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Abstract. Criteria on uniform equi-boundedness and uniform equi-Lagrange stability of
a certain type of impulsive systems have been investigated. These criteria are applied to
impulsively synchronize two Lorenz chaotic systems and show how parameter mismatch
between them play a fundamental role in influencing system performance. A robust secure
communication scheme based on masking and modulating message signals with impulsive
synchronization is then proposed. Simulation results are presented to demonstrate the
secure scheme.
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1 Introduction

Impulsive systems provide a natural framework for mathematical modeling
of many physical phenomena. Examples of such models include some popu-
lation growth models [9] and maneuvers of spacecraft [12]. In this paper, we
are interested in impulsive synchronization of two chaotic systems [10, 14, 19].
This feature was simultaneously investigated for both autonomous and non-
autonomous error dynamics between the chaotic systems involved [18]. In
addition, a more general format of it was also introduced in [17] using the
notion of practical stability. Applications of the feature to communication
security was found to be very promising [15, 16]. Since then, many theoret-
ical and experimental studies have been conducted in this field, especially
in solving problems arising from the transmission processes of the encrypted
signals [4, 5, 6, 7, 13]. However, the problem of robustness has not been
addressed in a comprehensible way.

Inaccuracy in designing identical chaotic systems is unavoidable and the
robustness of cryptosystems in building a secure communication scheme is
considered fundamentally important. Therefore we study impulsive synchro-
nization and its insensitivity to relatively large parameter mismatch between
two chaotic systems. In addition, we characterize robustness in terms of
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equi-Lagrange stability [8] and apply it to design a new secure communica-
tion scheme

The rest of this paper is organized as follows. In Section 2, we state and
prove several results concerning equi-boundedness and equi-Lagrange stabil-
ity. These results are required to obtain sufficient conditions for impulsive
synchronization of two chaotic systems. In Section 3, an example consisting
of two non-identical Lorenz systems is considered in order to show the ro-
bustness of impulsive synchronization of these two systems. A new secure
scheme based on chaotic masking [2] and chaotic modulation [3] in proposed
in Section 4, followed by concluding remarks in Section 5.

2 Basic Theory

Consider the following impulsive system.

x = f(t,x),t+1
{ ok 2 o2 0

where Ax(t;) = x(t}) — x(t7), x(tf) = limt_m;r x(t), and the moments
of impulse satisfy 0 = #; < #3 < ... < tx < ... and limg_ ot = oo
Furthermore, we introduce the following classes of functions for later use.
Ko:={9g € C[Ry,Ry] : g(s) > 0if s > 0 and g(0) = 0}, K := {g € Ko :
g(s) is strictly increasing in s}, KR :={g € K : slggo g(s) = oo},
PC:={p:Ry - Ry :p(t) € O(ts, tr41]) and p(t;}) exists, k = 1,2,...},
S¢(M) == {x € R":[|x|| > M}, S¢(M)° := {x € R" : [|x|| > M},

vo(M) :={V : Ry x 85°(M) - R, : V(t,x) € C((tr, tp41] X S¢(M)), locally
Lipschitz in x and V(t:, x) exists for k = 1,2,...},

where M > 0. We also introduce the following definitions.

Definition 1 Let M > 0 and V € vo(M). Define the upper right derivative
of V(t,x) with respect to the continuous portion of system (1), for (,x) €
Ry x S¢(M)° and t # ti, by

1 . .
DtV (t,x) = 61—i>%1+ sup = [V(t+3d,x+(x))—V(x)].

Definition 2 Solutions of the impulsive system (1) are said to be

S51) equi-attractive in the large if for each ¢ > 0, a > 0 and tg € Ry,

g +

there exists a number T := T (to, €, ) > 0 such that ||xo|| < « implies
(][ < ¢, fort > to+T;

(52) uniformly equi-attractive in the large if T' in (S1) is independent of to.
Definition 3 Solutions of the impulsive system (1) are said to be

B1) equi-bounded if for each a > 0, tqg € Ry, there exists a constant § :=
+
B(to, @) > 0 such that ||xo|| < a implies that ||x(t)|| < B, fort > to;
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(B2) uniformly equi-bounded if 8 in (B1) is independent of to;
(B3) equi-Lagrange stable if (S1) and (B1) hold together;

(B4) uniformly equi-Lagrange stable if (52) and (B2) hold together.
We shall need the following Theorem [1, 11].

Theorem 1 The solutions of system (1) are uniformly equi-bounded if

(T1.1) V € vo(M), for some M > 0, and there exist functions a,b € KR such
that b(||x|}) < V(t,%) < a(llxll), (t:%) € Ry x $°(M);

(T1.2) there exist functions p € PC and ¢ € Ko such that
DYV (t,x) < p(t)ex (V (%)), (t,%) € (t,tesr) x SY(M)°, (2)
fork=1,2,...;

(T1.3) there erxists a constant N > 0 such that if ||x(tg)|| < M, then ||x +
I(ty,x)|| <N, fork=1,2,...;

(T1.4) there exist functions ¥ € KR and ¥y, € Ko such that ¥(s) < ¥p(s) < s,
s € Ry, and
V(th x+1(te, x)) < Ui (V (L, %)), (3)

whenever (tg, x), (tk, x + I(tg,x)) € Ry x S¢(M)°, fork =1,2,...;
(T1.5) there exist constants X > 0 and i > 0 such that

trt1 Yily) g4
[ s [T < (4)
tr Y

cx(s)

where y > X\, k=1,2,....
The next result is on equi-Lagrange stability.
Theorem 2 The solutions of system (1) are equi-Lagrange stable if
(T2.1) system (1) is equi-bounded;

(T2.2) condition (T1.2) holds for V € vo(0) with inequality (2) being true for
all (t,x) € Ry x R™;

(T2.3) there exist functions ¥y € Ko such that inequality (3) holds, for all
(ty,x) ER4 x R™ and for all k =1,2,...;

(T2.4) there exist a constant p > 0 and functions Cy, € K such that Ci(s) <
cx(s) and C(s) > p> 0, for all s € Ry and for all k= 1,2,...;

(T2.5) inequality (4) holds, for all y > 0, and >_,—, vx = oo.
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Proof: To prove equi-Lagrange stability, we need to show that system (1)
is equi-attractive in the large in view of assumption (T2.1). For simplicity,
we set m(t) := V(t,x(t)), where x(t) = x(,t0,%0) is any solution of (1)
such that x(¢9) = x¢. Since system (1) is equi-bounded, the solution x(¢) =
x(,t0,%0) of (1) exists on [tg, 00), for all xg € R™. Since V € vp(0), we have
Dtm(t) = DYV (t,x(t)). By inequalities (2) and (3), we have

)
{ D+m(t) < p(t)ck(m(t))v t# 173 (5)
mtf) < Wg(m(ty)), k=1,2,....

Using (5), we obtain

m(t) d t el
| < [pos < [ o) v € gl (6)
ck(s)
mith) z z
and
m(tf) Ty (m(tr))
/ ds < / ds (7
er(s) — cx(s)
m(tx) m(tx)
Adding (6) and (7), we get, in view of (4),
m(t) J the1 Ty (m(te)) p
s s
< s)ds + / < —v. 8
| i< [ < (9
m(tx) tr m(tr)

With inequality (8), we conclude that m(t) < m(tx), for all t € (4x,tk41],
i.e., m(tg41) < m(ty). This means that the sequence {m(ty)},—, is non-
increasing. Furthermore, since the sequence is bounded from below, it follows
that the sequence possesses a limit, say £ > 0, as k& approaches infinity. We
shall prove £ = 0. Let us assume £ > 0 and try to reach a contradiction.
Using the fact that ¢ € Ko, Cx € K, Cx(s) < cx(s), for all s € Ry, and
m(tg) > m(tg41), for all k = 1,2, ..., we obtain

m(tk+1)c ()
k
‘ Ck(S) ds > m(tk‘l'l) - m(tk)a
m(tx)
for all k = 1,2,.... Thus for n > 1, we obtain
m(tn1) —m(ty) = mtng1) — mts) +m(tn) — ... + m(t2) — m(tq)
m(tnt1) m(t2)
< / Cn(ﬁ)ds—l—...—}— / Cl(ﬁ)ds
- cn(s) c1(s)
m(tn) m(t1
< _'YnCn(E) - 7n—10n—1(£) Teee T VICI(E)

= wCr(L).
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This implies, by conditions (T2.4) and (T2.5), that

n
mtng1) <m(tr) —p» 3 — =00
k=1

as n — oo, which is a contradiction. Therefore, we must have £ = 0, as we
claimed. On the other hand, m(t) < m(tx), for all t € (¢4, tx+1] and for all
k=1,2,.... Thus

lim m(¢) = 0.

t— 00

It follows that

tim [[x(1)]| = Jim b([[x()]]) = Jim m(t) = 0,

t—y oo t—o0

i.e., system (1) is equi-attractive in the large and hence it is equi-Lagrange
stable, as required. O

Now in order to apply the above theorems, we shall consider the following

system.
X = A)x+glo)+ BD), (£ 1 o)
Ax = Bpx,t=1tx, k=1,2,...,
where A(t) = (a;;(¢)) is an n x n continuous functional matrix, g and @

are continuous non-linear maps satisfying ||g(x)|| < L1||x|| and ||®(u(¢))]|] <
La|u(?)]], for some constants Ly, Ly > 0, u(t) is an arbitrary bounded control
function and By are n X n constant matrices for all k = 1,2, ....

Theorem 3 Solutions to system (9) are uniformly equi-bounded if the largest
eigenvalue of (I + BEY)(I + By), denoted by Mg, satisfies

Ak < exp(—2ay), (10)

forallk=1,2,...and for ||x(tg)|], ||x(¢x)+ Brx(tg)|| > M, for some M >0,
where ay := (1/2)[ye + leAg41] + 6, & > 0 are constants and {yx}3>, has
an upper bound, 0 < & < infy(yi + lxAgy1), Ak =tk —tg—1 > 1 >0, for all
k=2,3,..., and

= sup  p(t),
tE(tr trt1]
p(t) = max{f(t) + 2L1, 2L[[u ()]}

and
RN IR
5t = max $lais®+ 5D laa®)l+35 3 las®)] ¢+
2 i#i
where ¢i; = a;; + a;j;. Moreover, if i, = 1/k, for all k = 1,2,... and
®(u(t)) = 0, then system (9) is uniformly equi-Lagrange stable.
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Proof: We shall first prove that system (9) is uniformly equi-bounded by
achieving the conditions of Theorem 1. Let B := supy(ay), M := (exp(B) —
exp(8))/(exp(d) — 1) > 0, and V(¢,x) := V(x) = xT'x = |[[x||%. Choose
b(||x|]) = a(||x]|) = ||x||*>. The upper right derivative of V is given by

DV (x) = x"Q()x + [x"g(x) + g(x)"x] + [x" @(u(t)) + @(u(t))" ],
where Q(t) = (g;;(t)) :== A(t)T + A(t) is a symmetric matrix. Notice that

x'Qt)x = Z(h’j Tix; = Zq” x; +quw Tikj

ij=1 i=1 j=1

i£j
< Z|qu |=E +ZZ|q2] ||1 I]|
= 15#?
< Dlautolet+ 3 B0 (ot
’LZ]¢]1
n
= Z qu Z|qM Z Z qu I?
= i#i ~ Lizs
n
= Z lgii (1) + 5 Z lgar(t)] + 5 Z lg;i(t) 3322
= l;éz ]#z

n

2

< lrglaél lgis ()| + = Z lgi(t)| + 5 Z lq;i(?) Z; x;
1=

l;éz ];éz
= f(t) xTx,

for all + > 0. Moreover, x’ g(x) + g(x)Tx < 2L;xTx and ®(u(t))’x +
xT ®(u(t )) < 2Ls||u(t )||(x x)/2. This implies that

DtV (x) < f)xTx42L1xTx + 2Ls|[u(t)||(xTx)"/?
[£(8) + 2L1] V (x) + 2La|[u(t)]|(V(x)) /2
mas {f(1) + 201, 2Ll a(t) [} {V () + V()'/?}
p(t)e(V(x)),

where ¢(s) := s+5'/2. Clearly p € PC and ¢ € K. Thus conditions (T1.1) and
(T1.2) are satisfied over Ry x R™. Now if ||x(tx)|| < M, then, by inequality
(10), we have

|Pe(tx) + Bix ()| < [T+ Bl [Ix(tx)|] < exp(—ax) M < exp(—-d)M =: N,

for k =1,2,..., and thus condition (T1.3) is also satisfied. Define the map-
ping ¥ (s) as follows.

U (s) := exp(—2ay)s, forall s > 0. (11)

IA
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Clearly ¥g(s) < s for all s > 0, and Ug(s) > (1/2)exp(—2B)s =: ¥(s),
for all s > 0. i.e., ¥(s) < Ui(s) < s. Furthermore, by inequality (10), for
[|x(tx) + Brx(tx)|| > M, we have, for k =1,2,...,

V(x(ts) + Brx(tx)) (x(t) + Bix(tx))" (x(tr) + Bex(tx))
x(ty)" (I + B )(I 4 Br)x(ty)
)\kx(tk)Tx(tk)
exp(—2au)|[x(tx)
Uy (V(x(tk)))-

This implies that condition (T1.4) is satisfied. In addition,

ds ) 1/2
/mzzln(l—i—s/).

I”

HIAIA

It follows that, for £k = 1,2,...,

1 T (y) s - \Il;/z(y)

/ p(s)ds + / P = LpApy1+21In W]

tr Yy .
= lApy1+2In [1 + eiq—)i—(;la/;;)yl/z
= —y —25+2In [expia:)y;;j/l”]

Notice that exp(ax) < exp(B) and the function

exp(B) + yl/z]

h(y) :=In [ 1+ yl/2

is a decreasing function of y, for all y¥ > 0. This implies, for y > X := M?,
that

trkt1 Ui (y) 4
S . P 2
73 Y

exp(d)(exp(B) — 1)

= —vp—26+21
Tk tem exp(B) — 1

= —’yk—2(5+2(5:—’)‘k

for every y > A := M?. Thus condition (T1.5) is satisfied. We therefore
conclude that system (9) is uniformly equi-bounded as desired. It remains
to show, with the choices of v, = 1/k, for all k = 1,2..., and ®(u(t)) =0,
that system (9) is uniformly equi-Lagrange stable. This is done by applying
Theorem 2 as follows. The upper right derivative of V(x), in this case,
satisfies

D*V(x) [£(t) + 2La][x]]?
p(t)e(V (x)),

A
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where p(t) := f(t) + 2L1 and ¢(s) := s. Thus, by employing the mapping
U (s), defined by (11), for all & = 1,2,..., we conclude that conditions
(T2.1), (T2.2), (T2.3) and (T2.4) are all satisfied. Moreover, for k =1,2,...,

tet1 Ui (y)

/5(5)ds+ / ;(l—;gzmkﬂﬂn[

for all y > 0. Therefore condition (T2.5) is also satisfied. This implies, by
Theorem 2, that system (9) is equi-Lagrange stable. O
It should be mentioned that, in the proof of Theorem 3, we may conclude
that the smaller the ||®(u(¢))||, the smaller the upper bound on ||x(t)||, for
all t > to+T, for some T > 0. This is due to the fact that when ||®(u(¢))|| =
O(e), for some ¢ > 0, then c(s) = s + es'/2, i.e., s'/2 becomes significantly
smaller than s. This implies that inequality (4) will enforce a very small
upper bound on the solutions of (9) starting from time to + T.

Vi (y)
y

i| < — Yk

73 Y

3 Lorenz Chaotic System

This section demonstrates how equi-Lagrange stability is an integral factor
in illustrating the robustness of impulsive synchronization between two non-
identical chaotic systems by formulating the following example.

Consider the driving system given by this Lorenz chaotic system

—c o 0 0 0
x = r —1 0 x+ | —zz | + 0 , (12)
0 0 -b 0 Ty

where o, and b are suitable positive constants. Whereas the driven system
is a non-identical Lorenz chaotic system which is driven by the signal —zz
and is given by

-0 o 0 0 —pu
u= r —1 0 u-+ —xz + —vv , tF£ )
0 0 —b 0 uv (13)

Au:—Bke, t:thk’:l,Z,...,

where u, v > 0 are constants and e = x —u. It follows that the error dynamics
is give by

—oc o 0 0 pu
e= r -1 0 e+ 0 + | vv |, t#t

0 0 b Ty — uvw 0 (14)
Ae:Bke, t:tk,Vk:1,2,...,

Let
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0.0a o0.08 0.1

0.06
time (sec)

Figure 1: Error dynamics e with 4 = v = 0 and B, = —diag(0.02,0.06,0.01).

o EY 2 3 7 8 ) 10

5
time (sec)

Figure 2: Error dynamics e with 4 = v = 0.01 and B; = —diag(0.5, 0.33,0.2).

and take V(e) := eT'e, we obtain
DtV(e) = e'Qe+2(xy— uv)es + [(pu,vv,0)e+ e’ (uu,vv, 0)7],

where @ := AT + A. Let d be the largest eigenvalue of @ and L = max(y, v).
Notice that

2(zy — uv)es 2|zy — uvl|es|
2|z |ly = vl + |v]|lz — ul]|es]
2|z|lezes| + 2[v]leres| + €3
|z|(e3 + €3) + vl(ef + €3) + €3
(lz] + [vl + D)]le]].

[VANVANVANVANVAN

Thus
DtV (e) (d+ ||+ |v| + 1)eTe + 2Lvu? + v? (eTe)'/?

<
< max {(d+ |o| + |ol + 1), 2L /ul0) +v{1) | [e”e + (e e)!?]

Let p(t) = maxier, {(d—l— |z] + o] + 1), 24/u(t)? + 1,(15)2} and ¢(s) = s+

s'/2. We may conclude, by imposing the conditions of Theorem 3 on the

matrices By, for all £ = 1,2,..., that the error dynamics, described in sys-
tem (14), is uniformly equi-bounded. Furthermore, choosing v; = 1/k, for
all £ = 1,2,..., and letting p = v = 0, we can also conclude that system

(14) is uniformly equi-Lagrange stable. Note that if 4 and v are chosen such
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Figure 3: Error dynamics e with 4= v = 1 and By = —diag(0.5,0.6,0.2).
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Figure 4: Error dynamics e with g = v = 0.01 by implementing the masking
method proposed in [2].

that 0 < p,v << 1, then impulsive synchronization shows very robust re-
sults as illustrated in the following examples. In these numerical examples,
a forth order Runge-Kutta method with step size 1075 is used. More-
over, we choose the values of the parameters and the initial conditions to
be o = 10, r = 28, b = 8/3, Ay = A = 0.002, (2o, Yo, z0) = (1.12,—1,0.5)
and (ug, vo, wg) = (2.7,—2.1,2.502). Thus starting with the first and sim-
plest case when y = v = 0 and By = B = —diag(0.02,0.06,0.01), we obtain
Figure 1 which shows how the error dynamics components reach zero in a
small finite time given by 0.1. In the second example, we take p = v = 0.01
and By = B = —diag(0.5,0.33,0.2). The impulsive synchronization, in this
case, is achieved as shown in Figure 2. We can see from the above examples,
impulsive synchronization exhibits a very robust behaviour towards param-
eter mismatch. In fact, with relatively large differences in parameters, the
performance of this model is still acceptable. For example, in the case when
¢ = v =1, the simulation of this model is shown in Figure 3, where the error
is of the order of 0.003 starting from time ¢ = 8 seconds (it is even smaller
for time ¢ < 8 seconds). This promising behaviour indicates that in practice,
the condition p, v << 1 can be relaxed and still reach desirable results. In
comparison with the method of chaotic masking proposed by Cuomo and
Oppenheim in [2], this robust behaviour fails completely as shown clearly in
Figure 4, where the error is of the order of 0.02 for y = v = 0.01.
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% v
x ol SO, u
m(t)+z=z(t)
z ww
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Figure 5: Chaotic masking-modulation of m(t).
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Figure 6: Proposed cryptosystem.

4 Applications to Secure Communication

We are interested in applying the results from Section 3 to design a robust
cryptosystem that combines masking and modulating methods with impul-
sive synchronization. The proposed cryptosystem contains two chaotic sys-
tems x and u, not necessarily identical, which are used to mask-modulate
and unmask the message signal m(t), respectively. As shown in Figure 5,
one chaotic system x = (z,y,2)T is at the transmitter end and the other
u = (u,v,w)? is at the receiver end. = The masking-modulating process
of m(t) is done through two operations: addition and multiplication, viz.
F(@t) :=e(m(t)) = z(t)(m(t) + z(t)), where f(t) is the encrypted signal that
will be used to drive the chaotic system u at the receiver end.

Figure 6 shows the cryptosystem structure which is similar to the one in
[15]. The message signal is encrypted using the above scheme to generate f(¢).
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Figure 7: Accuracy of the decryption process. (a) Original message mq(¢).
(b) Decrypted message mq(t) for p = v = 0. (c) Decrypted message m; ()
for p = v =0.01.
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amplitude

o 2 4 oo 6 8 10
time (sec,
Figure 8: Accuracy of the decryption process. (a) Original message mg(#).

(b) Decrypted message my(t) for p = v = 0.01.
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s(t) is the transmitted signal; it consists of a sequence of time frames of length
T. Each time frame is divided into two regions: Synchronizing-impulses
region of length ), where the impulses are loaded, and the encryption region
of length T'— @, where f(t) is loaded. The two regions are combined at the
transmitter and then sent across a public channel to the receiver. At the
receiver, each time frame of s(t) is decomposed into the encrypted message
f(t) and the synchronizing impulses. At this point, f(¢) is used to drive the
system u, whereas the impulses are used to impulsively synchronize u with
x. When synchronization is achieved, we have v(¢) ~ y(¢) and w(t) ~ z(t).
Thus, the decryption process becomes feasible and these two signals, v(¢) and
w(t) may be used to recover the original message in the following way

(1) — _ I
m(t) (1) = d(f0)) = L3 — wio.

As an example of the above scheme, we shall try to encrypt the message
signals given by my(¢) = 0.02sin(¢) sin(100¢) which possesses high frequency
and then we shall do the same for the message signal my(t) = 2sin(4t) which
possesses small frequency. This will be done using the two chaotic systems x
and u given by (12) and (13), respectively. We shall start first with m4 (¢) and
with the case when p = v = 0 and By = B = —diag(0.1, 0.06,0.02), for all
k =1,2,.... The simulations of the original message m1 (¢) and the decrypted
message my(t) are shown in Figures 7(a) and 7(b), respectively. Moreover,
and most importantly, in the case when p,v = 0.01, the encryption and the
decryption of my(¢) show excellent and very accurate results in comparison
with masking method proposed in [2], as shown in Figure 7(c). Accurate
results are also obtained for the low frequency-large amplitude signal mg (%),
as shown in Figure 8. i.e., this scheme is more robust and performs equally
well with low-frequency and high-power-level type of messages.

5 Conclusion

We have demonstrated that impulsive synchronization of two chaotic systems
is very robust towards parameter mismatch between them. The robustness
is useful in desgning chaos based cryptosystems.
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