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a b s t r a c t

Gonadotropin-releasing hormone (GnRH) is a decapeptide secreted by GnRH neurons located in the
hypothalamus. It is responsible for the onset of puberty and the regulation of hormone release from
the pituitary. There is a strong evidence suggesting that GnRH exerts an autocrine regulation on its own
release via three types of G-proteins [L.Z. Krsmanovic, N. Mores, C.E. Navarro, K.K. Arora, K.J. Catt, An
agonist-induced switch in G protein coupling of the gonadotropin-releasing hormone receptor regulates
pulsatile neuropeptide secretion, Proc. Natl. Acad. Sci. 100 (2003) 2969–2974]. A mathematical model
based on this proposed mechanism has been developed and extended to explain the synchrony observed
in GnRH neurons by incorporating the idea of a common pool of GnRH [A. Khadra, Y.X. Li, A model for
the pulsatile secretion of gonadotropin-releasing hormone from synchronized hypothalamic neurons,
Biophys. J. 91 (2006) 74–83]. This type of coupling led to a very robust synchrony between these neurons.
We aim in this paper to reduce the one cell model to a two-variable model using quasi-steady state
(QSS) analysis, to further examine its dynamics analytically and geometrically. The concept of synchrony
of a heterogeneous population will be clearly defined and established for certain cases, while, for the
general case, two different types of phases are introduced to gainmore insight on how themodel behaves.
Bifurcation diagrams for certain parameters in the one cell model are also shown to explain some of
the phenomena observed in a coupled population. A comparison between the population model and an
averaged two-variable model is also conducted.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Hormonal regulation of mammalian reproduction occurs at
three different levels. The gonadotropin-releasinghormone (GnRH),
secreted by synchronized GnRH neurons in the hypothalamus, is
at the highest level of this hierarchical control [2]. It is carried by
the local blood circulation to the pituitary where it triggers the re-
lease of two intermediate hormones, the luteinizing hormone (LH)
and the follicle-stimulating hormone (FSH), from gland cells called
the gonadotrophs. LH and FSH are carried by the general circu-
lation to the local glands, ovaries in females and testis in males,
where they stimulate the release of estrogen and testosterone,
respectively. It has been found that the temporal profile of the
GnRH signal is quite critical for maintaining a normal secretory
activity of the gonadotrophs. This signal must be pulsatile [2–4],
i.e., sharp pulses separated by intervals of near-zero baseline lev-
els, with a frequency which is specific to different species [5]. In
primates, including humans, for example, it is about one pulse per
hour. A constant GnRH signal or a pulsatile one with the ‘‘wrong’’
frequency suppress the secretory activities of the gonadotrophs.
Furthermore, the GnRH signals with the ‘‘correct’’ temporal profile

∗ Tel.: +49 (0)30 2093 6044; fax: +49 (0)30 2093 8801.
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artificially introduced to immature monkeys are capable of induc-
ing precocious maturation and sexual development [6]. These re-
sults demonstrate that the pulsatile GnRH signal is both necessary
and sufficient for mammalian reproduction. As amatter of fact, the
absence of this signal leads to a number of reproductive diseases
such as sterility. Therefore, understanding themechanisms under-
lying the origin of this signal is of great clinical and fundamental
value.
It is now believed that GnRH secretion is an intrinsic prop-

erty of GnRH neurons [7–10] and that only a few thousands of
these sparsely distributed neurons are involved in this pulse gen-
erator [11]. Given this relatively small number, synchronization is
presumed to play a central role in the GnRH rhythmogenesis. Al-
though the mechanism underlying this synchrony remains largely
unknown, it has been suggested that a diffusiblemediator between
these neurons is needed to achieve synchronization [12], while
synaptic and gap-junctional coupling between them are not es-
sential [13,14]. Recent experimental evidence reveals that these
neurons express receptors for GnRH [14–16], suggesting that this
hormone exerts an autocrine regulation on its own release and acts
as a synchronizing agent between these neurons [17–19]. For sus-
tained oscillations to occur a positive feedbackmechanismmust be
combinedwith a negative one to bring the peak values of the pulses
back to their basal levels. This can be accomplished by the inhibi-
tion of GnRH release by high level of GnRH through a G-protein
coupled process [1]. This new evidence, combined with the previ-
ous findings of the stimulatory effect of the autocrine regulation,
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seems to form a complete mechanism that explains the origin of
pulsatile GnRH release.
We have built in [20] a model describing the dynamics

of one neuron based on this mechanism. We showed that
this GnRH-regulated GnRH-release mechanism is sufficient for
generating pulsatile GnRH release. We have also established that
the synchronization of a heterogeneous population of these model
neurons mediated by a common pool of diffusible GnRH was very
robust. The properties of thismodel, such as parametric-averaging,
recruitment and the minimum fraction of active neurons required
to maintain a pulsatile population, were examined in [21].
It should be mentioned here that the coupling technique

(common pool) used in [20,21] to generate networks of GnRH
model neurons differ considerably from those discussed in other
papers. As a matter of fact, the huge literature that exists on phase
synchrony of oscillatory networks, including periodic and chaotic
models, has been mainly concerned with weak versus strong
diffusive coupling (e.g., see [22,23]), and with mean field coupling
(e.g., see [24]). The presence of synchronization phenomenon
in many biological and engineering problems has induced this
extensive work in this field. To mention a few, phase synchrony
was analyzed in genetic networks (repressilators) [24], in brain
rhythms (such as gamma and beta rhythms) [25], in neurons
(e.g., to study clustering) [26], etc. It was also investigated under
the influence of noise [27], and in association with chaotic
systems [28] for engineering purposes.
Our aim in this paper is to further examine this new

coupling technique (which cannot be labeled as weak or strong)
by considering the models presented in [20,21]. We intend
to nondimensionalize the six-variable model describing the
dynamics of one GnRH neuron and reduce it to a two-variable
model using quasi-steady state (QSS) approximation. We shall
show that this reducedmodel is bounded anduse nullcline analysis
to establish many of the stability results stated in [21]. The
synchrony between these model neurons coupled by a shared
signal (or a common pool) will be shown to be stable for certain
types of heterogeneity in the population. As for the general case
of a completely heterogeneous population of model neurons, we
introduce two different phases, one is based on polar coordinates
while the other is based on the notion of Hilbert Transform [29].
They describe the dynamics of themodel in amanner similar to the
one used in [22]. We finally compare the dynamics of the whole
population of model neurons to an averaged two-variable model
whose parameters satisfy certain averaging properties and show
that this new averaged model could approximate the population
model quite adequately.
This paper is organized as follows: In Section 2, we reintroduce

the full model presented in [20] and nondimensionalize it to
validate the QSS approximation used in Section 3, aimed at
reducing the full model to a two-variable model. The reduced
model is then analyzed in Section 4, while the notion of
synchronization of a population of N-coupled model neurons by
a shared signal is discussed in Section 5. In Section 6, a comparison
between the dynamics of the population model with an averaged
two-variable model is performed. Finally, in Appendix, some
concluding remarks are stated.

2. Full model

The pulsatile release of GnRH is an intrinsic property of
each GnRH cell. This hypothesis is supported by a number of
experiments and is consistentwith all known facts. For example, in
vivo experiments has demonstrated that pulsatility remains intact
when the medial basal hypothalamus is surgically disconnected
from other parts of the brain. The observation of pulsatile GnRH
release from GnRH cells in cultures and the discovery of GnRH

receptors in GnRH cells in slices as well as in cultures suggested
that GnRH cells can alone generate pulsatile GnRH release without
inputs from other cells through an autofeedback mechanism.
Additional results suggest also that GnRH acts as a diffusible
mediator and as a synchronizing agent.
We have developed in [20] a mathematical model for the

GnRH secretion based on this autocrine regulation using a
mechanism proposed by Krsmanovic et al. in [1]. The model
applied to two cases equally: (a) a large number of identical
GnRH cells in a continuously-stirred perfusion chamber; (b) a
single GnRH cell located in a small liquid droplet with a volume
only slightly bigger than the cell. Case (a) represented a realistic
description of experimental perfusion cultures, while case (b) was
only a prediction of the model since both cases would lead to
identical mathematical equations. The autocrine effect of GnRH on
GnRH cells through GnRH receptors played a central role in the
formulation of thismodel, while direct synaptic and gap-junctional
coupling were completely ignored for the lack of experimental
evidence.
Sequential activation of three types of G-proteins due to GnRH

binding to its receptors formed the foundation of the mechanism
used in this model (for further details, see [20,21,1]). In other
words, it was supposed that the binding of extracellular GnRH
(denoted by G) to its receptors on GnRH neurons, could induce
dose-dependent activation of three types of G-proteins Gs, Gq and
Gi. The activated α subunits of Gs and Gi, denoted by αs and αi,
were found to dissociate from the membrane and their respective
βγ subunits in order to exert excitatory and inhibitory influences,
respectively, on the production of cAMP by adenylyl cyclase (AC).
The activated α subunits of Gq, denoted by αq, was found to
activate the production of IP3 which could trigger Ca2+release
from intracellular stores. The dose-dependence of the cytosolic
concentration of each activated α subunit on extracellular GnRH
concentration (G) was assumed sigmoidal in the model with a Hill
coefficient larger or equal to 2. The value of G required for 50%
saturation was taken to be small for αs, medium for αq and very
large for αi. Furthermore, based on experimental data, the model
expressed the dose-dependence of cytosolic Ca2+concentration (C)
on G in sigmoid curve, whereas the dose-dependence of cytosolic
cAMP concentration (A) onGwas expressed in biphasic curve (both
at steady state). Many studies showed that intracellular Ca2+and
cAMP were the two intracellular messegers directly involved in
the episodic release of GnRH. Therefore, the model assumed that
they work together in triggering GnRH release from GnRH cells in
a nonlinear fashion (through a cubic term).
In this model, G played the roles of a diffusible mediator as

well as a synchronizing agent. αs led to a modest increase in the
secretion ofG through a positive feedback loop (via cAMP)whileαq
provided a second positive feedback loop that essentially triggered
a sharp increase in the secretion of G (via Ca2+). αi, on the other
hand, provided a slow negative feedback loop which terminated
the spike (by inhibiting cAMP production) and kept G at basal
level for an extended period during the interspike intervals (of
approximately 1 h in primates).
Thus the full model of GnRH pulse generation described in [20]

consisted of six variables: G, C , A, S, Q and I , where S, Q and I
represented the concentrations of αs, αq and αi, respectively. The
dimensioned form of the full model is given in Appendix A. The
dimensionless form of this model is given by

dg
dτ
= λ

[
ν + η(ca)3 − g

]
(1)

dc
dτ
= ζ [jin + [µ+ δq] (c0 − c)− c] (2)

da
dτ
= ξ

[
ι+ θs

ω

ω + i
− a

]
(3)
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Table 1
Values of the dimensionless parameters of the model given by system (1)–(6).

Symbol Value Symbol Value Symbol Value Symbol Value Symbol Value

λ 0.067 ν 0.706 η 3.292 ζ 566.67 jin 9.227× 10−6
µ 0.012 δ 0.588 c0 0.588 ξ 6.67 ι 1
θ 216.67 ω 0.01125 φ 1 σ 1 ψ 1
ρ 61.765 ε 0.0125 κ 464.706

ds
dτ
= φ

[
g4

σ 4 + g4
− s
]

(4)

dq
dτ
= ψ

[
g2

ρ2 + g2
− q

]
(5)

di
dτ
= ε

[
g2

κ2 + g2
− i
]
, (6)

where g , c , a, s, q and i are the dimensionless form of the original
variables G, C , A, S, Q and I , respectively (see Appendix A). The
scaled parameters ι, φ and σ satisfy ι = φ = σ = 1, which will no
longer be the case in a heterogeneous population of coupledmodel
neurons. In Table 1, we show the values of all the dimensionless
parameters appearing in system (1)–(6). The substitutions used in
this nondimensionalization were chosen very carefully to express
the rate of each variable clearly in these equations. It will be quite
evident in the next section the importance of this stepwhenmodel
reduction is discussed.

3. Reduced model

Itwas pointed out in [20] that the variations in the two variables
C and A are much faster than the changes in the remaining
variables, a fact consistent with experimental observations. In fact,
when fitting the experimental data available on the steady states of
C and A to Eqs. (A.2) and (A.3), the rates of these equations were 2
orders of magnitude faster than the remaining equations. That was
the motivation in [20,21] to reduce the six-variable model (1)–(6)
to a four-variable model.
We verify this claim here by comparing the values of the two

parameters ξ and ζ with those of the parameters λ, φ, ψ and ε
(the former set of parameters are 1-2 orders of magnitude larger
than the latter set). Interestingly, the set of parameters ζ , ξ , φ
and ψ are 2-4 orders of magnitude larger than the parameters λ
and ε (see Table 1). In other words, the model predicts, through
this scaling process, that not only calcium and cAMP dynamics
are fast, but also the two distinct positive feedback loops exerted
by the two subunits αs and αq are significantly faster than the
negative feedback loop exerted by αi (a common feature among
other biological systems). This suggests that the model consists of
two subsystems: (i) a fast one consisting of the variables c , a, s and
q; (ii) slow one consisting of the variables g and i.
The variable i represents an essential element for the oscilla-

tions to occur in this model (see [20,21]). It expresses the inhibi-
tion exerted by αi on the GnRH hormone to bring the pulse back to
its basal level. In the absence of inhibition, GnRH pulsatility disap-
pears and gets replaced by an elevated steady state. Such behaviour
can be demonstrated by setting the variables g and i equal to con-
stants (due to their slow-varying behaviour) and solving for the fast
subsystem. In Appendix B, we show that the solution of each vari-
able in the fast subsystem, except for c , is expressed explicitly in
terms of constant terms and exponential functions with negative
powers. As for c , we also show that this variable can be expressed
asymptotically in the sameway. In otherwords, the fast subsystem
is a nonoscillatory system and converges quickly to its steady state
(as predicted intuitively). The rate of convergence, in this case, is
determined by the large rate constants ζ , ξ , φ and ψ which hap-
pened to be the very same parameters used initially to divide the

Fig. 1. Numerical simulation of (a) the full model (1)–(6), and (b) the reduced
model (7) and (8). The profile of g (solid line) is shown in the upper panels, while
the profiles of s (dashed line), q (dotted line) and i (solid line) are shown in the
lower panels. The left panels show the direct action of each subunit on g (plotted in
logarithmic scale).

full model into two subsystems. The nondimensionalization used
inAppendixAwas therefore quite essential to identify the two sub-
systems within the full model.
The above analysis suggests that the oscillations generated by

the full model will not be affected by setting the fast subsystem to
its steady state. Therefore, we can reduce the full model to a two-
variable model by applying QSS approximation on the variables c ,
a, s and q to obtain

dg
dτ
= λ [ν + ηF(g, i)− g] (7)

di
dτ
= ε [H(g)− i] , (8)

where F(g, i) = [c∞(q∞)a∞(s∞, i)]3, H(g) = g2/(κ2 + g2) and

c∞(q∞) =
Jin + (µ+ δq∞)c0
µ+ 1+ δq∞

,

a∞(s∞, i) = ι+ θs∞
ω

ω + i

s∞ =
g4

σ 4 + g4
, q∞ =

g2

ρ2 + g2
.

(9)

Fig. 1(a) shows the profiles of g (upper panel) and s, q and i (lower
panel) for the full nondimensionalizedmodelwhile Fig. 1(b) shows
the profiles of g (upper panel) and i (lower panel) for the reduced
model. They clearly demonstrate that both models exhibit nearly
identical behaviours except for very minor differences in their
amplitude and frequency, consistent with our previous discussion.
When viewing the profile of g in logarithmic scale in panel (b),
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we see clearly the level of g initially rising steadily due to s (at
steady state), followed by a sharp rise due to q (at steady state)
until reaching a threshold that activates the inhibition exerted by
i. In other words, g exerts an autocatalytic influence on its own
secretion via s∞ and q∞, while i exerts negative feedback effect
on g , generating oscillations displayed by a pulsatile and episodic
manner (see Fig. 1(b)).

4. Analytical results on the reduced model

In this section, we shall analyze analytically and geometrically
some of the properties of system (7) and (8). We begin first by
showing that the solution trajectories of this system are bounded
in the state space.

Proposition 1. Solution trajectories of system (7) and (8) are
bounded (or globally stable).

Proof. By integrating equation (8) starting at τ = τ0, we obtain

i(τ ) = ε
∫ τ

τ0

g2(τ )
κ2 + g2(τ )

e−ε(τ−τ)dτ .

But 0 ≤ g2(τ )/(κ2 + g2(τ )) ≤ 1, for all τ ∈ [τ0, τ ]. This implies
that 0 ≤ i(τ ) ≤ 1 − exp[−ε(τ − τ0)] < 1, for all τ ∈ [τ0,+∞).
Similarly, by integrating equation (7), we obtain

g(τ ) = λ
∫ τ

τ0

[ν + ηF(g(τ ), i(τ ))]e−λ(τ−τ)dτ .

From Eq. (9), we may conclude that 0 < s∞ < 1, 0 < q∞ < 1 and

0 ≤ F(g, i) <
[
jin + (µ+ δ)c0
µ+ 1+ δ

(ι+ θ)

]3
=: L,

for all τ ∈ [τ0, τ ], since jin − c0 < 0 (see Table 1), where L
is some positive constant. It follows that 0 ≤ g(τ ) < ν + ηL,
for all τ ∈ [τ0,+∞). In other words, the solution trajectories
x(τ ) = (g(τ ), i(τ )) are bounded. �

The latter proposition indicates that the solution trajectories
of system (7) and (8) will always approach an attractor in the
state space. According to the Poincare–Bendixson Theorem, this
attractor could be either (a) a stable equilibrium, (b) a stable limit
cycle, or (c) a homoclinic or a heteroclinic orbit. These three cases
might even coexist. The i-nullcline associated with system (8) is
simply the Hill function i = H(g), but the g-nullcline cannot be
expressed explicitly. Fig. 2 shows both nullclines associated with
Eqs. (7) and (8) and their point of intersection (log(g∗), i∗) =
(0.12887, 2.2522). This point represents the only equilibrium
solution the system possesses. Increasing the parameter κ shifts
the i-nullcline to the left, while decreasing the parameter ν shifts
the g-nullcline downward and to the right. If the g-nullcline is
sufficiently shifted downward, then two additional equilibria will
be generated. On the other hand, decreasing the parameters ω,
lowers the main peak in Fig. 2(b) while the parameter ε does not
affect the shape of the i-nullcline which is expected in view of Eq.
(8). In other words, varying these four key parameters may allow
the system to possess up to three equilibria.
We shall now derive the necessary and sufficient conditions for

the equilibrium (g∗, i∗) to be stable. In order to do so, we state
the following important inequalities that are inherent properties
of system (7) and (8).

∂F
∂g

> 0 (10)

∂F
∂ i
< 0 (11)

dH
dg

> 0. (12)

Fig. 2. (a) The i and g-nullclines associated with system (7) and (8) are shown
together with a periodic orbit. (b) As in (a) except that the nullclines have been
magnified close to their point of intersection. The g-axes (horizontal axes) in both
panels follow the logarithmic scale.

Inequality (10) is satisfied because the two subunits αs and αq
stimulateGnRH secretion,while inequality (11) is satisfied because
αi inhibits GnRH secretion. Since H(g) is a steadily increasing Hill
function of g , it follows that (12) is also satisfied. Nowwe are ready
to state the following proposition for arbitrary functions F and H
satisfying inequalities (10)–(12).

Proposition 2. Let Dg and Di be the slopes of the tangent lines to the
g and i-nullclines, respectively. Then any given equilibrium (g∗, i∗) of
system (7) and (8) is stable if and only if

Di > Dg (13)

and

0 <
∂F
∂g

<
1
η

( ε
λ
+ 1

)
(14)

are satisfied at (g∗, i∗).

Proof. Recall that the necessary and sufficient conditions for a
system consisting of 2 variables to possess a stable equilibrium
(x∗, y∗) are: det( J) > 0 and tr( J) < 0 at (x∗, y∗), where det( J) and
tr( J) are the determinant and trace of the Jacobian matrix of the
two-variable system, respectively. Let’s now evaluate the Jacobian
matrix of system (7) and (8):

J =

λη
∂F
∂g
− λ λη

∂F
∂ i

ε
dH
dg

−ε

 .
Thus

det( J) = ελ
[(
1− η

∂F
∂g

)
− η

∂F
∂ i
dH
dg

]
and

tr( J) = λ
[
η
∂F
∂g
− 1

]
− ε.
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Inequalities (10)–(12) imply that the equilibrium (g∗, i∗) is stable
whenever
1
η

(
1

|∂F/∂ i|

)
+
dH
dg

>

(
∂F/∂g
|∂F/∂ i|

)
,

∂F
∂g

<
1
η

( ε
λ
+ 1

)
.

Since

Dg =
∂F/∂g
|∂F/∂ i|

−
1
η

(
1

|∂F/∂ i|

)
and Di =

dH
dg
,

it follows that inequalities (13) and (14) are the necessary and
sufficient conditions for (g∗, i∗) to be stable. �

Remark 1. Inequality (14) is equivalent to

0 <
∣∣∣∣∂F∂ i

∣∣∣∣ < ε

ηλDg
.

Remark 2. If inequality (13) and the equation
∂F
∂g
=
1
η

( ε
λ
+ 1

)
are satisfied, then the equilibrium point (g∗, i∗) is a Hopf
bifurcation point where two branches of periodic solutions
emerge.

Fig. 2(b) clearly demonstrates that the only equilibrium point
(g∗, i∗) of system (7) and (8) satisfies inequality (13), because
Di > 0 and Dg < 0. In fact, decreasing (increasing) the value
of the parameter κ moves this equilibrium to the left (right)
along the g-nullcline while never violating inequality (13). In
other words, (g∗, i∗) could either be a stable or an unstable
equilibrium but never a saddle point. This means that system (7)
and (8) cannot possess a homoclinic orbit originating from (g∗, i∗).
Since the solution trajectories of system (7) and (8) are bounded
(Proposition 1), it follows that a stable limit cycle must exist
whenever the point (g∗, i∗) is unstable. This occurs when (g∗, i∗)
lies on the part of the g-nullcline with positive slope (i.e., when
Di > Dg > 0 and inequality (14) is violated). If the equilibrium
point (g∗, i∗) is stable, on the other hand, we cannot draw any
conclusions about the existence of a stable limit cycle in this case.
The phase plane of system (7) and (8), shown in Fig. 2(a), reveals,
however, that the point (g∗, i∗) is not globally attractive and that
a stable limit cycle coexists with this stable equilibrium. By using
XPP, the eigenvalues associated with the point (g∗, i∗), in this case,
are given by−0.026196± i0.060098, both of which have negative
real parts, so the point (g∗, i∗) is a stable focus.
There are four key parameters that play important roles in

determining the general dynamics of the model [21]. These 4
parameters are κ , ω, ε and ν. In brief, the parameter κ specifies
the threshold level for activating the αi subunit, ω determines the
threshold value of αi beyond which the production of cAMP is
significantly inhibited, ε is the time scale of the i variable, while
ν is the basal level of GnRH production. The bifurcation diagrams
of the variable g with respect to these four parameters are shown
in Fig. 3.
For the parameter κ , stable periodic solutions (thin/solid line)

could be observed for two different ranges (see Fig. 3(a)). Each
range is bounded by two subcritical Hopf bifurcation points at
which bistability between a limit cycle and an elevated steady state
(thick/solid line) is observed outside the range, while a stable limit
cycle surrounding an unstable equilibrium (thick/dashed line) are
observed inside. In the regime where bistability is obtained, an
unstable limit cycle (thin/dashed line) acts as a separatrix between
the stable limit cycle and the stable steady state. Moreover, the
amplitude of the stable limit cycle stays roughly the same in each
range, although the amplitude of oscillations in the right range

Fig. 3. Bifurcation diagrams of g with respect to 4 key parameters: (a) κ , (b) ω,
(c) ε and (d) ν. The steady state values of g are plotted in solid (stable) and dashed
(unstable) thick lines, whereas periodic solutions are plotted in solid (stable) and
dashed (unstable) thin lines in each panel. The dotted thick lines refer to the average
of the maximum and minimum values of g along its stable periodic branches. Note
that the logarithmic scale is used for all axes and the unstable periodic solutions are
not plotted in panel (c).

is significantly larger than those in the left range. It should be
mentioned here that for the regime inside the two ranges, the
unstable steady state is generated when the i-nullcline, shown in
Fig. 2(b), intersects the declining branches of the two peaks of the
g-nullcline, as demonstrated in Proposition 2. The presence of the
left oscillatory range can explain the reason as to why a population
of model neurons coupled together by a shared signal is capable
of pulse generation even in the presence of many neurons whose
κ-values are low (such behaviour was labeled ‘‘recruitment’’
in [21]).
In the case of the parameter ω, similar type of behaviour is

detected (see Fig. 3(b)). Once again, two oscillatory ranges bounded
by subcritical Hopf bifurcation points are obtained. The existence
of these two ranges reveals that the recruitment phenomenon
is expected to occur in this case. The values of the elevated
plateau of steady states are also close to those obtained for the
parameter κ . The only two noticeable differences in the type of
behaviour exhibited by this model in the ω case are: the stable
periodic solutions are generated for very small range of values
and their amplitude shows sensitive parameter-dependence on
ω. The parameter-dependence is expressed by a steady increase
in amplitude for increasing values of ω in both ranges. These
two differences justify the substantially more robust behaviour
exhibited by the population models considered in [20,21] towards
heterogeneity with respect to κ than to ω.
As mentioned earlier, the parameter ε does not change the

shape of the nullclines shown in Fig. 2. Therefore, the coexistence
of the stable periodic orbit and the stable/elevated equilibrium,
separated by an unstable periodic orbit (not shown), is preserved
for a very small range of values of ε (see Fig. 3(c)). The smallness
of this range accounts for the sensitivity of the population model
to heterogeneity in that parameter. The loss of periodic solutions
for small ε (left end-point of the oscillatory range) is due to the
fact that the i variable becomes roughly a constant, eliminating
the inhibition exerted by i (a crucial element for pulse generation).
This explains why pulsatility disappears in this case. On the other
hand, when ε is too large (right end-point of the oscillatory range),
the pulsatility once again disappears due to fast inhibition, not
allowing sufficient amount of g to accumulate for activating i.
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As for the parameter ν, many interesting behaviours are
exhibited in this case. Fig. 3(d) shows three different regimes in
which the global behaviour of system (7) and (8) changes. In the
left regime (for small values of ν), two coexisting steady states are
observed, one with an elevated level of g while the other one with
a near-zero level of g , separated by a saddle point. By increasing
ν, the saddle point and the stable steady state with a near-zero
level of g merge and disappear, while a branch of stable periodic
solutions emerges at a SNIC bifurcation point (saddle-node on
invariant circle bifurcation). In this new regime, an unstable
periodic orbit acts as a separatrix between the stable periodic orbit
and the stable steady state with elevated level of g . Finally, in
the right regime (for large ν values), both branches of periodic
solutions merge and disappear, leaving behind the only remaining
globally stable steady state in the most right regime. It should be
mentioned here that the amplitude of the oscillations increases
slowly with ν within the oscillatory range, but the size of this
oscillatory range is quite large that the robustness of a population
model towards parameter heterogeneity in ν is preserved.
We shall see in the next section that the bifurcation diagrams of

κ and ν combined will be able to provide some answers as to why
periodic injections of exogenous GnRH in vivo lead to seemingly
contradictory results. It will be shown that the heterogeneity in the
population model will generate multistability that is responsible
for the apparent inconsistencies in the experimental results.

5. Population model

We have investigated in the previous section the dynamics of a
one cell model. Such a model can be extended to describe a whole
population ofmodel neurons. Experimental evidence suggests that
these neurons are coupled together by a shared signal or a common
pool g . It has been observed in [20] that a single model neuron
possesses all the necessary parts for generating episodic and
pulsatile behaviour, provided that all parameters remain identical
across the whole population. In other words, the single-cell model
is equivalent to the model of a population of identical model
neurons. Obviously, this represents an unrealistic set up, since
neurons differ from each other in their natural settings. We aim
in this present study to analyze and establish analytically some of
these numerical results obtained in [20,21]. We shall first define
what we mean by synchrony and establish some synchronization
results when limited degree of heterogeneity is considered in the
population. We also introduce two different phases that will be
helpful in examining the most realistic case when heterogeneity
appears in all parameters
A dimensionless form of the model of N heterogeneous GnRH

neurons coupled through a common pool of extracellular GnRH is
given by the following equations.

dg
dτ
=
1
N

N∑
n=1

λn

[
νn + ηnFn(g, in)−

λn

λn
g

]
(15)

din
dτ
= εn

[
Hn(g)−

εn

εn
in

]
, (n = 1, 2, . . . ,N), (16)

where we use the subscript n in the functions Fn,Hn and the
parameters to indicate that they all have different values. We
have also assumed here that the ratios λn/λn and εn/εn are not
necessarily equal to 1 for every neuron to emphasize heterogeneity
in the degradation terms. The fact that all neurons share a common
extracellular concentration of g implies that the extracellular
medium is continuously stirred so that GnRH secretion by each
neuron is diluted and averaged immediately in thewholemedium.
This can be regarded as an approximation of the perfusion
experiments in which the continuous flow through the chamber
can cause a stirring effect. Amore realisticmodelwill be considered
in a separate study. In the rest of this section, we shall use system

(15) and (16) to analyze synchrony in a heterogeneous population
of model neurons.
We have introduced in [20,21] a synchrony measure suitable

for the model described by system (15) and (16). This synchrony
measure used the peaks of the variables in, n = 1, 2, . . . ,N ,
to determine if a population of model neurons is synchronized
or not. Due to the presence of heterogeneity in the model, the
peaks of the in variables will never peak at the same moment.
A small phase difference will always exist between the peaks of
any two variables in and im, n,m = 1, 2, . . . ,N . Therefore, it
has been asserted in [20,21] that a population of model neurons
are considered ‘‘synchronized’’ if the maximum phase difference
between the neurons is smaller than the width of the g-pulse.
Notice that the case corresponding to a quiescent population
of coupled model neurons in which g is not pulsatile (i.e., all
variables are at steady state) is already included in the definition
of synchrony. The phase difference in this case could be chosen
arbitrarily and the duration of the g-pulse could be chosen to be
larger than themaximumphase difference to satisfy the definition.
This means that a synchronized population of GnRH neurons could
be either quiescent or pulsatile/episodic. From an experimental
point of view, the latter behaviour is more interesting than the
former, but from a mathematical point of view these two distinct
behaviours are inconsequential as far as synchrony is concerned
(we shall use this important feature in our later discussion).
Interestingly, our numerical simulations of system (15) and (16)

suggest that the quiescent behaviour is due to the inability of
the model neurons in the population to maintain both synchrony
and pulsatility at the same time. This may explain some of the
in vivo results obtained [21] when investigating the response of
the population model to periodic injections of exogenous g at
increasing doses. It has been demonstrated that at a relatively high
injection frequency of g (which is equivalent to increasing the
value of the parameter ν at each injection), the population model
either (i) maintained pulsatility at low and high injection doses, or
(ii) became quiescent at intermediate injection doses (i.e., injection
doses caused oscillation death in this case). While Fig. 3(d) may
explain the outcome obtained for low and intermediate doses, it
fails to do so for high doses, as it predicts that for high doses,
the population model must remain quiescent. It seems that other
factors in the model, such as heterogeneity in the parameters and
bistability, are responsible for the this triphasic behaviour. This
becomes clear when we consider the bifurcation diagram of κ in
Fig. 3(a). Since κ determines the threshold value for activating
i in each neuron, injecting g at intermediate doses appears to
divide the population model into two subgroups; one subgroup
that consists of model neurons with κ values smaller than the
dose while the second subgroup consists of model neurons with
κ values larger than the dose. Thus when the population model is
stimulated by periodic injections of g at intermediate doses, the
first subgroup is activatedwhile the second is not. The competition
between the two subgroups leads to their dis-synchrony and to
oscillationdeath in the population. For lowand intermediate doses,
however, one subgroup dominates over the other and episodic and
pulsatile g combined with synchrony is preserved. It would be
interesting to find out the critical values of the relative sizes of each
subgroup at which pulsatility is lost.
Let’s now analyze synchrony in system (15) and (16) by first

stating the following important result, which is an immediate
consequence of Proposition 1.

Corollary 1. Solution trajectories of system (15) and (16) are
bounded (or globally stable).

It follows that system (15) and (16) must possess at least one
attractor in the (N + 1)-dimensional space generated by the N
coupled model neurons. According to our simulations, however,
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the only two attractors generated by this model are steady states
and/or limit cycles, both of which imply that synchrony is attained
in the populationmodel. This begs the question ofwhat happens to
synchrony if the attractor were something else (such as a strange
attractor)? Following up on what has been said about synchrony
versus the general behaviour of the model, we are able to answer
this question analytically for a special casewhen the heterogeneity
in system (15) and (16) persists in all parameters except for εn and
κn, i.e., when Eq. (16) is expressed as

din
dτ
= εn

g2

κ2 + g2
− εin, (17)

where εn = ε and κn = κ , for all n = 1, 2, . . . ,N . The
next proposition shows that the population model described by
Eqs. (15) and (17) are synchronized regardless of what type of
attractor the model possesses.

Proposition 3. The populationmodel described by Eqs. (15) and (17)
satisfies

lim
τ→∞

in
im
(τ ) =

εn

εm

for all n,m = 1, 2, . . . ,N.
Proof. Let Φnm(τ ) := tan−1(in(τ )/im(τ )), n,m = 1, 2, . . . ,N
(Φnm represents the angle in polar coordinates projected onto the
inim-planewithΦnm ∈ (−π/2, π/2)). Taking the derivative ofΦnm
with respect to τ , we obtain

Φ ′nm =
1

1+ (in/im)2

(
i′nim − i

′
min

i2m

)
=

1
1+ tan2Φnm

(
i′n
im
−
i′m
im

in
im

)
= cos2Φnm

(
i′n
im
−
i′m
im
tanΦnm

)
.

But, by Eq. (17), we have

i′n
im
=
εn

im

g2

κ2 + g2
− ε tanΦnm

and
i′m
im
=
εm

im

g2

κ2 + g2
− ε.

Thus

Φ ′nm =
εn

im

g2

κ2 + g2
cos2Φnm −

1
2
ε sin(2Φnm)

−
1
2
εm

im

g2

κ2 + g2
sin(2Φnm)+

1
2
ε sin(2Φnm)

=
1
im

g2

κ2 + g2

[
εn cos2Φnm −

1
2
εm sin(2Φnm)

]
=
cos2Φnm
im

g2

κ2 + g2
[εn − εm tanΦnm] .

Notice that
cos2Φnm
im

g2

κ2 + g2
> 0 (whereΦnm ∈ (−π/2, π/2)),

so the latter equation possesses only one critical point at Φ∗nm =
tan−1(εn/εm). Since tan−1(εn/εm) ∈ (−π/2, π/2), the one-
dimensional phase-portrait ofΦnm implies thatΦ∗nm is stable. Thus

Φnm → Φ∗nm = tan
−1 εn

εm
as τ →∞

⇐⇒
in
im
→

εn

εm
as τ →∞. �

It follows from Proposition 3 that after a small transient, each in
becomes a constant multiple of every other im, n,m = 1, 2, . . . ,N .
This means that regardless of the temporal profile of the in
variables, the peaks of these variables eventually line up. In the
special case when solution trajectories approach an attractive
periodic orbit, for example, each one of the in variables will exert
the inhibition on g simultaneously, leading to a synchronized
behaviour. The common pool g , in this case, becomes pulsatile and
the in variables are periodic with zero-phase difference between
them (see [20]). As for other types of attractors, such as steady state
(i.e., the quiescent behaviour), quasi-periodic or chaotic attractors,
similar conclusions can be reached; the populationmodel will also
exhibit perfect phase synchroy between the neurons. The steady
state case represents the trivial case analyzed earlier, where each
neuron is involuntarily synchronized, while the quasi-periodic and
chaotic attractors, the behaviour is identical to the case of an
attractive periodic orbit.
When εn = ε, for all n = 1, 2, . . . ,N , in Eq. (17), the

synchrony between model neurons in such a population becomes
identical, i.e., amplitude and frequency of oscillations become
identical across the whole population. This result is summarized
in the following proposition.

Proposition 4. If εn = ε in Eq. (17), for all n = 1, 2, . . . ,N, then

lim
t→∞
|in − im| = 0,

for all n,m = 1, 2, . . . ,N.

Proof. Let1inm = in − im, for some n,m = 1, 2, . . . ,N . By taking
the derivative of both sides, we obtain

1i′nm = i
′

n − i
′

m = −ε1inm,

which implies that limt→∞1inm = 0, for every n,m. �

As pointed out earlier, in a diversely heterogeneous and
pulsatile population of model neurons, in which all parameters
differ across the whole population, a small phase difference
between the peaks of the i variables will emerge. This makes
proving synchrony a much more difficult task. In order to tackle
this problem, it would be a good idea to introduce the notion of
phase in this case [22]. The proof of Proposition 3 motivates the
idea of using the term Φnm as a possible candidate to quantify the
phase difference between two neurons. Briefly, Φnm describes the
phase between in and im, for n,m = 1, 2, . . . ,N , moving along
the (N + 1)-dimensional solution trajectory of system (15) and
(16). Fig. 4(a4) and (b4) show the projections of typical solution
trajectories obtained for a system that satisfies the heterogeneity
conditions of Proposition 3 and a systemwhose parameters are all
diversely heterogeneous, respectively. By letting

Φ(τ ) =
2

N(N − 1)

N∑
n,m=1
n<m

Φnm(τ ),

we could roughlymeasure the synchronization between themodel
neurons. For example, according to the heterogeneity conditions
stated in Proposition 3, we expect that system (15) and (17) to be
fully synchronized since Φ → π/4, as τ → ∞. Indeed, Fig. 4(a2)
shows how Φ approaches this constant level, while in Fig. 4(b2),
a periodic Φ with a very small amplitude is generated due to the
presence of heterogeneity in all parameters.
Similar type of behaviour could be also observed when we

introduce another type of phase based on the notion of Hilbert
transform [29]. Hilbert transform of a signal s(τ ) is defined by

H(s(τ )) = p.v.
∫
+∞

−∞

s(τ − τ)
πτ

dτ ,
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Fig. 4. 50 model neurons coupled together by a shared signal. The left column
corresponds to an identical population of GnRH model neurons, while the right
column corresponds to a nonidentical population of GnRH neurons possessing
heterogeneity in the parameters κ , ω and ε. (a1) and (b1) show the simulations
of the variable g , (a2) and (b2) show the graphs of the phase Φ , whereas (a3) and
(b3) show the graphs of the phaseΦH obtained fromHilbert transform. Finally, (a4)
and (b4) show typical solution trajectories projected onto the i21i34-plane. Notice
that in the case of identical neurons (a4), the projection is a straight line.

where p.v. denotes the Cauchy principle value of the integral. Then
the phase of the signal s(τ ) is defined by

ΦH(τ ) = tan−1
H(s(τ ))
s(τ )

.

Thus the new phase ΦH could be evaluated at every variables in,
n = 1, 2, . . . ,N , to determine if such phase exhibits any additional
features that could help us understand the dynamics of the general
case of a diversely heterogeneous population. Let

ΦH(τ ) =
2

N(N − 1)

N∑
n,m=1
n<m

ΦHn + U
ΦHm + U

(τ ),

where ΦHn = tan−1 H(in(τ ))/in(τ ) and U > |minτ>0ΦHn|, for
all n = 1, 2, . . . ,N (the term U is added to the definition of ΦH
in order to avoid dividing by zero). The new phase reveals similar
results to those observed in the case for the phaseΦ defined earlier.
In fact, Fig. 4(a3) and (b3) show the constant and semi-periodic
behaviour ofΦH when heterogeneity in the parameters is identical
to the two cases discussed in panels (a2) and (b2), respectively.
The resemblance in behaviour between the two phases suggests
that ΦH could alternatively measure the level of synchrony in a
population model equally well.

6. Averaged model

Investigating synchrony in system (15) and (16) is a very
challenging task when heterogeneity appears in all parameters.
The presence of N + 1 variables in this highly nonlinear system
is what makes this task hard to tackle. Since most of the
properties of the reduced one cell model have been analyzed in
Section 4, it would be a good idea to reduce system (15) and
(16) to a two-variable model through an averaging process. Such
a step is motivated by the numerical results obtained in [21],
demonstrating that a population of model neurons based on
the four-variable model derived from system (1)–(6) exhibits
parametric averaging and recruitment phenomena. Similar kind of
parametric averaging behaviour has been also reported in [30–32].
We shall demonstrate in this section that reducing the population
model by applying an averaging process is feasible when system

Fig. 5. Comparing the dynamics of the averaged model to that of the population
model that possesses heterogeneity in the parameters κn only. The temporal profile
of g in (a) the averagedmodel, and (b) the populationmodel, for1κ = 300, indicate
that the frequency and amplitude of g in both cases are almost identical. (c) The
deviation measure and (d) the geometric average, κ̃ , are both plotted with respect
to the length of the range of κn .

(15) and (16) possesses heterogeneity in the parameter κ only, a
case that has not been analyzed before. We intend to compare the
dynamics of this system to a two-variable model whose κ value
is the geometric average of all κn, n = 1, 2, . . . ,N , while all the
other parameters remain identical in both models (such a two-
variable model will be called the averaged model hereafter). In
other words, we shall set the κ value of the averagedmodel to κ̃ =
N
√
κ1κ2 . . . κN . The reason for choosing the geometric average over
an algebraic average lies in the fact that the former performs better
than the latter when comparing the behaviour of the population
model to the averagedmodel (provided that allκn,n = 1, 2, . . . ,N ,
belong to the oscillatory domain of κ determined by the one cell
model).
Fig. 5(a) and (b) show the temporal profiles of g for the

population model consisting of 50 coupled model neurons and the
averagedmodel, respectively. The parameters κn in the population
model were chosen randomly from the range [610, 910] by using
the uniform distribution as a random number generator, while
κ̃ ≈ 752 was chosen for the averaged model. Although the range-
size of κ was 300, the two models produced comparable results
(see Fig. 5(a) and (b)). In fact, the frequency and amplitude of g
in both cases appear to be very similar. In order to thoroughly
compare the two models given any parameter range of κ lying
within the oscillatory domain, we use the notion of deviation
measure, defined by

Dev =
1
T

[∫ T

0
(g(τ )− g̃(τ ))2dτ

]1/2
, (18)

where g and g̃ correspond to the population and averaged models,
respectively. This new measure evaluates the difference in the
average amount of g secreted by both models at steady state for
a duration of length T . In the example shown in Fig. 5(a) and (b),
the deviation of the averaged model from the population model
between τ = 104 and τ = 2 × 104 is given by Dev ≈ 11.478.
This is equivalent to an average amount of 3.9 nM difference in the
amount of GnRH secreted by both models during a time span of
approximately 18.5 h which is very small relative to the average
amount of GnRH secreted by both models separately.
Motivated by this example, we have evaluated the deviation

measure for increasing ranges of κ centered around the value
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Table 2
Values of the standard parameters of the model given by system (A.1)–(A.6). Parameters in roman style symbols are obtained by curve fitting to experimental data in [1].

Symbol Value Symbol Value Symbol Value Symbol Value

JIN 0.2 µM/min bG 0.144 nM/min ` 60 min−1 kG 0.6 min−1

kA 60 min−1 kC 5100 min−1 vG 324 (nM)−4min−1 vC 1200 (nM)−1min−1

CER 2.5 µM bA 1.8 nM/min hI 0.036 nM KS 0.34 nM
KQ 21 nM KI 158 nM kS 9 min−1 kQ 9 min−1

kI 0.1125 min−1 vA 150 min−1 vS 23.4 nM/min vQ 22.5 nM/min
vI 0.36 nM/min

760. Fig. 5(c) shows that the deviation measure stays roughly at
a low constant level and never exceeds 16 even when the range
of κ is given by [60, 1460]. In other words, the averaged model
represent a good approximation for the population model when
the coupling between neurons is achieved by a shared signal. In
Fig. 5(c), the geometric average κ̃ has been plotted versus the
length of the range of κ in the populationmodel to reveal the values
of κ̃ used in the averaged model. This suggests that analyzing the
(N + 1)-dimensional population model directly is unnecessary as
it behaves almost identical to a one cell model whose parameters
satisfy certain averaging properties. In the case of the parameter κ ,
this averaging appears to be a geometric average.
It should be mentioned here that we have repeated the same

analysis described above by using an algebraic average of κ instead
of κ̃ . The values of the deviation measure in this case were
considerably higher than those produced by the geometric average
(results not shown). In other words, the outcome of the averaged
model incorporating the geometric average outperformed the
one incorporating the algebraic average. This was not the case,
however, when the parameter range for κ used to generate
heterogeneity in the population model, stretched far below the
oscillatory domain of the one neuron model (a biologically
unrealistic scenario). The geometric average, in this case, winded
up lying outside the oscillatory domainwhilemaking the averaged
model (expectedly) quiescent, although the population model
remained pulsatile. The algebraic average, on the other hand,
remained in the oscillatory domain in these cases, preserving
the pulsatility of the averaged model but significantly altering
it from the population model. In certain extreme cases when
the parameter range for κ substantially exceeded the oscillatory
domain, even the algebraic average ended up lying outside the
oscillatory domain and forming a quiescent averagedmodel, while
the population model remained pulsatile (results now shown). It
seems that the nonlinearly of the functions Fn and Hn in Eqs. (15)
and (16) is responsible for this peculiar behaviour.

7. Conclusion

We have investigated in this paper a recent model describ-
ing the dynamics of GnRH neurons. This model was first non-
dimensionalized and further reduced to a two-variable model to
simplify the analysis. The nullclines of the reduced model were
sketched and examined to understand the dynamics of the one cell
model. Several theoretical results regarding the existence and sta-
bility of steady states and periodic solutions were also obtained.
These results were very critical for understanding the general dy-
namics of the population model generated from coupling model
neurons by a shared signal (common pool). Such a coupling tech-
nique is different from those normally discussed in the literature
of coupled oscillators. The main difference between them lies in
the fact that the common pool, g , here plays an indispensable role
in generating oscillations in the population model. i.e., without g ,
the population model is quiescent and each member is nonoscilla-
tory. In the classical studies of synchronization, however, remov-
ing the coupling terms between neurons in a population model

has no impact on the ability of these individual neurons to in-
trinsically oscillate (even in the presence of mean field coupling).
This fundamental differencemakes themodels discussed here very
unique and interesting. Their performance towards synchroniza-
tion, for example, was quite unusual in the way they responded to
heterogeneity. In this paper, we successfully managed, under cer-
tain heterogeneity conditions, to reduce the population model to a
two-variable model using parametric averaging process. Several
synchronization results were obtained when heterogeneity was
limited to certain parameters in the model, while for the general
case of a diversely heterogeneous population, we introduced two
different phases that provide some insight on how the model be-
haves under such conditions. Proving synchrony in this general
case, however, remains an open question

Acknowledgements

This work was financially supported by MITACS (The Math-
ematics of Information Technology and Complex systems) grant
to Professor L. Edelstein-Keshet. Discussion with Professor Y.X. Li
(University of British Columbia) greatly benefited the general pre-
sentation of this manuscript.

Appendix A. Nondimensionalization of the original model

We aim in this section to nondimensionalize the GnRH model
presented in [20]. The original six-variable model describing the
dynamics of one neuron, is given by

dG
dt
= bG + vG(AC)3 − kGG (A.1)

dC
dt
= JIN + [`+ vCQ ] (CER − C)− kCC (A.2)

dA
dt
= bA + vAS

hI
hI + I

− kAA (A.3)

dS
dt
= vS

G4

K 4S + G4
− kSS (A.4)

dQ
dt
= vQ

G2

K 2Q + G2
− kQQ (A.5)

dI
dt
= vI

G2

K 2I + G2
− kI I, (A.6)

where KS < KQ < KI represent the threshold levels of G for
activatingαs,αq andαi, respectively. A detailed table containing all
the parameters used in Eqs. (A.1)–(A.6) together with their values
and units has been previously published in [20,21] and presented
here in Table 2. To reduce the number of parameters used in system
(A.1)–(A.6), we apply the following set of substitutions:

g =
1
KS
G, c =

vC

kC
C, a =

kA
bA
A, s =

kS
vS
S

q =
kQ
vQ
Q , i =

kI
vI
I, τ = kS t.
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This new set of scaled variables are dimensionless and satisfy
Eq. (1)-(6), where

λ =
kG
kS
, ν =

bG
kGKS

, η =
vG

kGKS

{
bAkC
kAvC

}3
, ζ =

kC
kS

jin =
vC JIN
k2C

, µ =
`

kC
, δ =

vCvQ

kCkQ
, c0 =

vCCER
kC

ξ =
kA
kS
, θ =

vAvS

bAkS
, ω =

kIhI
vI
, ψ =

kQ
kS

ρ =
KQ
KS
, ε =

kI
kS
, κ =

KI
KS
.

Appendix B. Behaviour of the fast subsystem

Here we demonstrate that the fast subsystem possesses only
one globally stable equilibrium point by assuming that the slow
variable g and i are roughly constants. Our main goal is to
determine the global behaviour of the fast subsystem under these
assumptions, and thus exclude the possibility that oscillationsmay
occur in this subsystem.
By letting g ≈ p1 and i ≈ p2 (p1 and p2 are constants), the fast

subsystem becomes

dc
dτ
= ζ [jin + [µ+ δq] (c0 − c)− c] (B.1)

da
dτ
= ξ

[
ι+ θs− a

]
(B.2)

ds
dτ
= φ [p1 − s] (B.3)

dq
dτ
= ψ [p2 − q] , (B.4)

where θ := θω/(ω + p2), p1 := p41/(σ
4
+ p41) < 1 and p2 :=

p21/(ρ
2
+ p21) < 1. Solving for the steady states of Eq. (B.1)-(B.4),

we obtain only one equilibrium point, given by

css =
jin + (µ+ δp2)c0
1+ µ+ δp2

, ass = ι+ θp1, sss = p1,

qss = p2.

Notice that Eqs. (B.1)–(B.4) consist of two independent dynamic
blocks; namely, (s, a)T and (q, c)T , that are completely disjoint. By
applying the substitution x1 = s − sss, x2 = a − ass, y1 = q − qss
and y2 = c − css, the origin, (0, 0)T , becomes the only equilibrium
for the two dynamic blocks{
ẋ1 = −φx1
ẋ2 = ξ(θx1 − x2)

(B.5)

and{
ẏ1 = −ψy1
ẏ2 = ζ (L1y1 − δy1y2 − L2y2),

(B.6)

where L1 := δ(c0− jin)/(1+µ+ δp2) and L2 := 1+µ+ δp2 > 1.
The dynamic block (B.5) is linear with negative eigenvalues

(λ1 = −φ and λ2 = −ξ ). Thus, its equilibrium point (0, 0)T
is globally stable. As for the nonlinear dynamic block (B.6), we
need to apply the second Lyapunov method to establish that its
own equilibrium (0, 0)T is also global stability. By choosing the
Lyapunov function

V (y1, y2) =
1
2

(
L3y21 +

1
ζ L1
y22

)
≥ 0,

for a given constant L3 > (L1 + δ)/2L1ψ , we obtain

V̇ (y1, y2) = −L3ψy21 + y1y2 −
δ

L1
y1y22 −

L2
L1
y22

≤

(
1
2
− L3ψ +

δ

2L1

)
y21 +

(
1
2
+

δ

2L1
y22 −

L2
L1

)
y22.

Observe that 12 − L3ψ +
δ
2L1

< 0, and that 12 +
δ
2L1
y22 −

L2
L1
< 0,

whenever y22 < (2L2 − L1)/δ (where, according to Table 1, (2L2 −
L1)/δ > 1). This implies that V̇ (y1, y2) < 0, for all (y1, y2)T ∈
{(y1, y2)T 6= (0, 0)T | y22 ≤ 1}. In other words, the equilibrium
point (0, 0)T is stable in that set. Moreover, by applying the same
technique used in the proof of Proposition 1, we could also show
that y2 < 1, for all τ > 0. It follows that (0, 0)T is globally stable.
The above derivations demonstrate that the solution trajecto-

ries of the fast subsystem (B.1)–(B.4) eventually converge to their
globally stable steady states. In other words, the variables of this
subsystem do not exhibit any oscillatory behaviour and thus could
hardly affect the general dynamics of the full model. This implies
that the reduction step applied in Section 3 is valid.
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