Hypoxia-Induced Energy Stress Regulates mRNA Translation and Cell Growth

Liping Liu,1,2 Timothy P. Cash,2 Russell G. Jones,2 Brian Keith,2 Craig B. Thompson,2 and M. Celeste Simon1,2,*

1Howard Hughes Medical Institute
2Abramson Family Cancer Research Institute
University of Pennsylvania School of Medicine
421 Curie Boulevard
Philadelphia, Pennsylvania 19104

Summary

Oxygen (O2) deprivation, or hypoxia, has profound effects on cell metabolism and growth. Cells can adapt to low O2 in part through activation of hypoxia-inducible factor (HIF). We report here that hypoxia inhibits mRNA translation by suppressing multiple key regulators, including eIF2α, eEF2, and the mammalian target of rapamycin (mTOR) effectors 4EBP1, p70S6K, and rpS6, independent of HIF. Hypoxia results in energy starvation and activation of the AMPK/TSC2/Rheb/mTOR pathway. Hypoxic AMP-activated protein kinase (AMPK) activation also leads to eEF2 inhibition. Moreover, hypoxic effects on cellular bioenergetics and mTOR inhibition increase over time. Mutation of the TSC2 tumor suppressor gene confers a growth advantage to cells by repressing hypoxic mTOR inhibition and hypoxia-induced G1 arrest. Together, eIF2α, eEF2, and mTOR inhibition represent important HIF-independent mechanisms of energy conservation that promote survival under low O2 conditions.

Introduction

O2 is essential for the viability and function of most metazoan organisms and closely monitored at both the organismal and cellular levels. To survive O2 deficiency, cells activate a variety of adaptive mechanisms (Hochachka et al., 1996), including inhibition of energy-costly mRNA translation (Arsham et al., 2003; Koumenis et al., 2002; Wouters et al., 2005). mRNA translation is a critical component of cell growth and proliferation that is primarily regulated at the initiation stage, namely the assembly of the m7-GTP cap binding eIF4E/eIF4A/eIF4G (eIF4F) and the 40S ribosome binding eIF2/GTP/met-tRNA ternary complexes. Formation of these complexes is closely modulated by the phosphorylation status of eIF4E binding protein (4EBP) and eIF2α and highly influenced by environmental stimuli, such as mitogens and nutrients, and environmental stresses. For example, amino acid starvation and UV irradiation inhibit protein synthesis by inducing eIF2α phosphorylation at Ser51, leading to an enhanced affinity for GDP and reduced formation of the eIF2/GTP/met-tRNA complex (Clemens, 2001; Liu and Simon, 2004). Additional regulation also occurs at translation elongation (Patel et al., 2002). Upon energy starvation, the AMPK phosphorylates eEF2 kinase (eEF2K) on Ser398 and activates its kinase activity (Browne et al., 2004). eEF2K then phosphorylates elongation factor eEF2 at Thr56, resulting in the inhibition of peptide elongation (Patel et al., 2002).

The Ser/Thr kinase mTOR integrates signals from growth factors and nutrients to regulate cell size, division, and metabolism through control of cap-dependent translation (Abraham, 2004). Phosphorylation of downstream targets p70S6K and rpS6 by mTOR results in increased ribosome biogenesis, via enhanced translation of “TOP” mRNAs encoding ribosomal proteins and elongation factors (Schmelze and Hall, 2000). mTOR also phosphorylates 4EBPs, rendering them unable to bind to and inhibit eIF4E, therefore promoting cap-dependent translation. mTOR activity is regulated by the PI3K/Akt, AMPK, and ERK pathways (Inoki et al., 2002, 2003; Ma et al., 2005), which converge at the tuberous sclerosis complex (TSC) that consists of TSC1 and TSC2 dimers (Kwiatkowski, 2003; Li et al., 2004a; Manning and Cantley, 2003). The TSC complex represses mTOR by acting as a GTPase-activating protein (GAP) toward the small GTPase Rheb (Li et al., 2004b). Whereas TSC2 phosphorylation by Akt and ERK suppresses TSC2 GAP activity (Kwiatkowski, 2003; Ma et al., 2005), TSC2 phosphorylation by AMPK enhances its activity (Inoki et al., 2002, 2003). The stress-induced proteins REDD1 and REDD2 potently inhibit mTOR signaling, and REDD1 functions downstream of Akt and upstream of TSC2 (Corradetti et al., 2005; Schwarzer et al., 2005). Multiple upstream regulators of mTOR, including PTEN, TSC1, TSC2, and LKB1, are frequently mutated in human cancers, suggesting a possible role for deregulated protein synthesis during tumor development (Tee and Blenis, 2005).

We have previously shown that modest hypoxia (1.5% O2) inhibits mRNA translation via the rapid hypophosphorylation of mTOR targets 4EBP1, p70S6K, and rpS6 (Arsham et al., 2003). More recent studies have revealed that hypoxic mTOR regulation requires the TSC1/TSC2 complex and de novo transcription and expression of REDD1 (Brugarolas et al., 2004). REDD1 and its Drosophila homolog Scylla are HIF-target genes induced by low O2 (Brugarolas et al., 2004; Reiling and Hafen, 2004). Simultaneous loss of Scylla and the related protein Charybdis decreases the survival rate of flies under low O2 (Reiling and Hafen, 2004).

Although the HIF-dependent REDD1-mediated feedback inhibition of mTOR provides insight into hypoxic regulation of mTOR, the rapid mTOR inhibition (within 1 min) by hypoxia cannot be explained by transcriptional activation of REDD1. In addition, the cellular mechanism by which hypoxia activates TSC2 has not been established nor has a role for the TSC2 substrate Rheb in this regulation been determined. In this study, we have investigated the effects of modest hypoxia (1.5% and 0.5% O2) on different regulatory steps of mRNA translation. We report that hypoxia concomitantly inhibits eIF2α and eEF2, as well as the mTOR targets 4EBP1, p70S6K, and rpS6. Our data support regulatory roles for TSC2 and HIF-inducible REDD1 during hypoxic mTOR regulation. However, we also...
demonstrate that hypoxic mTOR inhibition involves additional signaling pathways and can occur independent of HIF. Hypoxia promotes cellular energy starvation and activates the AMPK/TSC2/Rheb pathway, resulting in mTOR inhibition. TSC2 mutation in tumor cells blocks hypoxic mTOR inhibition and hypoxia-induced cell cycle arrest, thereby conferring a growth advantage under low O2. In summary, we present evidence that hypoxia induces conditions of energy starvation, which lead to inhibition of protein synthesis. Our findings indicate that AMPK and TSC2 play important roles in coupling hypoxic effects on cellular energy levels to control protein synthesis, cell growth, and proliferation.

Results

Hypoxia Inhibits Multiple Signaling Pathways Regulating mRNA Translation

Multiple reports describe hypoxic (1%–1.5% O2) and anoxic (<0.02% O2) effects on mRNA translation (Arsham et al., 2003; Blais et al., 2004; Brugarolas et al., 2004; Horman et al., 2002; Koumenis et al., 2002). Modest hypoxia can occur in various physiological and pathological conditions (embryogenesis, tumor formation, and inflammation). Therefore, we evaluated the effects of modest hypoxia (1.5% O2) on multiple regulators of protein synthesis by using serum replete HEK293 cells and rhabdomyosarcoma Rh30 cells that have been used for analyzing mTOR signaling (Dudkin et al., 2001; Inoki et al., 2003). As expected, insulin enhanced the phosphorylation of p70S6K, rpS6, and 4EBP1, whereas LY294002 and 2-deoxy-D-glucose (2-DG) resulted in hypophosphorylation of these mTOR effectors in HEK293 cells (Figure 1A). Notably, hypoxia resulted in hypophosphorylation of p70S6K, rpS6, and 4EBP1 within 6 hr, and hypophosphorylation was enhanced by extended exposure to low O2 (20 hr) in HEK293 (Figure 1A) and Rh30 cells (Figure S1A available in the Supplemental Data with this article online). Hypoxia (up to 20 hr) resulted in no change in total rpS6, 4EBP1, and p70S6K protein levels (data not shown). These results indicate that low O2 alone can effectively inhibit mTOR activity. In addition to mTOR inhibition, hypoxia also caused the hyperphosphorylation and inhibition of eIF2α (Ser51) and eEF2 (Thr56) in HEK293 (Figure 1B) and Rh30 cells (Figure S1B). These changes were detected within 2 hr and enhanced by extended hypoxia. Taken together, these data indicate that moderate hypoxia
suppressed translation by inhibiting the activity of mTOR, eIF2, and eEF2.

Both mTOR and PERK Participate in Hypoxic Inhibition of Protein Synthesis

Anoxia has been shown to rapidly reduce protein synthesis by 60%–70% within 1 hr (Kraggerud et al., 1995) and decrease the amount of polysem-associated mRNA within 4 hr (Wouters et al., 2005). To assess the effect of modest hypoxia on protein synthesis, we measured the levels of 35S-methionine (Met) incorporation in HEK293 cells grown under 1.5% O2. Despite more rapid changes in 4EBP1, eIF2α, and eEF2 phosphorylation status, hypoxia alone (up to 24 hr) did not cause any significant decrease in protein synthesis in serum-replete HEK293 cells (Figure 1C). However, ~25% and 40% reductions in protein synthesis were detected after 32 and 48 hr of hypoxia (Figure 1D). A similar delay in protein synthesis was observed in Rh30 cells where up to 24 hr hypoxia did not result in any significant drop in protein synthesis (Figure S1C). Of note, serum starvation facilitated hypoxic reduction of protein synthesis as 20%–25% decreases in 35S-Met incorporation were detected in HEK293 cells after 16 and 24 hr of hypoxia (Figure 1C). Trichloroacetic acid (TCA) precipitation and gel electrophoresis of labeled proteins yielded comparable results for these assays. Densitometric analysis showed a significant 25%–30% attenuation in protein synthesis in serum-deprived HEK293 cells after 16–24 hr of hypoxia, but not in serum replete cells (Figures S1D and S1E). This delay in protein synthesis inhibition could be due to a requirement for threshold changes (at least 3- to 4-fold) in eIF4F, eIF2, and eEF2 activities that eventually cause a significant drop in protein synthesis, especially as hypoxic mTOR inhibition becomes more pronounced as the treatment extends. Of note, HEK293 cells cultured under more stringent hypoxia (0.3% O2) exhibited a 25% reduction in protein synthesis by 6 hr (Figure 1F). This accelerated drop in translation was accompanied by 3- to 4-fold changes in 4EBP1 and rpS6 by 2 hr (Figure 1E), as opposed to changes that occurred at 6-20 hr at 1.5% O2. Furthermore, a 3-fold change in eEF2 phosphorylation occurred at 1.5% O2 at 2 hr, whereas a 20- to 30-fold change was observed at 0.5–2 hr at 0.3% O2. In contrast, we saw comparable changes in eIF2α phosphorylation at 1.5% and 0.3% O2, in agreement with published data (Koumenis et al., 2002). Serum-replete HEK293T cells, which exhibited a higher metabolic rate than HEK293 cells (indicated by a higher rate of 35S-Met incorporation), were inhibited more readily by culture at 1.5% O2. Approximately 20%–25% reductions were detected as early as 16 hr in HEK293T cells (Figure S1C). These results suggest that intracellular ATP levels could influence changes in protein synthesis rates in hypoxic cells. Additionally, hypoxic mTOR inhibition is enhanced by a further decrease in O2 levels and growth factor withdrawal.

The endoplasmic reticulum (ER)-resident kinase PERK, which is activated by ER stress, has been shown to inhibit mRNA translation by phosphorylating eIF2α on Ser51 (Harding et al., 1999). Severe hypoxia activates PERK in a number of cell types (Koumenis et al., 2002). Loss of PERK activity in MEFs significantly attenuated hypoxic inhibition of mRNA translation, as indicated by only a 25% decrease in PERK−/− MEFs relative to a 55% decrease observed in PERK+/+ MEFs after 48 hr exposure to 1.5% O2 (Figure S1F). This difference strongly suggests that both the mTOR and eIF2α pathways contribute to hypoxia-induced translation inhibition.

Hypoxic Inhibition of mTOR Can Occur Independent of HIF

Brugarolas et al. (2004) recently reported that TSC2 and the HIF target gene REDD1 are necessary and sufficient for hypoxic mTOR inhibition. This is in contrast to our previous report that hypoxia downregulates mTOR activity within 15 min (Arsham et al., 2003). Therefore, we evaluated the role of HIF and HIF-inducible REDD1 in hypoxic mTOR inhibition by using wild-type (wt) MEFs or those carrying a null mutation for the aryl hydrocarbon nuclear translocator (ARNT), the protein that forms heterodimeric DNA binding complexes with HIF-1α or HIF-2α. HIF activity, examined by a hypoxia response element (HRE)-luciferase reporter assay, was completely abolished in ARNT−/− MEFs (Figure S2A), confirming that hypoxic induction of HIF activity is absent in ARNT−/− MEFs. Hypoxia (0.5 hr) resulted in marked hypophosphorylation of 4EBP1, p70 S6K, and rpS6 in ARNT−/− MEFs (Figure 1G), clearly indicating that HIF activity and REDD1 induction are not necessary for the rapid effect of hypoxia on mTOR, especially as REDD1 is induced solely by HIF under hypoxia (Schwarzer et al., 2005). Actinomycin D, a Pol II transcription inhibitor, effectively blocked hypoxic mTOR inhibition (Figure S2B) (Brugarolas et al., 2004). However, treatment with actinomycin D also resulted in hyperphosphorylation of p70 S6K, rpS6, and 4EBP1 under both normoxic and reoxygenation conditions (Figure S2B). The latter observation is consistent with a report that actinomycin D has a stimulatory effect on p70 S6K and rpS6 (Loreni et al., 2000). Thus, the effects of actinomycin D on hypoxic mTOR inhibition could in part result from mTOR stimulation by actinomycin D.

Interestingly, whereas p70 S6K and rpS6 were hypophosphorylated in both ARNT+/+ and ARNT−/− MEFs throughout the 20 hr of hypoxic treatment, hypophosphorylation was partially reversed within 2 hr in ARNT+/+ MEFs. This reversal was not observed until 10 hr in ARNT+/+ MEFs (Figure 1G). We hypothesize that the reduced mTOR inhibition detected in ARNT−/− MEFs (2–10 hr) could be due to the loss of REDD1-mediated mTOR inhibition. The biphasic hypoxic mTOR inhibition described here is likely caused by different mechanisms. Although HIF-induced REDD1 activity appears to contribute to hypoxic mTOR inhibition, our data indicate that HIF activity is not necessary for hypoxic mTOR regulation.

Hypoxia Affects Cellular Bioenergetics and Activates AMPK

Given that O2 levels regulate oxidative phosphorylation and that AMPK plays an important role in regulating cellular energy homeostasis (Hardie et al., 2003), we investigated the effect of hypoxia on cellular energy status and AMPK activity. AMPK is activated through binding of AMP and subsequent phosphorylation by upstream kinases at a threonine residue within the activation loop of the catalytic α subunit (Thr172 in human AMPK)
As shown in Figure 2A, exposure to 1.5% O₂ resulted in a mild AMPK hyperphosphorylation at Thr172 in serum replete HEK293 cells. Hyperphosphorylation of AMPK targets acetyl-coA carboxylase (ACC), and eEF2 was more readily detected at all time points examined in both HEK293 (Figure 2A) and Rh30 cells (Figure S3B). Phosphorylation of these effectors in HEK293 cells (including AMPK) was further enhanced when O₂ tension was decreased to 0.5% (Figure S3A). These results indicate that low O₂ alone can activate AMPK and that hypoxic AMPK stimulation is affected by the severity of O₂ deprivation.

Hypoxia, when coupled with serum starvation, promoted AMPK, ACC, and eEF2 hyperphosphorylation within 30 min to levels comparable to those induced by 2-DG (Figure 2D). Furthermore, hypoxia resulted in more rapid and significant levels of mTOR inhibition in serum-starved cells when compared with serum replete HEK293 cells. Hypophosphorylation of 4EBP1 and rpS6 was readily detected as quickly as 30 min after a 2 hr serum depletion (Figures 2A and 2D and data not shown). These changes increased as hypoxic treatment extended. Serum deprivation alone did not cause any significant change in AMPK activity under normoxia (0–6 hr). However, we observed mild increases in AMPK and ACC phosphorylation after 20 hr of normoxia, possibly due to reduced glucose in the culture medium at this time point (Figure 2D). Hypoxic AMPK activation did not correlate with any significant increase in LKB1 autophosphorylation on Thr189, an AMPKK that has been shown to phosphorylate AMPK (data not shown) (Carling, 2004). Furthermore, Akt activity measured by phosphorylation on Ser473 was only slightly reduced by 6–20 hr hypoxia in HEK293 cells in both serum replete and serum-depleted conditions (data not shown). The latter suggests that the rapid hypoxic mTOR inhibition is unlikely to be caused by the PI3K/Akt cascade.

Although 1.5% O₂ caused a modest hyperphosphorylation of AMPK, ACC, and eEF2, this level of O₂ did not correlate with any significant decrease in cellular ATP over a 20 hr time course in serum replete HEK293 cells (Figure 2B). In contrast, a statistically significant 18% drop occurred at 2 hr in serum-starved cells, whereas a 50% drop in ATP levels was observed after 20 hr of...
hypoxia (Figure 2E). Moreover, 20 hr of hypoxia resulted in an 47% increase in the ADP:ATP ratio in serum replete cells (Figure 2C) and 30% and 55% increases in ADP/ATP after 2 hr or 20 hr of hypoxia in serum-depleted conditions (Figure 2F). Hypoxia-induced changes in ADP/ATP were comparable to those caused by both 25 mM 2-DG and staurosporine, which inhibit intracellular bioenergetics (Figures S3C and S3D). Taken together, our results indicate that extended hypoxia regulates cellular bioenergetics and that AMPK is activated by hypoxia, possibly as a consequence of increases in the intracellular ADP:ATP ratio. A combination of hypoxia and growth factor withdrawal further promotes the changes in ATP levels and AMPK activity, rendering AMPK a better substrate for LKB1.

AMPK Inhibits mTOR and eEF2 during Hypoxia
To investigate the effect of AMPK activation on hypoxic mTOR modulation, serum-depleted HEK293 cells were treated with the AMPK inhibitor compound C (2 μM or 10 μM) then exposed to 21% or 1.5% O₂. As shown in Figure 3, the AMPK inhibitor effectively blocked 4EBP1, p70S6K, and rpS6 hypophosphorylation by 2-DG (Figure 3A) and low O₂ (Figure 3B), restoring 4EBP1, p70S6K, and rpS6 phosphorylation to levels similar to those observed under normoxic conditions. Compound C itself had a negligible effect on mTOR signaling under normoxia (Figure 3B). In addition, compound C blocked AMPK activation as evidenced by decreased AMPK, ACC, and eEF2 phosphorylation (Figure 3C), indicating that hypoxic activation of eEF2K by AMPK results in the phosphorylation and inhibition of eEF2.

Methylpyruvate (MP) has been shown to be efficiently metabolized by mitochondria, resulting in increased ATP generation (Jijakli et al., 1996). HEK293 cells were preincubated with 10 mM MP prior to 2-DG or low O₂ treatment. MP effectively suppressed eEF2 hyperphosphorylation and 4EBP1 and rpS6 hypophosphorylation caused by hypoxia and 2-DG (Figure 3D). These results strongly support a role for energy depletion as the cause of AMPK activation in hypoxic cells. To further verify the role of AMPK in hypoxia-mediated inhibition of mTOR, we generated HEK293 clones stably expressing the wt or a dominant-negative K45R mutant (Figure 4A) (Yeung, 2004). Therefore, we employed two TSC2 knockout cell lines (ERC15, a renal carcinoma cell line, and ELT3, a uterine smooth muscle cell line) and a TSC2+/− cell line (TRKE2, a kidney epithelial cell line) from wt rats. Expression of the functional full-length TSC2 protein is absent in ERC15 and ELT3 cells but readily detected in TRKE2 cells (Figure 5A).

Basal levels of p70S6K and rpS6 phosphorylation were lower in the TSC2−/− TRKE2 cells compared to that of TSC2+/− ERC15 and ELT3 cells (Figure 4A), confirming the loss of TSC2 activity in mutant cells. p70S6K and rpS6 were readily hypophosphorylated in cells treated with the PI3K inhibitor LY294002 (Figure 4A) and rapamycin (data not shown) in all three cell lines. Although p70S6K and rpS6 phosphorylation was effectively reduced by 2-DG in TRKE2 cells, TSC2 mutations in ERC15 and ELT3 cells effectively abrogated this change (Figure 4A). This result confirms that mTOR signaling is refractory to energy stress in TSC2 null cells.

Hypoxia (0.5% O₂) caused a marked increase in AMPK and ACC phosphorylation in serum-starved TSC2−/− ELT3 cells (Figure 4B), indicating a regulatory effect of the TSC2 gene and a subsequent loss of heterozygosity (Yeung, 2004). Therefore, we employed two TSC2−/− cells derived from mutant rats (ERC15, a renal carcinoma cell line, and ELT3, a uterine smooth muscle cell line) and a TSC2+/− cell line (TRKE2, a kidney epithelial cell line) from wt rats. Expression of the functional full-length TSC2 protein is absent in ERC15 and ELT3 cells but readily detected in TRKE2 cells (Figure 5A).

Basal levels of p70S6K and rpS6 phosphorylation were lower in the TSC2−/− TRKE2 cells compared to that of TSC2+/− ERC15 and ELT3 cells (Figure 4A), confirming the loss of TSC2 activity in mutant cells. p70S6K and rpS6 were readily hypophosphorylated in cells treated with the PI3K inhibitor LY294002 (Figure 4A) and rapamycin (data not shown) in all three cell lines. Although p70S6K and rpS6 phosphorylation was effectively reduced by 2-DG in TRKE2 cells, TSC2 mutations in ERC15 and ELT3 cells effectively abrogated this change (Figure 4A). This result confirms that mTOR signaling is refractory to energy stress in TSC2 null cells.

Hypoxia (0.5% O₂) caused a marked increase in AMPK and ACC phosphorylation in serum-starved TSC2−/− ELT3 cells (Figure 4B), indicating a regulatory effect of
hypoxia on cellular bioenergetics and AMPK activity. In addition, 20 hr of hypoxia resulted in hypophosphorylation of 4EBP1 in all three cell types. This is indicated by the shift of 4EBP1 from the more hyperphosphorylated γ form to the less phosphorylated α and β forms (Figure 4C). We also observed an enhanced binding of eIF4E to 4EBP1 in all three cell types (data not shown). These results suggest that TSC2 is not absolutely required for hypoxic inhibition of 4EBP1. Hypoxia resulted in p70 S6K and rpS6 hypophosphorylation in serum-starved TSC2+/+ TRKE2 cells after 6–20 hr, confirming that mTOR inhibition by hypoxia could proceed independently of TSC2. However, p70S6K and rpS6 hypophosphorylation was greatly reduced in TSC2−/− cells relative to TSC2+/− cells, especially after 0.5–2 hr hypoxia (Figures 4D–4F). Taken together, these data indicate that TSC2 can regulate protein synthesis during hypoxia and that serum starvation exacerbates this response.

Rheb Regulates Hypoxic mTOR Inhibition
Recent genetic studies in yeast, Drosophila, and mammalian cells have placed Rheb downstream of TSC1/TSC2 in the control of mTOR activity. Biochemical analyses also show that Rheb is a physiological substrate for the GAP activity of TSC2 (Li et al., 2004b). To investigate whether hypoxia-mediated mTOR inhibition involves Rheb, we examined the phosphorylation status of mTOR effectors in serum-starved HEK293 cells overexpressing Rheb under 1.5% O2. As shown in Figure 5D, expression of Rheb in HEK293 cells induced a modest increase in basal rpS6 phosphorylation. Importantly, it also effectively blocked 4EBP1 and rpS6 hypophosphorylation during 20 hr of hypoxia, indicating that Rheb also mediates hypoxic mTOR regulation.

Hypoxic Regulation of Cell Growth and Proliferation Requires TSC2
In addition to its regulatory effects on mRNA translation, the TSC1/TSC2 complex negatively modulates cell growth and proliferation (Potter et al., 2001; Tapon et al., 2001). Moreover, low O2 alters cell proliferation by inducing cell cycle arrest or programmed cell death (Godar et al., 2003; Schalmot et al., 1998). TSC2 deletion results in abnormally high levels of proliferation under hypoxic conditions (Brugarolas et al., 2004), suggesting that TSC2 plays a key role in the control of cell proliferation under low O2. To investigate the role of TSC2 in...
hypoxic control of cell survival, size, and proliferation, we examined the cell cycle profile of TSC2+/+ TRKE2 cells and TSC2−/− ERC15 cells by bromodeoxyuridine (BrdU)/propidium iodide (PI) staining. As shown in Figure 6A, 24 hr of hypoxia significantly reduced the proliferation rate of TSC2+/+ TRKE2 cells (Figure 6A), an effect that was abrogated in cells lacking TSC2 (Figure 6B). The percentages of TSC2 null ERC15 cells (stably transfected with either vector or the N1643K mutant) in S phase were not changed by low O2 relative to normoxia. However, expression of wt TSC2 (T3 and T21) effectively restored hypoxic cell cycle arrest (Figure 6B and 6C). As shown in Figure 6B, the reduction of cells in S phase corresponded to a ~22% increase in cells in the G1 phase of the cell cycle. These data suggest that loss of TSC2 confers a proliferative advantage to cells under hypoxic conditions, allowing them to overcome hypoxia-induced G1 arrest.

We next investigated the effect of hypoxia and TSC2 on cell survival and cell proliferation by using a colony formation assay. ERC15 cells transfected with empty vector, wt TSC2, or mutant TSC2 were grown in the presence of 10% serum under 21% or 0.5% O2 for 7 days. Similar numbers of cell colonies were observed among ERC15 cells treated under normoxia or hypoxia (Figure 6D), suggesting that neither hypoxia nor loss of TSC2 resulted in any significant cell death during this 7 day treatment. Interestingly, hypoxia caused decreases in overall colony size (Figure 6D). Expression of wt TSC2 in TSC2−/− ERC15 cells promoted a further reduction in colony size. We then examined whether the difference in colony size was the result of changes in cell size. As shown in Figures 6E and 6F, TSC2 inactivation resulted in increased cell size. TSC2−/− ERC15 cells expressing control vector (Vec) or the GAP mutant (DN4) were ~6% larger than wt TSC2 expressing cells (T3 and T21). The 7 day hypoxia treatment significantly decreased cell size in all cell types. TSC2 did not show any additive effect with hypoxia on cell size; a 10% decrease in cell size was observed in all ERC15 cell lines regardless of TSC2 status. This result suggests that, although TSC2 plays an important role in mediating hypoxic mTOR inhibition, especially the early response, it has a less significant effect on cell mass accumulation under chronic hypoxic conditions. Because the differences in colony size cannot be explained by changes in cell size, our data demonstrate that tumor cells lacking TSC2 have a significant proliferative advantage under low O2, and this enhanced proliferation is likely due to escape from hypoxia-induced G1 cell cycle arrest.

Discussion

We report here several mechanisms of HIF-independent hypoxic regulation of protein synthesis and cell growth: (1) hypoxia-induced cellular energy depletion, (2) mTOR inhibition via the AMPK/TSC2/Rheb pathway, (3) eEF2 inhibition mediated by AMPK, and (4) induction of ER stress that leads to eIF2α inhibition (Figure 7). AMPK inhibition, TSC2 null mutation, and Rheb overexpression all suppress hypoxic mTOR inhibition. Mutations of TSC2 in tumor cells promote cell growth under low O2 by overcoming hypoxia-induced mTOR inhibition and G1 cell cycle arrest.

HIF activity and HIF-inducible REDD1 have been previously implicated as necessary for hypoxia-induced
mTOR regulation (Brugarolas et al., 2004). However, although our data support a regulatory role for HIF in this hypoxic signaling, we demonstrate that hypoxic mTOR inhibition can occur independent of HIF. The latter is demonstrated by the rapid mTOR inhibition in both ARNT+/+ and ARNT−/− MEFs. Our data support a regulatory role for TSC2 during hypoxic mTOR inhibition. More importantly, we provide a molecular basis for TSC2 regulation, namely hypoxia-induced energy starvation and activation of the AMPK/TSC2/Rheb pathway. We propose that hypoxic mTOR regulation involves multiple pathways, including energy-dependent control mediated by AMPK/TSC2/Rheb, inhibition by the HIF/REDD1/2 pathway, and TSC2-independent mTOR inhibition (Figure 7).

Protein synthesis consumes a great deal of ATP. Thus, a physiological consequence of hypoxia is the rapid change in signaling events controlling protein synthesis. We report such inhibitory signaling changes, as indicated by the concomitant inhibition of eIF2α, eEF2, 4EBP1, p70S6K, and rpS6, within 30 min. Whereas eIF2α inhibition is likely induced by ER stress via PERK, eEF2 and mTOR inhibition involves AMPK. In contrast to the rapid signaling changes, we observed a delay (between 24 and 32 hr) in the direct inhibition of 35S-Met incorporation itself by using multiple cell lines. This delay suggests that signaling events occur ahead of a manifested biological change. The delay in protein synthesis inhibition likely results from the requirement of threshold amounts of signaling changes and from compound effects of multiple stresses such as hypoxia and depletion of growth factors, amino acids, and glucose in the culture medium. This is supported by the acceleration of hypoxia-induced inhibition in protein synthesis by growth factor withdrawal or more stringent hypoxia (Figures 1C, 1F, and 5C). We observed changes in protein synthesis when ADP:ATP achieved a ratio of 65%. It is noteworthy that the vast majority of solid tumors are characterized by insufficient vasculature and heterogeneous oxygenation. This combination of stresses may mimic the environment in solid tumors where cells experience chronic depletion of O2, growth factors and
glucose. Therefore, the energy starvation and protein synthesis inhibition reported here may reflect the outcome of combined stresses experienced by cells within solid tumors.

Multiple reports have shown that AMPK is critical for coordinating cell growth, proliferation, and survival under energy starvation conditions. Phosphorylation of TSC2 by AMPK protects cells from energy deprivation-induced apoptosis (Inoki et al., 2003). AMPK also coordinates cellular bioenergetics with the metabolic demands of cell proliferation by inducing a p53-dependent cell cycle checkpoint (Jones et al., 2005). Induction of this metabolic arrest promotes cell survival. We show here that AMPK acts as a hypoxic energy sensor and is stimulated by the changes in cellular energy status induced by low O2. AMPK inhibits ATP-consuming anabolic processes during hypoxia such as mRNA translation and lipid biosynthesis, as reflected by hyperphosphorylation of eEF2 and ACC in our studies. It could also upregulate ATP-generating catabolic processes such as lipid peroxidation and glycolysis. Thus, the AMPK-mediated mechanisms for energy maintenance could be a cellular mechanism for survival during hypoxia. Although it remains to be examined whether or not AMPK plays a role in hypoxic G1 arrest, hypoxia-induced cell cycle arrest observed in our studies is likely another survival mechanism induced under this energy-deficient state. Tumor cells could take advantage of these mechanisms to survive energy deprivation, until hypoxia-stimulated adaptations such as angiogenesis and glycolysis allow for the reestablishment of energetic balance.

AMPK appears not to be required for hypoxic mTOR regulation in some cases (Arsham et al., 2003; Brugarolas et al., 2004). It is worth noting that experimental conditions, such as the duration of hypoxic stress, the severity of hypoxia, and the availability of growth factors all affect changes in AMPK activity caused by hypoxia. AMPK is a heterotrimeric complex comprised of a catalytic \(\alpha \) subunit and regulatory \(\beta \) and \(\gamma \) units, and each subunit exists in two to three isoforms. The enzyme, when composed of different subunits in different cell types, may respond with varying sensitivity to AMP changes, resulting in different levels of stimulation (Hardie et al., 2003). Moreover, different cells may vary in their relative levels of AMP and ATP during hypoxia, therefore responding differently to energy starvation. Thus, although the AMPK/TSC2/Rheb/mTOR pathway represents an important mechanism for mTOR regulation under chronic hypoxia, distinct cell types may be regulated differently by hypoxia.

Our data clearly demonstrate that TSC2 is involved in hypoxic inhibition of translation and cell growth. Our data clearly demonstrate that TSC2 is involved in hypoxic inhibition of translation and cell growth. TSC2 mutation in tumor cells greatly impede hypoxia-induced mTOR inhibition and G1 arrest. Thus, hypoxic translational control may ultimately affect cell growth and proliferation under low O2.
further demonstrate that TSC2 mutations confer a proliferative advantage to tumor cells by abrogating hypoxia-induced G1 arrest. This change in the cell cycle profile cannot be explained by modulation of cyclin D1 or p27, as hypoxia reduces cyclin D1 and enhances p27 levels regardless of their TSC2 status (data not shown).

More investigation is needed to determine the mechanism by which TSC2 mutation abrogates hypoxic cell cycle arrest. Our data suggest that the growth advantage of TSC2 null tumor cells under low O2 does not result from increases in cell size. Although chronic hypoxia significantly reduces cell size, TSC2 mutation does not block this change. The lack of any significant effect of TSC2 on hypoxic cell size regulation could result from TSC2-independent mTOR inhibition and translational regulation under hypoxia. Alternatively, the lack of cell size regulation may simply be related to the enhanced proliferation of TSC2−/− cells under low O2, especially because cell size is coupled to both cell growth and proliferation.

In summary, we demonstrate that hypoxia controls protein synthesis by concomitantly inhibiting multiple key translational regulators independent of HIF activity. Inhibition of mTOR and eEF2 involves an AMPK-dependent mechanism triggered by hypoxic energy starvation. Although hypoxic mTOR regulation is mediated by multiple mechanisms, the AMPK/TSC2/Rheb pathway represents an important mechanism for HIF-independent control of translation, especially during chronic hypoxia. TSC2 is also important for hypoxic regulation of cell growth, and loss of TSC2 function allows cells to escape hypoxia-induced mTOR inhibition and cell cycle arrest. Targeting components of these regulatory pathways may disrupt the growth and proliferation of tumor cells and hamper their ability to adapt to hypoxia in vivo.

Experimental Procedures

Materials

Anti-TSC2 (C-20) and anti-actin were from Santa Cruz Biotechnology. Anti-Flag was from Sigma. All other antibodies were purchased from Cell Signaling technology. TRKE2 cDNA was generated by RT-PCR and cloned into pcDNA3 vector provided by Dr. Kwiatkowski at Harvard University. Rh30 cells were from Dr. P.J. Arsham, A.M., Howell, J.J., and Simon, M.C. (2003). A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J. Biol. Chem. 278, 29655–29660.

References

Acknowledgments

We thank Doug Lin for technical assistance. Special thanks to John Gordan, Bryan Barnhart, Regina Young, and Chengjun Hu for thoughtful discussions and reading of the manuscript. This research was supported by National Institutes of Health Grant PO1 CA 104838 and the Abramson Family Cancer Research Institute, M.C.S. is an investigator of the Howard Hughes Medical Institute.

Received: July 28, 2005

Supplemental Data

Supplemental Data include four figures and can be found with this article online at http://www.molecule.org/cgi/content/full/214/521/DC1/.

Supplemental Data

ATP and ATP/ADP Measurements

Levels of ATP or ADP/ATP ratio in HEK293 cell extracts were determined by ATP bioluminescence assay kit CLS II (Roche Applied Science) and ApoGlow assay kit (Cambrex), respectively.

BrdU Labeling

ERC15 cells were labeled with 10 μM bromodeoxyuridine (BrdU) for the last 45 min of treatment after exposure to normoxia (21% O2) or hypoxia (0.5% O2) for 24 hr. Cells were fixed with ice cold 70% ethanol and stained with propidium iodide (10 μg/ml) and Alexa Fluor 488 conjugated anti-BrdU antibody (Molecular Probes) and analyzed by flow cytometry (Becton Dickinson).

Statistical Analysis

Results are average ± standard error of mean (SEM) of six to eight samples from two independent studies. Statistic analyses were done by two-tailed Student’s t test. Error bars represent SEM for Figures 1, 2, 5, and 6. Statistical significance was defined as * and **p < 0.05, ***p < 0.01.
Hypoxic Inhibition of Translation and Cell Growth

Lang, K.J., Kappel, A., and Goodall, G.J. (2002). Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol. Biol. Cell 13, 1792–1801.

