation, sigma

tau<-1/(sigma*sigma) # WinBUGS normal form needs 1/sigma^2

} # End of program part

Data # Data section

list(x=c(76, 71, 82, 63, 76, 64, 64, 74, 70, 64, 75, 81, 75, 78, 66,

62, 79, 82, 78, 62, 72, 83, 79, 41, 80, 77, 67))

Initial Vlaues # Initial Values section

list(mu=60, sigma = 20)

6. Once all input is ready, WinBUGS must be run to produce the output,
following these steps:

(a) Open the Model → Specification menu item, highlight the word
“model” in the program, and then click on “check model”. This
checks the model for syntax errors. Watch for (often quite cryptic)
error messages on bottom status line, if any errors occur.

11

(b) Highlight the word “list” in the data section of the program, and
click on “load data”. This loads in your data. Repeat this step as
many times as needed to load in all your data. If in rectangular
array style, highlight the first line (variable names) rather than the
word “list”.

(c) Click on compile (assuming all is fine so far...if not, find error(s)
and repeat first two steps).

(d) Highlight the word “list” in the initial values section of the program,
and click on “load inits”. This loads in your initial values. If you did
not provide all initial values, click on “gen inits” to have WinBUGS
do this automatically for you (not always a good idea).

(e) WinBUGS can now be run to produce posterior distributions. First,
run some “burn-in” or “throw away” values, to ensure convergence.
Typically, 2000 should be (more than) sufficient for models in this
course. To create the burn-in, open the Model → Update menu
item, change the default 1000 value to 2000, and click on the “up-
date” button.

(f) To run further iterations “to keep”, open the Inference → Samples
menu item. Enter all unknown variables you wish inferences on into
the window (in this case, mu and sigma), clicking “set” after each
one. Then go back to the update box, which should still be open,
and run the number of iterations you want. We will use 10,000, so
enter 10000 and click again on the update button.

(g) Finally, we can look at summaries of the posterior distributions.
Going back to the Samples dialogue box, type a “ * ” in the win-
dow (meaning look at all variables tracked), and then click on the
various items to get the desired summaries. Most useful for us
will be “Stats” and “density”, to get basic posterior inferences such
as means, medians and 95% credible intervals, and density plots
(somewhat crude). The results are:

node mean sd MC error 2.5% median 97.5% start sample

mu 71.63 1.727 0.01698 68.24 71.62 74.97 2001 10000

sigma 9.69 1.43 0.01567 7.358 9.532 12.92 2001 10000

For the mean, note that our posterior has mean of about 71.6 (com-
pare to 71.69 found previously), and the standard deviation for this
parameter is 1.73, compared to 1.63 found previously. As we have
an extra parameter to estimate, this decrease in the accuracy in

12

estimating µ is expected. Note that we have a new parameter to
estimate, σ, which was assumed known before.

Having been introduced to WinBUGS, we can now look at Bayesian regression,
first in general terms, then in terms of WinBUGS programming and inferences.

Brief Sketch of Bayesian regression

Recall the three steps: prior → likelihood → posterior.

1. We need a joint prior distribution over α, β, and σ. We will specify these as
three independent priors [which when multiplied together will produce a joint
prior]. One choice is:

• α ∼ uniform[−∞,+∞]

• β ∼ uniform[−∞,+∞]

• log(σ) ∼ uniform[−∞,+∞]

With this choice, we can approximate the results from a frequentist regression
analysis. Another possible choice is (more practical for WinBUGS):

• α ∼ Normal(0, 0.0001)

• β ∼ Normal(0, 0.0001)

• σ ∼ uniform[0, 100]

These are very diffuse (typically, depends on scale of data), so approximate
the first set of priors. Of course, if real prior information is available, it can
be incorporated.

Notes:

13

• The need for the log in first set of priors comes from the fact the the
variance must be positive. The prior on σ is equivalent to a density that
is proportional to 1

σ2 .

• We specify a non-informative prior distribution of these three parame-
ters. Of course, we can also include prior information when available,
but this is beyond the scope of this course.

• First set of priors is in fact “improper” because their densities do not
integrate to one, since the area under these curves in infinite! In general
this is to be avoided since sometimes it can cause problems with posterior
distributions. This is not one of those problem cases, however, and it is
sometimes convenient to use a “flat” prior everywhere, so it is mentioned
here (even if we use proper priors for the rest of this lecture).

2. Likelihood function in regression:

• As is often the case, the likelihood function used in a Bayesian analysis
is the same as the one used for the frequentist analysis.

• Recall that we have normally distributed residuals, ε ∼ N(0, σ2)

• Recall that the mean of the regression line, given that we know α and β
is y = α + β × x.

• Putting this together, we have y ∼ N(α + β × x, σ2).

• So for a single patient with observed value xi, we have y ∼ N(α + β ×
xi, σ

2)

• So for a single patient, the likelihood function is:

f(yi) =
1√
2πσ

exp

{
(yi − (α + β × xi))2

σ2

}

• So for a group of n patients each contributing data (xi, yi), the likelihood
function is given by

n∏
i=1

f(yi) = f(y1)× f(y2)× f(y3)× . . .× f(yn)

14

• So the likelihood function is simply a bunch of normal densities multi-
plied together . . . a multivariate normal likelihood of dimension n.

3. Posterior densities in regression

• Bayes theorem now says to multiply the likelihood function (multivariate
normal) with the prior. For the first prior set, the joint prior simply is
1× 1× 1

σ2 . For the second, it is two normal distributions multiplied by
a uniform. Since the uniform is equal to 1 everywhere, this reduced to a
product of two normal distributions.

• For the first prior set, the posterior distribution simply is:

n∏
i=1

f(yi)×
1

σ2
.

• This is a three dimensional posterior involving α, β, and σ2.

• By integrating this posterior density, we can obtain the marginal densi-
ties for each of α, β, and σ2.

• After integration (tedious details omitted):

– α ∼ tn−2

– β ∼ tn−2

– σ2 ∼ Inverse Chi-Square (so 1/σ2 ∼ Chi-Square)

• Note the similar results given by Bayesian and frequentist approaches
for α and β, and, in fact, the means and variances are the same as well,
assuming the “infinite priors” listed above are used.

• When the second prior set is used, the resulting formulae are more com-
plex, and WinBUGS will be used. However, as both sets of priors are
very “diffuse” or “non-informative”, numerically, results will be similar
to each other, and both will be similar to the inferences given by the
frequentist approach (but interpretations will be very different).

• Although the t distributions listed above can be used, Bayesian computa-
tions usually carried out via computer programs. We will use WinBUGS
to compute Bayesian posterior distributions for regression and logistic
problems.

15

• Bayes approach also suggests different ways to assess goodness of fit and
model selection (we will see this later).

Revisit problem with DMF teeth

Recall that when we looked at simple linear regression from a frequentist view,
we looked at a problem from public health in dentistry, with the following data:

Community DMF per 100 Fluoride Concentration
Number children in ppm

1 236 1.9
2 246 2.6
3 252 1.8
4 258 1.2
5 281 1.2
6 303 1.2
7 323 1.3
8 343 0.9
9 412 0.6

10 444 0.5
11 556 0.4
12 652 0.3
13 673 0.0
14 703 0.2
15 706 0.1
16 722 0.0
17 733 0.2
18 772 0.1
19 810 0.0
20 823 0.1
21 1027 0.1

We will now reanalyze these data from a Bayesian viewpoint, using WinBUGS.
The program we need is:

16

model

{

for (i in 1:21) # loop over cities

{

mu.dmf[i] <- alpha + beta*fl[i] # regression equation

dmf[i] ~ dnorm(mu.dmf[i],tau) # distribution individual values

}

alpha ~ dnorm(0.0,0.000001) # prior for intercept

beta ~ dnorm(0.0,0.000001) # prior for slope

sigma ~ dunif(0,400) # prior for residual SD

tau <- 1/(sigma*sigma) # precision required by WinBUGS

for (i in 1:21)

{ # calculate residuals

residual[i] <- dmf[i] - mu.dmf[i]

}

pred.mean.1.7 <- alpha + beta*1.7 # mean prediction for fl=1.7

pred.ind.1.7 ~ dnorm(pred.mean.1.7, tau) # individual pred for fl=1.7

}

Data are entered in one of the following two formats (both equivalent, note
blank line required after “END” statement):

dmf[] fl[]

236 1.9

246 2.6

252 1.8

258 1.2

281 1.2

303 1.2

323 1.3

343 0.9

412 0.6

444 0.5

556 0.4

652 0.3

673 0.0

703 0.2

706 0.1

722 0.0

17

733 0.2

772 0.1

810 0.0

823 0.1

1027 0.1

END

or

list(dmf=c(236, 246, 252, 258, 281, 303, 323, 343, 412, 444, 556, 652,

673, 703, 706, 722, 733, 772, 810, 823, 1027), fl=c(1.9, 2.6, 1.8, 1.2,

1.2, 1.2, 1.3, 0.9, 0.6, 0.5, 0.4, 0.3, 0.0, 0.2, 0.1, 0.0, 0.2, 0.1,

0.0, 0.1, 0.1))

We will use these initial values (rather arbitrary, just to get into right general
area to start):

list(alpha=100, beta = 0, sigma=100)

Running 2000 burn-in values and then 10,000 further iterations, produces the
following results:

node mean sd 2.5% median 97.5%

alpha 730.1 41.45 646.8 730.6 809.7

beta -277.4 40.86 -358.8 -277.4 -196.8

mu.dmf[1] 203.0 57.16 89.49 203.0 314.1

mu.dmf[2] 8.869 82.93 -152.8 8.885 171.1

mu.dmf[3] 230.8 53.72 124.3 230.6 335.6

mu.dmf[4] 397.2 35.98 325.8 397.5 467.1

mu.dmf[5] 397.2 35.98 325.8 397.5 467.1

mu.dmf[6] 397.2 35.98 325.8 397.5 467.1

mu.dmf[7] 369.5 38.42 293.3 369.6 444.2

mu.dmf[8] 480.4 30.81 418.9 480.4 540.8

mu.dmf[9] 563.7 30.09 503.0 563.4 621.8

mu.dmf[10] 591.4 30.94 529.2 591.4 651.0

18

mu.dmf[11] 619.1 32.29 554.6 619.3 680.9

mu.dmf[12] 646.9 34.08 578.9 647.1 712.3

mu.dmf[13] 730.1 41.45 646.8 730.6 809.7

mu.dmf[14] 674.6 36.24 602.0 675.1 744.8

mu.dmf[15] 702.4 38.72 624.6 702.7 777.0

mu.dmf[16] 730.1 41.45 646.8 730.6 809.7

mu.dmf[17] 674.6 36.24 602.0 675.1 744.8

mu.dmf[18] 702.4 38.72 624.6 702.7 777.0

mu.dmf[19] 730.1 41.45 646.8 730.6 809.7

mu.dmf[20] 702.4 38.72 624.6 702.7 777.0

mu.dmf[21] 702.4 38.72 624.6 702.7 777.0

pred.ind.1.7 257.3 145.8 -33.89 255.3 546.8

pred.mean.1.7 258.5 50.37 158.7 258.5 356.8

residual[1] 32.96 57.16 -78.05 32.97 146.5

residual[2] 237.1 82.93 75.25 237.1 398.8

residual[3] 21.22 53.72 -83.55 21.39 127.9

residual[4] -139.2 35.98 -209.0 -139.5 -67.76

residual[5] -116.2 35.98 -186.0 -116.5 -44.76

residual[6] -94.22 35.98 -164.0 -94.46 -22.76

residual[7] -46.48 38.42 -121.0 -46.57 29.72

residual[8] -137.4 30.81 -197.8 -137.4 -75.79

residual[9] -151.7 30.09 -209.8 -151.4 -90.83

residual[10] -147.4 30.94 -206.9 -147.4 -85.25

residual[11] -63.13 32.29 -124.9 -63.27 1.432

residual[12] 5.126 34.08 -60.23 4.903 73.22

residual[13] -57.09 41.45 -136.7 -57.55 26.23

residual[14] 28.39 36.24 -41.83 27.93 101.0

residual[15] 3.647 38.72 -71.02 3.295 81.4

residual[16] -8.092 41.45 -87.68 -8.55 75.23

residual[17] 58.39 36.24 -11.83 57.93 131.0

residual[18] 69.65 38.72 -5.02 69.3 147.4

residual[19] 79.91 41.45 0.324 79.45 163.2

residual[20] 120.6 38.72 45.98 120.3 198.4

residual[21] 324.6 38.72 250.0 324.3 402.4

sigma 135.0 21.83 98.52 132.5 183.2

Note how similar these results are to the frequentist results we calculated
earlier in the course. Recall also that a quadratic model may fit better. Here
is a program for this more complex model, which also illustrates Bayesian

19

regression for more than one variable.

model {

for (i in 1:21) # loop over cities

{

mu.dmf[i] <- alpha + beta1*fl[i] + beta2*fl[i]*fl[i]

regression equation

dmf[i] ~ dnorm(mu.dmf[i],tau)

distribution individual values

}

alpha ~ dnorm(0.0, 0.000001) # prior for intercept

beta1 ~ dnorm(0.0, 0.000001) # prior for slope for fl

beta2 ~ dnorm(0.0, 0.000001) # prior for slope for fl squared

sigma ~ dunif(0,200) # prior for residual SD

tau <- 1/(sigma*sigma) # precision required by WinBUGS

for (i in 1:21)

{ # calculate residuals

residual[i] <- dmf[i] - mu.dmf[i]

}

pred.mean.1.7 <- alpha + beta1*1.7 + beta2*1.7*1.7

mean prediction for fl=1.7

pred.ind.1.7 ~ dnorm(pred.mean.1.7, tau)

individual pred for fl=1.7

}

Running this model, the results are:

node mean sd 2.5% median 97.5%

alpha 808.6 34.31 739.8 808.4 875.5

beta1 -624.2 87.07 -792.6 -624.9 -448.1

beta2 161.5 38.16 85.78 162.1 236.3

pred.ind.1.7 214.7 105.0 3.166 213.7 424.9

pred.mean.1.7 214.2 37.34 140.5 213.8 287.7

sigma 94.4 17.54 67.35 91.79 135.8

Once again, results are very similar to the frequentist approach we calculated
earlier.

20

Comparing Bayesian to Frequentist Regression

• If no prior information is used (i.e., if we use a Bayesian approach with
“noninformative” or “flat” or “diffuse”or “reference” priors), then the
inferences from Bayesian and frequentist are numerically similar. For
example, 95% confidence intervals will be very similar to 95% credible
intervals. We have illustrated this in the above examples.

• However, the interpretations of these intervals are completely different:
Bayesian intervals are directly interpreted as the probability the param-
eter is in the credible interval, given the data and any prior information.
Frequentist confidence intervals cannot be interpreted this way, one can
only say that if the confidence interval procedure were to be used repeat-
edly, then 95% of all intervals will contain the true value.

• If there is prior information, then only the Bayesian approach can for-
mally include this information in the model.

• Both Bayesian and frequentist approaches can be extended to much more
complex models. However Bayesian methods tend to be more flexible,
in general.

• Using WinBUGS, it is trivially easy to obtain inferences for any function
of any estimated parameter. For example, having estimated, say, β1 and
β2, it is trivial to obtain the posterior distribution for, say, β1 ×

√
β2.

• As we will soon see, Bayesian methods for model selection tend to work
better than standard frequentist methods (although there is no single
perfect method for model selection developed so far).

