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Three different forms of impulsive T–S models are discussed in this paper; the first one is
described by a nonlinear impulsive control system represented by T–S model, while the
second one is expressed as a state feedback impulsive control plant and the third one is
depicted by a hybrid system. A simple and unified Lyapunov-based stability criterion is
proposed to guarantee the exponential stability of closed-loop impulsive fuzzy systems.
Such criterion is expressed in the form of linear matrix inequalities and the corresponding
design algorithms are presented. Several numerical simulations are shown to demonstrate
how the proposed controllers can stabilize these impulsive fuzzy systems.
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1. Introduction

It has been shown recently that fuzzy-logic is a successful control methodology, quite effective in controlling plants that
are complex, uncertain and ill-defined, with well-developed qualitative design methods available in the literature. Since the
work of Tanaka and Sugeno [1] on the stability of state feedback controllers, there has been an extensive research effort in
developing system theory for various types of T–S models (see [1–11 and the references therein). Impulsive control, on the
other hand, has been a very promising technique for stabilizing chaotic systems using only small control impulses. It offers
a direct method to modulating digital information onto a chaotic carrier signal for spread spectrum applications (see [12–
15 and the references therein). More recently, a novel model based on T–S models and impulsive systems has been developed.
It has been found out that the local dynamics of this type of impulsive T–S models at different regions of the state space can be
described by linear impulsive systems. The basic idea of such models is that impulsive plant is introduced into a nonlinear
system represented by fuzzy T–S model and the overall behavior of the system is regulated by fuzzy blending of these linear
impulsive models. For example, in [16,17], the unified control approaches that integrated intelligent fuzzy logic methodology
and impulsive control have been presented for controlling a class of chaotic systems. In [20], methods based on the classical
Razumikhin technique have been applied to obtain criteria for uniform stability and uniform asymptotic stability of T–S fuzzy
delay systems with impulses. An interesting application of this theory to the impulsive synchronization of T–S fuzzy models
by using continuous chaotic systems has been conducted in [18], while in [19], a criterion for the exponential stability of cha-
otic systems impulsively controlled by fuzzy T–S models have been also derived. In [21], authors have proposed an impulsive
control scheme for discrete T–S fuzzy systems. The main advantage of these impulsive fuzzy models is that it can tackle var-
ious stability properties of nonlinear systems by combining impulsive control techniques with fuzzy logic methodology.

It is important to point out that the models discussed in [16–19,21] are restricted to chaos control and lack generality. The
lack of generality is due to the fact that an input-free variable has to be imposed on the special plant discussed in [16–21].
. All rights reserved.
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Moreover, if there exist some external input terms in these practical systems or if the plant itself is impulsive, the results of
[16–21] become inapplicable. The conditions obtained are concerned with asymptotic stability, more conservative and do
not translate into LMIs (except for one result in [16,19] which has an LMI form and applies only to special cases). It is quite
essential to analyze exponential stability of these models due to its fast convergence and desirable accuracy when compared
to asymptotic stability.

Motivated by the results in [16–21], we develop three different forms for impulsive fuzzy model and construct here a
unified control design methods for the proposed model, where both fuzzy dynamic models and impulsive techniques are
used. The main contributions of this paper can be summarized as follows: (1) First, we extend the impulsive fuzzy T–S model
in [16–21] to a more generalized form in which wither (a) the control input are impulses, (b) the system plant itself is impul-
sive, or (c) the whole system is expressed as a hybrid system (Section 2). (2) Second, we derive sufficient conditions for
unified exponential stability of three different forms of the impulsive fuzzy model by using PDC techniques, some of which
are cast as LMIs (Section 3.1). (3) Finally, we design several iterative algorithms aimed at stabilizing these impulsive fuzzy
systems based on the proposed criteria for exponential stability (Section 3.2). These algorithms are based on a set of LMIs
that are easily solvable numerically by using commercially available software.
2. Preliminaries

Consider the following nonlinear system with both impulsive effects and external inputs represented by T–S fuzzy model.
Plant Rule i: IF z1(t) is Mi1, . . ., zp(t) is Mip.
Please
system
THEN

_xðtÞ ¼ AixðtÞ þ BiuðtÞ t – sk;

Dxjt¼sk
¼ xðtþk Þ � xðt�k Þ � Uiðk; xÞ t ¼ sk; i ¼ 1;2; . . . ; r; k ¼ 1;2; . . . ;

xðtþ0 Þ ¼ x0;

8><
>: ð1Þ
where z1(t) � zp(t) are the premise variables, Min is the fuzzy set and r is the number of IF–THEN rules, x(t) 2 Rm is the state,
u(t) 2 Rm denotes the input variable, Ai 2 Rn�m, Bi 2 Rn�m, and the discrete set of impulsive moments {sj} satisfies
0 6 s0 < s1 < s2 < � � � < sk < skþ1 < � � � ; sk !1 as k!1:
Remark 1. According to (1), we have three possible cases to consider: Either (a) u(t) = 0 and the impulses are controller to be
designed, (b) impulses are viewed as impulsive perturbations and u(t) is an external control input, or (c) the impulses and
u(t) are viewed as hybrid controllers to be designed. In the following, we present a unified theory to deal with the three cases.

By using a singleton fuzzifier, product inference and a center-average defuzzifier, the following dynamic model can be
obtained from (1).
_xðtÞ ¼
Pr
i¼1

hiðzðtÞÞfAixðtÞ þ BiuðtÞg; t – sk;

Dx ¼
Pr
i¼1

hiðzðtÞÞUiðtk; xÞ; t ¼ sk;

xðtþ0 Þ ¼ x0;

8>>>>><
>>>>>:

ð2Þ
where z(t) = [z1(t), z2(t), . . . ,zp(t)] is the premise vector, hiðzðtÞÞ ¼ wiðzðtÞÞ=
Pr

i¼1wiðzðtÞÞ for all t, wiðzðtÞÞ ¼Qp
n¼1MinðzkðtÞÞ;

Pr
i¼1wiðzðtÞÞ > 0;wiðzðtÞÞP 0; i ¼ 1;2; . . . ; r;Mik is the fuzzy set (i = 1,2, . . . ,r,k = 1,2, . . . ,p). From these formu-

las we have
Pr

i¼1hiðzðtÞÞ ¼ 1;hiðzðtÞÞP 0; i ¼ 1;2; . . . ; r.
In terms of the conventional PDC technique, the input variables satisfy the following rules.
Rule i: IF z1(t) is Mi1, . . ., zp(t) is Mip,
THEN uðtÞ ¼ �KixðtÞ: ð3Þ
According to the defuzzifying method applied on (1), state feedback control law (3) becomes
uðtÞ ¼ �
Pr

i¼1wiðzðtÞÞKixðtÞPr
i¼1wiðzðtÞÞ

¼ �
Xr

i¼1

hiðzðtÞÞKixðtÞ: ð4Þ
Substituting (4) into (2) yields a closed-loop system described by the state space model
_xðtÞ ¼
Pr
i¼1

Pr
j¼1

hiðzðtÞÞhjðzðtÞÞðAi � BiKjÞxðtÞ; t – sk;

Dx ¼
Pr
i¼1

hiðzðtÞÞUiðtk; xÞ; t ¼ sk:

8>>><
>>>:

ð5Þ
cite this article in press as: Zhang X et al. Analysis and design for unified exponential stability of three different impulsive T–S fuzzy
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Let f ðt; xÞ ¼
Pr

i¼1

Pr
j¼1hiðzðtÞÞhjðzðtÞÞðAi � BiKjÞxðtÞ and Ikðtk; xÞ ¼

Pr
i¼1hiðzðtÞÞUiðtk; xÞ, thus f(t,0) = 0, Ik(t,0) = 0. Moreover,

by letting f(t,x) satisfy Lipschitz condition, then system (5) admits the trivial solution.

Remark 2. In (5), only if Kj = 0, we may think of (5) as the first case. Hence, we think of (5) extending the existing impulsive
fuzzy systems.

Definition 1. Let V:R+ � Rn ? R+, then V is said to belong to class m0, if

(i) V is continuous in (sj�1,sj] � Rn and for each x 2 Rn; j ¼ 1;2; . . . ; limðt;yÞ!ðsþ
j
;xÞVðt; yÞ ¼ Vðsþj ; xÞ exists.

(ii) V is locally Lipschitz in x.
Definition 2. For (t,x) 2 (sj�1,sj] � Rn, we define
Please
system
DþVðt; xÞ � lim
h!0þ

sup
1
h
fV ½t þ h; xþ hf ðt; xÞ� � Vðt; xÞg:
Definition 3. k � kdenotes the Euclidean norm on Rn.

Definition 4. The trivial solution of system (5) is said to be exponentially stable, if for any initial data x(t0), there exists an
a > 0, and for every e > 0, there exists d = d (e) > 0 such that kx(t, t0,x(t0)k < exp(�a(t � t0)), for all t P t0 P 0.
3. Main results

In this section, we shall initially state and prove the general results of system (5), then give suitable design methods to
stabilize (5).

3.1. Stability criterion

Theorem 3.1. Assume that there exist V 2 v0, constants p, a, l, c, c1, c2 > 0, dk P 0, k 2 N, such that

(i) c1kxkP
6 V(t,x) 6 c2kx kP, t 2 R+, x 2 Rn;

(ii) for each k 2 N and x 2 Rn;Vðtk; xþ Ikðtk; xÞÞ 6 dkVðt�k ; xÞ;
(iii) for all t 2 ½sk�1; skÞ; k 2 N; _Vðt; xÞ 6 cVðt; xÞ;
(iv) for any k 2 N, 0 < sk+1 � sk 6m, lndk 6 �(a + c)m.

Then the trivial solution of (5) is exponentially stable.

Proof. Let xðtÞ¼D xðt; t0; x0Þ be any solution of (5) whose initial condition satisfies the inequality kx(t0)k < d. For any given
e 2 (0,1], choose d = d(e) > 0, such that c2d

q < c1eq exp(�(a + c)m).
From condition ðiiiÞ; we have vðtÞ 6 vðsk�1Þ expð�cðt � sk�1ÞÞ; for t 2 ½sk�1; skÞ; k 2 N: ð6Þ
We shall prove that v(t) < c1eq exp(�(a + c)km)exp(c(t � t0)), and kxðtÞk < e exp � a
q ðt � t0Þ

� �
, for any t 2 [sk�1,sk), k 2 N.

For k = 1, we have, according to conditions (i) and (iv),
vðtÞ 6 vðt0Þ expðcðt � t0ÞÞ 6 c1eq expð�ðaþ cÞmÞ expðcðt � t0ÞÞ;
thus
kxðtÞkq
6

1
c1

vðtÞ 6 eq expð�ðaþ cÞmÞ expðcðs1 � t0ÞÞ 6 eq expð�aðt � t0ÞÞ; t 2 ½s0; s1Þ:
Hence
kxðtÞk 6 e expð�aðt � t0Þ=qÞ; t 2 ½s0; s1Þ: ð7Þ
Let’s now apply mathematical induction. Suppose that (6) holds for k = j, i.e.,
vðtÞ < c1eq expð�ðaþ cÞjmÞ expðcðt � t0ÞÞ; and

kxðtÞk < e exp �a
q
ðt � t0Þ

� �
; for t 2 ½sj�1; sjÞ; j P 2:

ð8Þ
Now let’s prove that (8) holds for k = j + 1. From condition (i) and (8), we have for t 2 [sj�1,sj)
cite this article in press as: Zhang X et al. Analysis and design for unified exponential stability of three different impulsive T–S fuzzy
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Please
system
kxðtÞkq
6

1
c1

vðtÞ 6 eq expð�ðaþ cÞjmÞ expðcðsj � t0ÞÞ:
Thus kx(t)k 6 eexp(�(a + c)jm/q)exp(c(sj � t0)/q). By condition (ii), we obtain v(sj) 6 djc1eqexp(�(a + c)jm)exp(c(sj � t0)). It
follows that according to condition (ii), we have
vðsjÞ 6 djc1eq expð�ðaþ cÞjmÞ expðcðsj � t0ÞÞ
6 c1eq expð�ðaþ cÞðjþ 1ÞmÞ expðcðsj � t0ÞÞ:

ð9Þ
By (6) and (9) and for t 2 [sj,sj+1), we get v(t) 6 v(sj)exp(c(t � sj)) < c1eqexp(�(a + c)(j + 1)m)exp(c(t � t0)). Thus
kxðtÞkq
6 eq expð�ðaþ cÞðjþ 1ÞmÞ expðcðt � t0ÞÞ 6 eq expð�ðaþ cÞðjþ 1ÞmÞ expðcðsjþ1 � t0ÞÞ
6 eq expð�ðaþ cÞðjþ 1ÞmÞ expðcðjþ 1ÞmÞ 6 eq expð�ðjþ 1ÞamÞ
6 eq expð�ðsjþ1 � sj þ sj � sj�1 þ � � � þ s1 � t0ÞaÞ 6 eq expð�ðsjþ1 � t0ÞaÞ
6 eq expð�ðt � t0ÞaÞ; t 2 ½sj; sjþ1Þ
which implies that (8) holds for k = j + 1. In other words, (8) holds for all k 2 N. Hence kxðtÞk 6 ee�aðt�t0Þ=q, for t P t0, i.e., the
trivial solution of system (5) is exponentially stable. h

Remark 3. The results obtained here are applicable to the three cases discussed earlier. In fact, condition (iii) allows
_VðtÞ > 0, for all t 2 R+, which means that the nonlinear fuzzy T–S model, may be unstable. In other words, the impulses made
the underlying system become stable.

In order to obtain the stability design algorithm for (5), we shall assume, without loss of generality, that Ui(tk,x) = Dikx. It
should be noted here that

Pr
i¼1hiðzðtÞÞDi;kxðtÞ is the complex nonlinear term that may have impulsive structure. Therefore,

let’s rewrite (5) as
_xðtÞ ¼
Pr
i¼1

h2
i ðzðtÞÞGiixðtÞ þ 2

Pr
i<j

hiðzðtÞÞhjðzðtÞÞ
GijþGji

2

� �
xðtÞ; t – sk;

Dx ¼
Pr
i¼1

hiðzðtÞÞDi;kxðtÞ; t ¼ sk;

8>>><
>>>:

ð10Þ
where Gij = Ai � BiKj (i = 1, 2, . . . ,r, j = 1, 2, . . . ,r).

Theorem 3.2. If there exist a positive definite symmetric matrix P and constants c, a > 0, such that

(i) GT
iiP þ PGii � 1

2 cP < 0; i ¼ 1;2; . . . ; r; j ¼ 1;2; . . . ; r;

(ii) ðGij þ GjiÞT P þ PðGij þ GjiÞ � 1
2 cP < 0; i ¼ 1;2; . . . ; r; j ¼ 1;2; . . . ; r;

(iii) for any k 2 N,0 < sk+1 � sk 6m, ln(dk) 6 �(a + c)m, where dk ¼ kmaxðPÞmax16i6rfkðIþDikÞkg
kminðPÞ

,

then the trivial solution of system (10) is exponentially stable.

Proof. Choose the Lyapunov function V(t,x) = x(t)TPx(t), where P > 0, for t – sk. In this case,
DþVðt; xÞ ¼
Xr

i¼1

h2
i ðzðtÞÞxðtÞ

TðGT
iiP þ PGiiÞxðtÞ þ 2

Xr

i<j

hiðzðtÞÞhjðzðtÞÞxðtÞT
Gij þ Gji

2

� �T

P þ P
Gij þ Gji

2

� �" #
xðtÞ: ð11Þ
By applying conditions (i) and (ii), and noting that 0 6 hi(z(t)) 6 1 and
Pr

i¼1hiðzðtÞÞ ¼ 1, we get D+V(t,x) 6 cV(t,x).
For t = sk,
V tþk ; xðtkÞ þ
Xr

i¼1

hiðzðtÞÞDikxðtkÞ
 !

¼ xðtkÞ þ
Xr

i¼1

hiðzðtÞÞDikxðtkÞ
" #T

P xðtkÞ þ
Xr

i¼1

hiðzðtÞÞDikxðtkÞ
" #

¼ xðtkÞT I þ
Xr

i¼1

hiðzðtÞÞDik

 !T

P I þ
Xr

i¼1

hiðzðtÞÞDik

 !
xðtkÞ 6 kmaxðPÞkI þ

Xr

i¼1

hiðzðtÞÞDikkkxðtkÞk

¼ kmaxðPÞ
Xr

i¼1

hiðzðtÞÞkðI þ DikÞk
 !

kxðtkÞk 6
kmaxðPÞmax16i6rfkðI þ DikÞkg

kminðPÞ
Vðtþk ; xðtkÞÞ ¼ dkVðtþk ; xðtkÞÞ:

ð12Þ
According to Theorem 3.1, (11) and (12), it follows that the trivial solution of system (10) is exponentially stable.
cite this article in press as: Zhang X et al. Analysis and design for unified exponential stability of three different impulsive T–S fuzzy
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Remark 4. According to condition (iii), an upper bound on the time interval between two consecutive impulses is the only
required quantity to be known.

When Di,k = D, then the impulsive term in (10) becomes linear. In this case, we have the following simple result.

Corollary 3.1. If there exist a positive definite symmetric matrix P and constants c,a > 0, such that

(i) GT
iiP þ PGii � 1

2 cP < 0; i ¼ 1;2; . . . ; r; j ¼ 1;2; . . . ; r;

(ii) ðGij þ GjiÞT P þ PðGij þ GjiÞ � 1
2 cP < 0; i ¼ 1;2; . . . ; r; j ¼ 1;2; . . . ; r;

(iii) for any k 2 N, 0 < sk+1 � sk 6m, lnd 6 �(a + c)m, where d ¼ kmaxðPÞkIþDk
kminðPÞ

,

then, the trivial solution of system (10) is exponentially stable.

It should be mentioned here that conditions (i) and (ii) of Theorem 3.2 and Corollary 3.1 are not convex optimization con-
ditions, therefore we may define X = P�1, Mi = KiX, and multiply conditions (i) and (ii) by X, to obtain
Please
system
XAT
i þ AiX �MT

i BT
i � BiMi � cX=2 < 0; ð13Þ

XAT
i þ AiX þ XAT

j þ AjX �MT
j BT

i � BiMj �MT
i BT

j � BjMi � cX=2 < 0: ð14Þ
Obviously, (13) and (14) are linear matrix inequalities with respect to X and Mi. Thus we may transform inequalities (13) and
(14) into the following general eigenvalue problem.
Maximize
X;M1 ...Mr

c

subject to X > 0
XAT

i þ AiX �MT
i BT

i � BiMi � cX=2 < 0
for all i and i < j

XAT
i þ AiX þ XAT

j þ AjX �MT
j BT

i � BiMj �MT
i BT

j � BjMi � cX=2 < 0:

8>>><
>>>:

ð15Þ
When (1) is external-input-free, i.e., (1) is a fuzzy system with impulsive control input, we have the following expression.
_xðtÞ ¼
Pr
i¼1

hiðzðtÞÞAixðtÞ; t – sk;

Dx ¼
Pr
i¼1

hiðzðtÞÞDi;kxðtÞ; t ¼ sk:

8>>><
>>>:

ð16Þ
Corollary 3.2. If there exist a positive definite symmetric matrix P and constants c, a > 0, such that

(i) AT
i P þ PAi � 1

2 cP < 0; i ¼ 1;2; . . . ; r; j ¼ 1;2; . . . ; r;

(ii) for any k 2 N, ln(dk) 6 �(a + c)m, where dk ¼ kmaxðPÞmax16i6rfkðIþDikÞkg
kminðPÞ

,

then, the trivial solution of system (16) is exponentially stable.
3.2. Algorithm design

In the following procedure, we shall distinguish between the three previously discussed cases in order to develop a
stabilizing design algorithm for (1).

Case 1. System (1) has no external continuous input and the impulses are regarded as control input. In this simple case,
we choose the control gain matrix Di,k to satisfy Corollary 3.2, in such a way that max16i6r{k(I + Dik) k} 6 kmin(P)e�(a+c)l/
kmax(P), where P is the solution to condition (i) of Corollary 3.2.
Case 2. System (1) contains both the impulses and external continuous control inputs. In other words, system (1) is a
hybrid system containing both continuous and impulsive control inputs. According to Theorem 3.2 or Corollary 3.1,
we have the following design procedure.
Step 1. Initialize constant a and c.
Step 2. By (13) and (14), figure out common P and state feedback matrix Ki.
Step 3. By condition (iii) of Theorem 3.2, an estimate on Di,k is obtained by applying

max
16i6r
fkðI þ DikÞkg 6 kminðPÞe�ðaþcÞl=kmaxðPÞ:
cite this article in press as: Zhang X et al. Analysis and design for unified exponential stability of three different impulsive T–S fuzzy
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Case 3. System (1) is itself impulsive, with external continuous control input. In this case, the state feedback matrix K is
the control matrix to be designed, while Di,k and l are given in advance. Without loss of generality, we let P to be a scalar
matrix, i.e., kmin(P) = kmax(P). Then, we have

Step 1. By condition (iii) of Theorem 3.2, provide an estimate for (a + c), by using the inequality 0 < (a + c) < �ln(dk)/m.
Step 2. By Step 1, choose two positive constant a and c.
Step 3. By (13) and (14), figure out Ki.

4. Simulation experiments and discussions

We shall consider here the Lorenz system with impulses and external input terms, given by
Fig. 1.
control

Please
system
_x1ðtÞ ¼ �10x1ðtÞ þ 10x2ðtÞ þ u1ðtÞ;
_x2ðtÞ ¼ 28x1ðtÞ � x2ðtÞ � x1ðtÞx3ðtÞ þ u1ðtÞ; t – sk;

_x3ðtÞ ¼ x1ðtÞx2ðtÞ � 8
3 x3ðtÞ þ u1ðtÞ;

Dx1ðtÞ ¼ x1ðtÞ � d11x1ðtÞ;
Dx2ðtÞ ¼ x2ðtÞ � d22x2ðtÞ;
Dx3ðtÞ ¼ x3ðtÞ � d33x3ðtÞ; t ¼ sk;

8>>>>>>>><
>>>>>>>>:

ð17Þ
where dii (i = 1,2,3) are the quantities to be estimated. Assume that x1(t) 2 [�d,d] and d > 0. Then the impulsive fuzzy control
model is given by

Plant Rule i: IF x1(t) is Mi.
THEN

_xðtÞ ¼ AixðtÞ þ BiuðtÞ; t – sk;

Dxjt¼sk
¼ xðtþk Þ � xðt�k Þ � DixðtÞ; t ¼ sk;

xðtþ0 Þ ¼ x0;

8><
>: i ¼ 1;2; k ¼ 1;2; . . . ð18Þ
where
A1 ¼
�10 10 0
28 �1 �d
0 d 8=3

2
64

3
75; A2 ¼

�10 10 0
28 �1 d
0 �d 8=3

2
64

3
75; Di ¼

d11 0 0
0 d22 0
0 0 d33

2
64

3
75;
i ¼ 1;2: M1ðx1ðtÞÞ ¼ 1
2 1þ x1ðtÞ

d

� �
;M2ðx1ðtÞÞ ¼ 1

2 1� x2ðtÞ
d

� �
, and let d = 30.

We shall discuss the stability of system (18) according to the three cases mentioned above.

Case 1. Let Bi = 0. In this case, the impulses represent the control input of (18), and dii(i = 1,2,3) are the quantities to be

estimated. Let m < 0.02, c = 25 and a = 10. According to Corollary 3.1, we have P ¼
0:0146 0:00730:0000
0:0073 0:0243� 0:000
0:0000 �0:00000:0206

2
4

3
5;

kmax ¼ 0:0282; kmin ¼ 0:0107 and max16i6r{k1 + diik} 6 kmin (P)e�(a+c)m/kmax(P) = 0.1881. Thus we may choose
d11 = d22 = d33 = �0.82. So condition (ii) of Corollary 3.2 holds.
Phase and state diagrams of impulsive fuzzy system. (a) Phase diagram of system without any control. (b) State diagram of system under impulsive
.
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Fig. 1(a) and (b) show the phase diagrams of (18) without any control input and the time series of the solution under
impulsive control, respectively. We could see from clearly from (b) that the solution trajectories of (18) exponentially
converge to the equilibrium.
Case 2. We regard (18) as a hybrid system with two control inputs, one is impulsive, while the other is continuous. Let Bi

be a unit matrix and let c = 0.5, a = 20 and m < 0.02. According to (13) and (14), we have

P¼
0:0083 0:0000 �0:000
0:0000 0:0083 0:000
�0:0000 0:0000 0:0083

2
64

3
75; K1¼

�9:8571 1:4376 19:1755
36:5624 �0:8571 �47:9458
�19:1755 47:9458 �2:5238

2
64

3
75; K2¼

�9:8571 20:1041 �2:0792
17:8959 �0:8571 �0:0041
2:0792 0:0041 �2:5238

2
64

3
75

max16i6r{k1 + diik} 6 kmin(P)e�(a+c)m/kmax(P) = 0.8106. Thus we may choose d11 = d22 = d33 = �0.2. It follows that, in this
case, control conditions become less conservative.
Fig. 2(a) shows the time series of system (18) under a state feedback control input and without impulsive control.
Although the conditions of Corollary 3.1 hold, Fig. 2(a) clearly demonstrate that system (1) is unstable. On the other hand,
Fig. 2(b) shows that the solutions trajectories are exponentially stable in the hybrid case.
Case 3. The plant itself is impulsive with strictly continuous control input. In this case, we need to design a state feedback
control. It is important to point out that m, dii and l of (18) are constants. Let Bi be a unit matrix, and m > 0.2,
d11 = d22 = d33 = �0.9. Although the impulsive intervals are not large (0.2 and 1, respectively), Fig. 3 (a) and (b) show that
the solutions trajectories are unstable due to the absence of state feedback control. For d = kI + Dk = 0.1, we choose m = 1.
Since 0 < a + c < �ln(0.1)/m = 2.3026, we let c = 0.000005, which implies that 0 < a < lnd/m � c = 2.3026. In other words,
there exists an a such that condition (iii) of Theorem 3.1 or Corollary 3.1 holds. In term of (13) and (14), we have

P¼
0:0212 �0:0000 �0:0000
�0:0000 0:0212 0:0000
�0:0000 0:0000 0:0212

2
64

3
75; K1 ¼

�9:6667 �8:1350 �0:1237
46:1350 �0:6667 0:6432
0:1237 �0:6432 �2:3333

2
64

3
75; K2¼

�9:6667 23:1203 4:7925
14:8797 �0:6667 0:0024
�4:7925 �0:0024 �2:3333

2
64

3
75:

Fig. 3(c) shows the solutions trajectories of (18) under state feedback control input converging exponentially to zero.
Fig. 2. State diagram of impulsive fuzzy system. (a) State diagram of system under state feedback control and without impulsive control. (b) State diagram
of system under hybrid control of state feedback and impulse.

Fig. 3. State diagram of impulsive fuzzy system, (a) and (b) State diagram of impulsive system without state feedback control, (c) State diagram of
impulsive system with state feedback control.

Please cite this article in press as: Zhang X et al. Analysis and design for unified exponential stability of three different impulsive T–S fuzzy
systems. Chaos, Solitons & Fractals (2009), doi:10.1016/j.chaos.2009.03.036



8 X. Zhang et al. / Chaos, Solitons and Fractals xxx (2009) xxx–xxx

ARTICLE IN PRESS
5. Conclusions

We have extended ordinary T–S models to impulsive T–S models possessing external input terms. Such inputs can depict
complex nonlinear systems under impulsive and/or state feedback control. We have obtained several new and unified suf-
ficient conditions for the exponential stability of the proposed model under three different control inputs. The results ob-
tained were applied to design an impulsive control or state feedback control procedure to achieve exponential stability.
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