MINI REVIEW

Complex Dynamics and Bifurcations in Neurology

John G. Milton§¶, André Longtin†‖, Anne Beuter‡‖, Michael C. Mackey§¶ and Leon Glass§‖

§ Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6,
† Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8,
‡ Département de Kinanthropologie, Université du Québec à Montréal, Montréal, Québec, Canada H3C 3P8, and
‖ Center for Nonlinear Dynamics in Physiology and Medicine, McGill University, Montreal, Quebec, Canada H3G 1Y6

(Received and accepted 26 January 1988)

1. Introduction

The neurologist is often faced with patients who exhibit a bewildering array of abnormal oscillations and complex rhythms that pose therapeutic problems. These problems take many forms (Mackey & Milton, 1987; Glass & Mackey, 1988). Most commonly there is an appearance of an oscillation in a neurological control system not normally characterized by a rhythmic process. Examples include ankle clonus in patients with corticospinal tract disease (Dimitrijevic et al., 1978), various movement disorders (e.g. essential and Parkinson's tremors, Marsden, 1984a,b), and the abnormal paroxysmal oscillations in the discharges of neurons which are associated with seizures (Ayala et al., 1973). There can be a qualitative change in the oscillations produced by an already rhythmic process, for example, gait abnormalities (Beuter & Garfinkel, 1985), Cheyne-Stokes respiration (Cherniack & Longobardo, 1973), altered sleep-wake cycles (Wehr et al., 1982) and rapid cycling manic-depressive illness (Wehr & Goodwin, 1983). In addition, there can be the disappearance of a rhythmic process as occurs in patients with depression in whom there is the disappearance of the diurnal rhythm in cortisol secretion (Hollister et al., 1980). Finally, some clinical events recur in a seemingly random fashion, for example, seizures in adult epileptics (Milton et al., 1987).

The traditional explanation given by the neurologist is to relate the appearance of abnormal dynamical behaviors to pathological processes which destroy or modify neural control mechanisms. The abnormal breathing patterns (Plum & Posner, 1980) and rhythmic movements of the palate (Lapresle & Hamida, 1970) which can occur

† To whom all correspondence should be addressed at Department of Physiology, McGill University, 3655 Drummond Street, Montreal, P.Q., Canada H3G 1Y6.
following certain brainstem strokes are examples of oscillations that arise because neural control mechanisms which normally suppress their appearance have been destroyed. On the other hand, the appearance of nystagmus and clonus in patients with multiple sclerosis are likely related to modifications in intact control mechanisms related to axonal demyelination (Rasminsky, 1984). However, in the majority of neural diseases there is both a destruction of neural pathways and modifications in those that remain. For example in Parkinson's disease there is both a loss of dopaminergic neurons in the basal ganglia and a depletion of dopamine in the remaining neurons (Alvord, 1968). Three approaches have been used to treat abnormal dynamical behaviors: (i) replacement of the deficient neurotransmitter (as in L-DOPA treatment in Parkinson's disease, Barbeau, 1969); (ii) modification of the balance between the remaining excitatory and inhibitory control mechanisms (as in pharmacological treatment of epilepsy, Woodbury et al., 1982); and (iii) destruction of one or more of the remaining control loops (as in surgical treatment of various movement disorders, Molina-Negro, 1979).

In recent years a reinterpretation of the origin of the abnormal dynamical behaviors in neurological patients has been suggested (Mackey & Glass, 1977; Kaczmarek & Babloyantz, 1977; Glass & Mackey, 1979; an der Heiden et al., 1981; Guevara, et al., 1983; Chay, 1984; King et al., 1984; Mackey & an der Heiden, 1984; Chay & Rinzel, 1985; Aihara & Matsumoto, 1986; Ermentrout, 1986; Mackey & Milton, 1987). These proposals have been based on studies of mathematical models of physiological systems in which qualitative changes in dynamics ("bifurcations") occur as certain parameters are varied. These behaviors range from stable equilibria to simple and complex periodic oscillations to aperiodic fluctuations ("chaotic" in the current vernacular). In this context, the abnormal oscillations in neurological patients arise because of either alterations in certain control parameters (such as neural conduction time, the number of membrane receptors and their affinities) and/or in the structure of the system.

In clinical situations, it is frequently difficult to identify the mechanism(s) leading to the observed dynamical abnormality and the abnormalities themselves are often difficult to characterize. For example, in epilepsy alterations in neural feedback are believed to be important in the genesis of seizure activity (Ayala et al., 1973; Gloor, 1979). The fact that seizures can be triggered by fever, hyperventilation, photic stimulation and sleep deprivation (Aicardi, 1986; Niedermeyer & Lopes de Silva, 1987) shows that paroxysmal changes in neural dynamics can be brought about by transient alterations in physiological parameters. Anticonvulsant therapies attempt to prevent or abort seizure activity by modifying neural inhibitory and excitatory mechanisms either by the use of medications (Woodbury et al., 1982) or biofeedback (Sterman & Friar, 1972; Forster, 1975) techniques. However, neither the identity of the control mechanism nor the altered physiological parameter are known. Characterization of an epileptic abnormality is based on clinical history and measurement of the electro-encephalogram (EEG) (Browne & Feldman, 1983; Aicardi, 1986). Although typically the recognition of a seizure either clinically or with the EEG poses little problem, even to an untrained person (Fig. 1), interpretation of the EEG changes in neuro-physiological terms is difficult since each EEG electrode simul-
taneously records from \(\sim 6 \text{ cm}^2 \) of brain surface and hence millions of neurons (Cooper et al., 1965).

In section 2 we describe quantitative measures used to characterize complex neural dynamics in neural systems. Using these measures it is difficult to determine underlying mechanisms. In section 3 we describe experimental models that have been used to induce bifurcations in neural control systems by changing control functions. In some situations, the observed dynamics are quite complex but an underlying theory can be developed. The relevance of these observations for future work is discussed in section 4.

2. Characterization of Neural Time Series

Traditional approaches to the quantitative analysis of neural time series are based on Fourier methods in which the time series is decomposed into its frequency components and the results displayed in the form of a power spectrum (Lopes da Silva, 1987). Measurements of the power spectra have been widely used, for example, to assess the background activity of the EEG (Duffy et al. 1979), to evaluate changes in the EEG during sleep (Dumermuth et al., 1972; Mendelson et al., 1987) and carotid endarterectomy (Blume & Sharbrough, 1987), and to describe the frequency content of various tremors (Halliday & Redfearn, 1956; Gresty & Findley, 1984), speech and auditory signals (Michelsen, 1985) and the electrical activity of muscle (Lindstrom & Magnusson, 1977).

In recent years, a new vocabulary and mathematical artillery has insinuated itself into the analysis of complex dynamical behaviours. These techniques are based on recent advances in nonlinear dynamics. Here we briefly indicate how two measures,
the Liapunov number and the dimension, are currently being used to characterize neural time series.

The Liapunov number measures the rate of divergence of solutions of deterministic dynamical systems for initial conditions that are very close (Wolf et al., 1985). If, in such a system, the largest Liapunov number is negative, then there is either a stable steady state or a stable limit cycle. On the other hand, a positive Liapunov number is often taken as a definition of chaos (Wolf et al., 1985). Positive Liapunov numbers have been observed experimentally for neural spike trains recorded from deafferented buccal-cerebral neurons and motor neurons of the cerebro-pleural ganglion of the sea slug (Mptisos et al., 1988) and for the human EEG recorded under a variety of conditions (Babloyantz et al., 1985; Babloyantz & Destreche, 1986; Mayer-Kress & Holzfuss, 1987). Interpretation of these observations as evidence for deterministic chaos is not yet possible since the Liapunov number is positive for purely random processes such as a random walk. Further, the algorithm commonly used to compute Liapunov numbers (Wolf et al., 1985) has many shortcomings; for example, it can give erroneous results in the presence of large time derivatives (Vastano & Kostelich, 1986; Wolf & Vastano, 1986).

The dimension is a quantity which is used to characterize the geometry of the steady state dynamics produced by deterministic systems (Russell et al., 1980). For example, the dimension of an equilibrium point is 0 and that of a periodic orbit is 1. Various computer algorithms have been developed in an attempt to estimate the dimension when time series are very complex (for a review see Mayer-Kress, 1988). Applications of these algorithms to the study of neural dynamics typically yield noninteger values for the dimension. A geometrical object with a noninteger dimension is called a fractal (Mandelbrot, 1977). Fractal dimensions have been calculated for a variety of neural time series including finger tapping of parkinsonian and normal subjects (Kraus et al., 1987), neural spike trains recorded from sea slugs (Mptisos et al., 1988) and the pre- and post-central gyri of monkeys (Rapp et al., 1985), the EEG recorded from the olfactory bulb of rodents (Skarda & Freeman, 1987), and the human EEG under a variety of conditions (Babloyantz et al., 1985; Albano et al., 1986; Babloyantz, 1986; Babloyantz & Destreche, 1986, 1987; Layne et al., 1986; Rapp et al., 1986; Mayer-Kress & Layne, 1987; Mayer-Kress & Holzfuss, 1987; Watt & Hameroft, 1987). Although some chaotic systems (i.e. systems with a positive Liapunov number) have fractal dimensions, not all fractals are generated by chaos and not all chaotic systems are fractal (Grebogi et al., 1984). There are a number of well recognized limitations associated with the computer algorithms used to estimate the dimension, e.g. the sensitivity of the algorithm to the number of data points, sampling interval and high derivatives; the effect of electronic filtering of the time series to remove artifact on the calculation of the dimension; and the stationarity of the time series (Caswell & Yorke, 1986; Layne et al., 1986; Albano et al., 1987; Kostelich & Swinney, 1987; Mayer-Kress, 1988; Mees et al., 1988). Consequently, the relevance of the observations of a fractal dimension to the identification of chaotic dynamics is obscure at best.

Clinical interpretation of the EEG requires that attention be given to the morphology, frequency and distribution of the various waveforms (Spehlmann,
1985; Niedermeyer & Lopes da Silva, 1987). However, in some applications a detailed reading of the EEG is not required since the only interest is to detect whether gross changes have occurred. An example is the use of the EEG to monitor carotid endarterectomy procedures (Blume & Sharbrough, 1987). Since the dimension in principle reduces the EEG to a single number, it has been suggested that the dimension may be useful to characterize changes in the morphology and frequency of waveforms during various surgical procedures (Layne et al., 1986; Mayer-Kress & Layne, 1987; Mayer-Kress & Holzfuß, 1987). This is an intriguing possibility, but at present suitable high speed computers for the rapid calculation of the dimension are not available in most clinical settings and progress is slow.

Power spectra, Liapunov numbers and dimension provide descriptive measurements of time series. These quantities do not provide direct insight into the mechanisms which produce the measured time series. For example, the question as to whether the human EEG is chaotic during a seizure avoids the much more important question as to which neural inhibitory or excitatory mechanism(s) are actually involved in producing a seizure. Certainly one does not need to calculate the dimension of the EEG to determine if a seizure has occurred; this is usually obvious (Fig. 1). At present the mathematical properties of deterministic equations necessary for the production of chaotic dynamics are being uncovered (Guckenheimer & Holmes, 1983; Lasota & Mackey, 1985; Devaney, 1986). However, the identity of the neural mechanisms which are capable of generating chaotic signals, if they exist at all, are not known. Indeed, the complex neural time series measured experimentally may be chaotic; may arise from the interaction of several independent oscillators (e.g. quasi-periodicity); may reflect stochastic noise; or may reflect some combination of these possibilities. Clearly what is needed are methods to unravel the origins of these time signals.

3. Inducing Bifurcations in Neural Dynamics

A direct approach for studying bifurcations in neural dynamics is to experimentally induce changes in known parameters in neural control mechanisms. Most experiments of this type have been performed in invertebrate and animal preparations. Examples include (i) the generation of a variety of complex oscillations in the membrane potential of isolated invertebrate neurons by altering the frequency and amplitude of periodic electrical stimulation (Aihara & Matsumoto, 1987; Everson, 1987; Hayashi & Ishizuka, 1987; Matsumoto et al., 1987) and by blocking K\(^+\) channels with 4-aminopyridine (Holden et al., 1982); and (ii) production of changes in breathing patterns in animals by either increasing the circulatory delay between the brain and lung (Guyton et al., 1956) or by altering the frequency of mechanical ventilation in anesthetized animals (Petrillo & Glass, 1984; Petrillo et al., 1983) and humans (Graves et al., 1986).

Although the observation of abnormal dynamic behaviors in humans with neurological disease suggests that bifurcations can occur in human neural dynamics, there has been a paucity of human models in which it has been possible to directly assess the dynamics which arise from parameter manipulation. The strategies which have
been employed involve either manipulation of a time delay in a sensory feedback loop or of the gain in a feedback loop. Experiments in which a variable time delay has been inserted into a sensory feedback loop have typically focused on a variety of motor tasks. Examples include the introduction of delayed auditory feedback causing stuttering in normal individuals (Lee, 1950, 1951) and of delayed visual feedback leading to poor hand writing (Smith, 1962; Smith et al., 1960) and altered performance in tracking tasks (Merton et al., 1967; Glass et al., 1988).

Experiments in which the gain of a feedback loop has been manipulated have essentially been limited to the visual system. Examples include (i) the production of limit cycle oscillations in the visual smooth pursuit system by increasing the gain of the horizontal retinal feedback gain (Scotto & Oliva, 1984); (ii) "high gain" oscillations in pupil area, i.e. pupil cycling, induced by focussing a narrow light beam at the pupillary margin (Stern, 1944; Miller & Thompson, 1978); and (iii) simpler and complex oscillations in pupil area which occur when the pupil light reflex is "clamped" with external feedback (Stark, 1962; Longtin & Milton, 1988; Milton et al., 1988; Reulen et al., 1988).

In the remainder of this section we will discuss recent work in our laboratories involving experiments in which altered feedback has been introduced into two different situations: (i) the clamped pupil light reflex, and (ii) a visually guided motor tracking task.

3.1. BIFURCATIONS IN THE CLAMPED PUPIL LIGHT REFLEX

Studies of the pupil light reflex play an important role in current investigations of the properties of human neural feedback mechanisms (Stark, 1959, 1984). This reflex is a delayed negative feedback neural control mechanism which regulates the retinal light flux (equal to the light intensity multiplied by the pupil area) by changing the pupil area. The time delay, τ, or pupil latency is ~ 300 msec (Milton et al., 1988). Oscillations in pupil area with a period T, where $2\tau < T < 4\tau$, are predicted to occur once the gain and/or τ in the feedback loop become sufficiently large (Stark, 1959, 1962; Stark & Cornsweet, 1958; Longtin & Milton, in press). In the language of dynamical systems, the onset of the oscillations coincide with a supercritical Hopf bifurcation (Longtin & Milton, in press).

Direct experimental verification of the above predictions has been facilitated by the development of techniques to clamp the pupil light reflex (Stark, 1962; Longtin & Milton, 1988; Milton et al., 1988; Reulen et al., 1988). Clamping refers to a technique in which the feedback loop is first "opened" by focussing a small light beam onto the center of the pupil in order to circumvent the shading effects of the iris on the retina (Stark & Sherman, 1957). The feedback loop is then reclosed with an electronically constructed circuit, or clamping box, which relates measured changes in pupil area to changes in retinal illumination. By appropriate design of the clamping box, the reflex can be made unstable and the types of dynamical behaviors explored in a precisely controllable manner. With this technique it has been possible to gradually increase the gain in the feedback loop and verify that
Fig. 2. Comparison of the changes in pupil area that occur as a function of time with imposed negative feedback to those predicted by eqn (2) (subject MC). The piecewise constant negative feedback is shown in (a). The pupil latency time was 285 msec. In (c-f) the machine delay was 100 msec ($\delta_1 = 385$ msec) and in (g) the machine delay was increased to 579 msec ($\delta_1 = 864$ msec). The area threshold, θ_1, was set at: (c) 32 mm2, (d) 26 mm2, (e) 22 mm2, and 18 mm2 in (f) and (g). For negative feedback, it can be shown (an der Heiden & Mackey, 1982; Milton & Longtin, unpublished results) that $A_{\text{max}} = \theta_1 \exp(-\alpha_1 \tau) + A_{\text{off}}[1 - \exp(-\alpha_1 \tau)]$ and $A_{\text{min}} = \theta_1 \exp(-\alpha_2 \tau) + A_{\text{on}}[1 - \exp(-\alpha_2 \tau)]$, where $A_{\text{max}}, A_{\text{min}}$ are, respectively, the maximum and minimum amplitudes of the pupil area oscillations. The values of $\alpha_1, A_{\text{off}}, A_{\text{on}}$ used to calculate the solutions of eqn (2) were calculated from plots of $A_{\text{max}}, A_{\text{min}}$ vs. θ_1 shown in (b) and were $\alpha_1 = 3.11 \text{ sec}^{-1}, \alpha_2 = 0.74 \text{ sec}^{-1}, A_{\text{on}} = 15.7 \text{ mm}^2, A_{\text{off}} = 34.5 \text{ mm}^2$. In (b) the values of $A_{\text{max}}, A_{\text{min}}$ represent values averaged over a minimum of ten consecutive cycles.
oscillations occur once the gain becomes sufficiently large (Stark, 1962; Reulen et al., 1988).

A simple design of the clamping box is shown in Fig. 2(a). This has been referred to as piecewise constant negative feedback since once pupil area exceeds an adjustable area threshold, \(\theta_t \), the light is turned on and the pupil will then become smaller (Milton et al., 1988; Milton & Longtin, unpublished results). Piecewise constant negative feedback is an idealization of the traditional technique of producing pupil cycling by focusing a narrow light beam at the pupillary margin, but affords better control (Milton et al., 1988). Measurements of pupil cycling are important as a clinical test for detecting pathology within the reflex arc (Stern, 1944; Miller & Thompson, 1978; Milton et al., 1988). This observation has provided a major impetus for obtaining analytic insight into the properties of the oscillations in pupil area that occur under conditions of negative feedback.

Figure 2 shows the results of an experiment with piecewise constant negative feedback. Provided that \(\tau > 0 \) (which is always true), the condition for the onset of the oscillation is simply that \(\theta_t \) be less than the initial pupil area (Longtin & Milton, 1988; Milton et al., 1988). As is shown the period and the amplitude of the oscillations depends on the value of \(\theta_t \), relative to the initial pupil area [compare Figs 2(c–f)] and the total time delay (equal to the pupil latency plus the machine delay) [compare Figs 2(f) and (g)].

The changes in pupil area, \(A_t \), that occur under conditions of external piecewise constant feedback are given by the delay-differential equation (Longtin & Milton, 1988, in press)

\[
\frac{dg}{dA} \frac{dA}{dt} + \alpha g(A) = F(A_t)
\]

(1)

where \(\tau \) is the total time delay and \(A_t \) is the pupil area at a time \(\tau \) in the past, i.e. \(A_t = A(t-\tau) \). The rate constant for pupillary movements differs for constriction (\(\alpha_c \)) and dilation (\(\alpha_d \)). The function \(F(A_t) \) has only one of two values depending on whether the light is on or off and the function \(g(A) \) relates changes in neural activity in the reflex arc to changes in pupil area. Experimentally it is found that the time courses for constriction and dilation can each be approximated by a single exponential (Longtin & Milton, 1988) and thus eqn (1) can be written as

\[
\frac{dA}{dt} + \alpha A = \begin{cases}
A_{off}, & \text{if } A_t < \theta_t \\
A_{on}, & \text{if } A_t > \theta_t
\end{cases}
\]

(2)

where \(A_{on}, A_{off} \) are constants which depend on, among other things, the intensity of the light beam and the background illumination (Longtin & Milton 1988). The values of the constants \(\alpha_c, \alpha_d, A_{on}, A_{off} \) can be determined from plots of the maximum, or minimum amplitude of the oscillations in pupil area as a function of \(\theta_t \) as shown in Figs 2(b) and 3(b).

As can be seen in Fig. 2, the amplitude and period of the solutions of eqn (2) closely resemble those of the observed oscillations in pupil area produced by
changing either θ_1 or τ. These observations indicate that eqn (2) provides a good
description of the dynamics observed in this experimental paradigm. However, the
small cycle-to-cycle variations in pupil area are not predicted by eqn (2), and we
believe that they reflect the influence of uncontrollable variations in the reflex arc,
i.e. "noise".

A design of the clamping box which is better suited for the generation of complex
dynamical behaviors is shown in Fig. 3(a) and corresponds to piecewise constant
This type of feedback resembles negative feedback [Fig. 2(a)] except that once pupil
area exceeds an area threshold $\theta_2 > \theta_1$, the light is turned off. The interest in studying
this type of feedback stems from the analytic insight that has been gained into the
properties of the equation

$$
\frac{dA}{dt} + \alpha A = \begin{cases}
A_{\text{off}}, & \text{if } A < \theta_1 \\
A_{\text{on}}, & \text{if } \theta_1 < A < \theta_2 \\
A_{\text{off}}, & \text{if } A > \theta_2
\end{cases}
$$

For eqn (3) it has been possible to prove for simple initial conditions the existence of
stable equilibria, of stable and unstable limit cycles, and Li and Yorke type chaos
as well as mixing and exact motions as θ_1 and θ_2 are varied (an der Heiden, 1983,
1985; an der Heiden & Mackey, 1982, 1987). These latter aperiodic trajectories are
unstable and thus would be expected to be difficult or impossible to observe
experimentally. In numerical experiments we always observe complicated limit
cycles in the parameter ranges where aperiodic dynamics exist. However, these limit
cycles are stable only over extremely narrow parameter ranges and thus would be
difficult to observe in real systems in which parameters may fluctuate.

Figure 3 shows the results of an experiment with mixed feedback. A variety of
different oscillations, which are more complex than those produced with negative
feedback (Fig. 2), occur as θ_1 and θ_2 are varied. For the parameter values measured
experimentally, qualitatively similar solutions are produced by eqn (3). The agreement
between the solutions of eqn (3) and experimental observations is best for the
simpler oscillations shown in Figs 3(c) and (d). The more complex experimental
oscillation shown in Fig. 3(e) has the same overall morphology as the corresponding
solution of eqn (3), but possesses less detail. This presumably is a reflection of the
inability of the slowest elements of the reflex arc to undergo rapid, sudden changes
in direction. Indeed better agreement is obtained when eqn (3) is modified to include
mechanical inertia (Milton & Longtin, unpublished results).

Although eqn (3) correctly predicts that very complex oscillations should be
observed for certain choices of θ_1 and θ_2 [Fig. 3(f)], the predicted oscillations are
periodic and clearly qualitatively very different. The origin of these complex oscillations
in pupil area is currently under active investigation. One possible explanation is that this oscillation reflects the influences of uncontrolled irregular variations in
certain of the parameters of eqn (3), i.e. multiplicative noise (Longtin & Milton,
1988). To illustrate the influence of parameter fluctuations, in Fig. 4 we show the
effect of measured variations in A_{on} and A_{off} on the solutions of eqn (3). For the
values of θ_1 and θ_2 which produce the complex oscillations shown in Fig. 3(f), the
Figure 3. Comparison of the changes in pupil area that occur as a function of time with imposed mixed feedback to those predicted by eqn (3) (subject JM). The piecewise constant mixed feedback is shown in (a). The parameter $\alpha = 3.88$ sec$^{-1}$, $\gamma = 0.265$ sec$^{-1}$, $A_{on} = 15.5$ mm2, $A_{off} = 34.2$ mm2 were measured in a preliminary experiment with piecewise constant negative feedback as discussed in the legend to Fig. 2 [data shown in (b)] and τ was 411 msec. The upper (θ_u) and lower (θ_l) area thresholds have been indicated by the “θ” at the right hand sides of the figure and were respectively: (c) 21.5 mm2, 24.5 mm2; (d) 21 mm2, 22 mm2; (e) 18.9 mm2, 19.5 mm2; (f) 17.95 mm2, 18.5 mm2.

Variations in A_{on} and A_{off} are large enough to induce transitions between qualitatively different solutions of eqn (3) [Fig. 4(d)]. Thus the observed oscillations could represent a combination of different solutions of eqn (3) plus transients. The simpler oscillations in Figs 3(c), (d) and (e) are less sensitive to these parameter variations because of the wider parameter intervals over which they are expected to occur.
Fig. 4. The \((A_{\text{on}}, A_{\text{off}}) \)-parameter space for eqn (3) for the values of the area thresholds \(\theta_1, \theta_2 \) in Fig. 3 [(a), (b), (c), and (d) correspond, respectively, to Figs (c), (d), (e), and (f).] In constructing these parameter spaces the values of \(\alpha, \alpha_0, r \) have been fixed and we have classified the periodic solutions of eqn (3) symbolically by the number of light pulses per period [i.e. Fig. 3(d) shows a type 2 solution since there are two light pulses per period]. The region labelled "C" contains very complex periodic solutions in close proximity as well as unstable mixing solutions. The rectangular boxes enclose the measured values of \(A_{\text{on}}, A_{\text{off}} \) (\(\approx 10 \) consecutive values). Since in eqn (3), constriction and dilation occur as first order processes, it is possible to measure the values of \(A_{\text{on}}, A_{\text{off}} \) cycle to cycle using the values of, respectively, \(\alpha, \alpha_0 \) (Longtin & Milton, 1988).

[Figs. 4(a), (b), (c)]. We cannot exclude the possibility that the source of this multiplicative noise itself may represent the trace of a chaotic process (Lasota & Mackey, 1985, 1989) which is injected at some point into the reflex arc, for example, at the retina (Longtin & Milton, 1988) or the Edinger-Westphal nucleus (Stark et al., 1958; Stanton & Stark, 1966).

The observations in Fig. 3 give a direct demonstration that qualitative changes in the dynamics of a neural control mechanism can arise as quantitative changes are made in the properties of neural feedback. The qualitative changes in dynamics
occur at approximately the same parameter values which produce bifurcations in a simple mathematical model for the pupil light reflex [eqn (3)]. Thus bifurcations in neural control mechanisms can be induced by parameter manipulation. However, these observations also emphasize that the different components of the observed dynamics must be carefully identified and evaluated before the aperiodic behaviors generated by the nervous system can be confidently assigned a deterministic origin.

3.2. VISUAL DELAYS IN MOTOR TRACKING TASKS

It is possible to alter dynamics in a process as complex as motor control by introducing a time delay into a sensory feedback loop. Figure 5 summarizes the results of an experiment in which a variable time delay is introduced into a simple motor tracking task (Merton et al., 1967; Glass et al., 1988; Beuter et al., unpublished results). In this experiment subjects are required to adjust the position of their index finger to match the position of a target. However, the subjects are not able to directly assess the position of their index finger in relation to the target. Instead the subjects look at an oscilloscope screen on which two horizontal lines are displayed; one is stationary and corresponds to the target and the other is controlled by a micro-displacement transducer attached to the index finger which is fixed by a lightweight medical splint so that movement only occurs at the metacarpophalangeal joint. The subjects are asked to match the two horizontal lines as closely as possible. A variable time delay is introduced by inserting an analog delay line between the transducer and the oscilloscope. Thus, by viewing the oscilloscope screen, the subjects are only able to judge the position of their index finger relative to the target at some time in the past. In addition, the feedback gain can be increased by amplifying finger movements so that relatively larger displacements are seen on the oscilloscope screen. In the experiment we discuss here, the gain has been adjusted so that a finger displacement of 1 mm corresponds to a displacement of ~16 mm on the oscilloscope screen.

Figures 5(a) and (b) show the effect of an increase in the analog time delay by 300 msec and 1500 msec on the subject's performance during this visual tracking task. There are small rhythmic finger displacements in finger position with a mean frequency of 8–12 Hz [Figs 5(c), (d)]. These rhythms are present with or without the analog time delay (data not shown) and are associated with physiological tremor. As can be seen in Figs 5(c) and (d), the frequency of this tremor is not influenced by an increase in the analog time delay; however, the overall amplitude of finger displacements increases with the time delay.

Physiological tremor recorded in distal extremities is thought to involve complex mechanisms at the segmental level (i.e. spinal or brainstem) and central level (i.e. supra-spinal rhythmic input to motoneurons) (Lippold, 1970; Marsden, 1984b). Its amplitude can vary between subjects and is affected by both psychological (i.e. emotional state) and physiological factors (i.e. temperature disturbance or pharmacological agents such as beta-agonists) (Koller, 1984).

The addition of the analog time delay does result in the appearance of an increase in power in the power spectra below 1.5 Hz [Figs 5(c), (d)]. This is associated with
FIG. 5. (a), (b). Time series of the displacement of the index finger of a healthy subject (subject IT) performing the delayed visual tracking task described in the text with an added time delay of (a) 300 msec and (b) 1500 msec. The amplitude of the displacements in finger position increases with the time delay and in the case of the 1500 msec delay a regular low frequency oscillation appears intermittently (indicated by). In (c) and (d) the power spectra of the finger displacement time series shown, respectively, in (a) and (b) is plotted for frequencies from 0–15 Hz. The logarithm of the amplitude of the power spectrum has been plotted in arbitrary units. With increasing delay, more power appears at frequencies <1.5 Hz.

the appearance of a low frequency oscillation superimposed on the physiological tremor [Fig. 5(b)]. The amplitude and period of this low frequency oscillation increases as the time delay increases. This oscillation is not regular, but occurs intermittently. During the time intervals when this oscillation is more regular, the average inter-peak interval is found to increase continuously with the time delay and is found to be between two and four times the delay (Beuter et al., unpublished results).

Since this delay does not appear to influence the frequency of the physiological tremor, it is likely that it is influencing a more central control mechanism. This interpretation is consistent with neuroanatomical considerations. The afferent signals arising from the proprioceptors and the retina travel by separate pathways to the cortex via separate thalamic nuclei. The likely first sites of interaction of this afferent information for the task of altering finger position are the association areas of the cortex, i.e. the parieto-occipital lobes. Thus, the increased time delay in our
experiment is probably affecting, as yet unknown, mechanisms in this region of the cortex. In addition, the cerebellum and basal ganglia are also likely to play a role. For example, the cerebellum modulates both descending efferent information to the spinal cord and finger via the corticospinal and rubrospinal tracts and ascending afferent information from vision (i.e. superior colliculus) and limb movements (i.e. spinocerebellar tracts).

Theoretically it can be shown that the period of an oscillation for a first order delayed feedback mechanism is at least two times the delay and, under certain conditions, may be bounded above by four times the delay (Hayes, 1950; Mackey & Glass, 1977; Glass & Mackey, 1979). This prediction is consistent with the period of the intermittent oscillation in finger position that occur when the delay is added (Fig. 5). However, in these simple mathematical models the observed cycle is a stable regularly occurring one (i.e. limit cycle), whereas the oscillation observed in this experiment is only intermittently regular. A number of neural mechanisms might account for this intermittency. The appearance and disappearance of the oscillation might be due to interactions between the multiple feedback loops which underlie the stabilization of the finger (Glass et al., 1988). An alternative possibility is that the feedback loops are selectively activated depending on the current and past states of the system (Beuter et al., unpublished results). For example, the relative importance of visual and proprioceptive mechanisms for maintaining finger position might fluctuate during the course of a single trial (Stephens & Taylor, 1974). Finally, the same reflex mechanisms may have different uses in different movement contexts (Lee et al., 1983) and the volitional and motor planning of the subjects may also influence their motor responses through feedforward mechanisms (Hammond, 1956).

The above observations illustrate a general principle of neural control, i.e. there exist multiple mechanisms that influence the controlled activity at several levels in the nervous system. This principle is not unique to the control of finger movement but applies to virtually every neural behavior. A major problem is to unravel the interactions of the various central control loops and ultimately understand their contribution to the observed dynamics (as in Fig. 5). No foolproof strategy now exists to do this. One approach, not yet adequately tried, is to perform experiments in patients with known lesions that selectively eliminate neural pathways that control motor behavior (e.g. patients with cerebeller pathology or Parkinson’s disease). These results can then be compared with those from normal subjects and in theoretical models with an effort at detecting qualitative changes in dynamics induced by the lesion.

4. Conclusions

Neurological systems generate complex dynamic behaviors. Although a variety of quantitative measures, such as power spectra, Lyapunov exponents, dimension, have been used to describe these rhythms, these descriptions do not give a clear indication of the underlying mechanisms. We believe that an essential first step is the study of relatively simple model systems in which bifurcations can be induced. Here we have considered experiments in which alterations in the time delay and/or
gain of feedback loops are introduced using electronic circuits. It may also be possible to eventually develop experimental models in which bifurcations can be induced using pharmacological and/or surgical interventions. Neurological lesions provide another source of identifiable modifications in neural control. The goal of these experiments is not just to observe some novel behavior, but is to yield sufficient experimental data that theories based on known physiological mechanisms can be posed and then tested experimentally. In this way it should be possible to develop an understanding of the origins of dynamical behaviors seen in human disease and then, hopefully, devise more effective therapeutic strategies.

This work and A. Longtin were supported by the Natural Science and Engineering Research Council of Canada. Hamamatsu Photonics Systems, Inc. (Hamamatsu, Japan and Waltham, MA) provided the Binocural Iriscorder Model C-2515. We thank D. Lanteigne for constructing the delay line and the Neuro-electronics group at the Montreal Neurological Institute for their assistance. We are indebted to F. Andermann, N. Cashman, G. Francis, J. Gotman, M. Guevara, T. H. Kirkham, C. Polosa and N. So for their comments.

REFERENCES

