Figure 4 Changes in decadal mean sea surface temperature (°C). a, Difference between 2PC run 1929–39 and control 1859–69; b, difference between GHG run 2089–99 and control 1859–69. In a are also shown the approximate paths of the sections used in Fig. 1 (the GIS ridge (MN), Cape Farewell (PQ), 24°N (XY)) and Fig. 3 (ASCD).

for the response of the ocean thermohaline circulation to CO₂ forcing. If this pattern is robust, a monitoring system based on repeated hydrographic sections in the Labrador Sea and at 24°N, and current-meter measurements of the GIS overflows and the Cape Farewell boundary current, could provide a means of detection of changes in thermohaline circulation resulting from increased greenhouse-gas forcing. Much of this would build on the existing historical database[11,22,29,30]. The extent to which such a signal could be detected at present depends on the natural variability in these elements of the circulation, which has not yet been fully quantified from observations.

Received 6 November 1998; accepted 26 March 1999.

Feature-based attention influences motion processing gain in macaque visual cortex
Stefan Treue & Julio C. Martinez Trujillo
Cognitive Neuroscience Laboratory, Department of Neurology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany

Changes in neural responses based on spatial attention have been demonstrated in many areas of visual cortex[1-4], indicating that the neural correlate of attention is an enhanced response to stimuli at an attended location and reduced responses to stimuli elsewhere. Here we demonstrate non-spatial, feature-based attentional modulation of visual motion processing, and show that attention increases the gain of direction-selective neurons in visual cortical area MT without narrowing the direction-tuning curves. These findings place important constraints on the neural mechanisms of attention and we propose to unify the effects of spatial location, direction of motion and other features of the attended stimuli in a ‘feature similarity gain model’ of attention.

We studied the influence of attention on the sensory selectivity of neurons in visual cortex, namely direction-selective neurons in the middle temporal visual area (MT), which is important in the perception of visual motion and for motor planning[5,6]. MT neurons have been linked directly to psychophysical performance in motion tasks and they characteristically show direction tuning curves (bell-shaped response profiles as a function of stimulus direction; Fig. 1b), which account well for psychophysical thresholds of motion perception.

We recorded from neurons in area MT of two macaque monkeys while using displays of coherently moving random dot patterns (RDP) to determine what effect attention might have on these direction tuning curves. Attention might enhance the sensory gain of the neuron, that is, increase the response to all attended stimuli by the same proportion (‘multiplicative modulation’), leaving the
width of the tuning curve unchanged. Alternatively, attention might increase the response of a neuron only for stimuli moving in the preferred direction, thus increasing the sharpness of the neuron’s tuning curve (‘sharpening modulation’).

Experiment 1 was designed to isolate the influence of spatial attention on tuning curves. One RDP was placed inside the receptive field of the neuron being recorded and the other one, moving in the same direction, was placed in the opposite visual hemifield (Fig. 1a). On a given trial, using a spatial cue, the animal’s attention was directed to either one or the other stimulus, the ‘target’. In both the ‘attend-in’ and the ‘attend-out’ conditions, we derived the neuron’s tuning curve by randomly interleaving trials with one of 12 possible directions of movement (Fig. 1b).

Figure 1c shows a histogram of the changes in the height and width of the tuning curve between these two attentional conditions across all the cells we studied. On average, the height of the tuning curves was about 10% larger when the target was the stimulus inside the receptive field, but the tuning curves were not sharpened; instead, there was a slight, non-significant widening. The increase in the height of the tuning curve in the absence of narrowing indicates that attention has the same effect on all stimuli, that is it increases the responses by multiplicative modulation. This modulation reflects a purely spatial attentional mechanism, because the pairs of conditions compared in Fig. 1 differed only in the attended location, with the attended direction remaining the same.

Psychophysical studies suggest that attention can also be selectively allocated to stimuli that match a particular feature, without shifts in the attended location (see for example refs 11–13). To test for such effects of non-spatial, feature-based attention, we introduced a variation into Experiment 1 (Fig. 2a). While the stimulus inside the receptive field now always moved in a given neuron’s preferred direction, the other stimulus moved in either the same (as in the previous experiment, Fig. 2a, arrow B) or the opposite direction (Fig. 2a, arrow A). This allowed the attended direction to be switched without changing the attended location and without changing the stimulus inside the receptive field. We compared the responses when attention was directed to the stimulus outside the receptive field, moving either in the preferred or anti-preferred direction. Changing the stimulus direction outside the receptive field had no effect on the responses when that stimulus was behaviourally irrelevant, that is when the animal was attending inside the receptive field or simply fixating.

Figure 2b shows a histogram of the resulting attentional modulation along all neurons studied. Attending to the preferred motion outside the receptive field increased the response by, on average, about 13% above the response evoked when attending a null-direction stimulus outside the receptive field. This is not an effect of spatial attention, as the location of attention was unchanged between the two conditions. Rather, it represents a neural correlate of attention to stimulus feature. Comparing the responses against those evoked in trials in which none of the moving stimuli was behaviourally significant shows that this non-spatial attentional modulation is a combination of enhancement (preferred direction target, mean enhancement of ~5%) and suppression (anti-preferred direction target, mean suppression of ~6%). Thus, attending to a given direction enhances the responses of neurons whose preferred direction aligns with the attended direction and reduces the responses of those neurons preferring the opposite direction.

Figure 1 1. Effect of directing attention inside versus outside the receptive field on the directional tuning curve. a. Sketch of the stimulus layout on the screen. One random dot pattern (RDP) was presented inside the classical receptive field (dashed circle) while the other was presented about the same distance from the fixation point in the opposite hemifield. In a given trial, both RDPs moved in the same of 12 possible directions. b. Examples of tuning curves. The upper curve shows the response when the monkey was attending to the stimulus inside the receptive field (marked att, in a), and the lower curve plots the responses when the monkey was attending to the stimulus outside the receptive field (marked att, out). These tuning curves show an increase in directional gain and width when attention is switched from outside to inside the receptive field.
This influence is far reaching; our stimuli were as much as 20° apart and in opposite visual hemifields.

Having demonstrated attentional modulation of about equal size with shifts in the spatial location of attention and with feature-based effects in the absence of a shift of the attended location we plot the combined effect of the two modulations. Figure 2c compares responses when the animal was attending the anti-preferred stimulus outside the receptive field with those trials when attention was directed into the receptive field to the stimulus moving in the preferred direction (Fig. 2a, arrows A and C). The attentional modulation (25% on average) is the sum of the shifts shown in Figs 1c and 2b, emphasizing that feature-based attentional effects can be additively combined with modulations based on the spatial location of attention. Comparing the two attentional conditions against responses when neither of the stimuli was behaviourally significant shows that the attentional modulation is a combination of the suppressive effect of switching attention to the null direction outside the receptive field (~6% suppression) and the enhancing effect of directing attention into the receptive field onto the preferred direction (~15% enhancement).

Previous studies demonstrated a strong response modulation when attention was switched between stimuli that were both inside the receptive field. In our third experiment we tested whether the absence of attentional sharpening of the tuning curves persists under these circumstances by placing two stimuli side-by-side inside the receptive field. Pattern A always moved in the anti-preferred direction of the cell. To generate a tuning curve, pattern B moved in one of twelve directions of motion. Again, in a given trial, either one of the patterns was designated as the target. By plotting the response of the neuron as a function of the direction of motion of pattern B, a tuning curve could be determined for each of the two attentional conditions. Figure 3 shows an example of these tuning curves for one cell together with the ‘sensory’ tuning curve, recorded when neither of the two patterns inside the receptive field was behaviourally relevant.

The lower panels of Fig. 3 show histograms of the attentional modulation of the directional gain and tuning width. As in Experiment 1, attention increases the directional gain of the neuron, although now with a mean effect of about 60%. Even with these very strong response modulations, no sharpening of the tuning was observed.

Our results demonstrate a physiological correlate of non-spatial, feature-based attention by showing response modulations in the absence of spatial shifts of attention. We further show that spatial and feature-based attention represent summable processes that have a multiplicative effect on the responses of neurons. Such attentional modulations resemble changes to a neuron’s sensory gain and thus can be mimicked by sensory effects, such as reducing the luminance contrast of a stimulus, which similarly does not change the tuning width of direction-selective neurons, suggesting that response modulation based on attentional and sensory aspects employ common mechanisms.

Non-spatial, feature-based modulation of sensory responses has been observed in imaging studies and using psychophysical paradigms. However, previous studies did not show an unambiguous single-cell correlate of this effect, because they investigated attentional selection based on stimulus features, leaving open the possibility that the modulation itself is based on stimulus location, or confounded a change in the attended feature with a simultaneous change in attended location.

Although the absence of a sharpening of the tuning curves is in contrast to one report from areas in the ventral visual pathway, it closely matches another, indicating that attention may work in similar ways in the dorsal and ventral visual pathways. A recent study attempting to model psychophysical orientation discrimination performance in dual-task attentional paradigms has indicated that the observed performance can only be accounted for by models that implement sharpening of tuning curves with attention. As we have found no indication for such sharpening, further studies will be necessary to understand the reasons for this discrepancy.
attentional enhancement we observe does support better stimulus discriminability even without tuning sharpening, by increasing the slope of the tuning curve. A ‘biased competition model’ has been proposed, which supposes that attention influences the competition between two stimuli for access to a given cell in favour of the attended stimulus. This is achieved by increasing the strength of the signal coming from the population of input cells activated by the attended stimulus, but also other physiological studies of attention that included conditions as well as other modelling attempts, that non-spatial stimulus features can be the basis of attentional effects.

Methods

Cells and recording. Our recording methods have been described elsewhere. All animal procedures complied with the NIH Guide for Care and Use of Laboratory Animals and were approved by the local animal care committee. Cells were determined to be from MT by their physiological characteristics (directionality and receptive field position and size) as well as other modelling attempts, that non-spatial stimulus features can be the basis of attentional effects.

Figure 3 Experiment 3: Effect of directing attention to one of two stimuli inside the receptive field. **a,** Stimulus configurations. Both patterns were presented inside the receptive field. Pattern A always moved in the cell’s anti-preferred direction, pattern B in one of 12 possible directions. **b,** Tuning curves when pattern B was the target (upper curve), when pattern A was the target (lower curve) and when neither pattern was behaviourally relevant (central curve) because the animal was instructed to respond to a luminance change at the fixation point. **c,** Histograms of the attentional modulation of the tuning curve across 56 cells. The mean increase in directional gain is about 60% (which is a combination of response enhancement when switching attention from the ‘sensory’ condition to pattern B and of suppression when switching to pattern A). Again there is no narrowing of the tuning width. On average, width is increased by 8% (non-significant, $P > 0.1$).
between 270 and 4,000 ms after target onset) and to ignore changes in the distractor. Failure to respond within a reaction-time window, responding to a change in the distractor or deviating the gaze (monitored with a scleral search coil) by more than 1° from the fixation point caused the trial to be aborted without reward. The change in the target and distractors was selected so as to be challenging for the animal. In experiments 1 and 2 the animal correctly completed, on average, 79% of the trials, broke fixation in 11%, might have completed, on average, 78%, 13%, 8%, and 2%. In none of the three experiments was there a difference between the performances for the two possible targets. Differences between average eye positions during trials where one or the other stimulus was the target were very small, with only an average shift of 0.02° in the direction of the shift of position between the stimuli. Only correctly completed trials were considered.

Firing rates were determined by computing the average neuronal response across trials for 1,000 ms starting 200 ms after the beginning of the target stimulus movement.

Tuning curves. Tuning curves were derived by fitting the responses to the 12 directions presented with gaussian functions:

\[r_{\text{gen}} + \frac{\text{dirGain} \times \exp\left(-\frac{(d_\text{dir} - \text{predir})^2}{2 \text{width}^2}\right)}{r_{\text{gen}}} \]

The four parameters of a gaussian curve capture the four features of a direction-selective cell: preferred direction (\text{predir}), response to the anti-preferred direction (\text{r}_{\text{gen}}), the directional gain (\text{dirGain}), the maximal response modulation) and the selectivity or tuning width (\text{width}); the range of directions the neuron responds to.

Received 14 December 1998; accepted 14 April 1999.