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Abstract

Injection of a brief stimulus pulse resets the spontaneous periodic activity of a sinoatrial node cell: a stimulus delivered early in the
cycle generally delays the time of occurrence of the next action potential, while the same stimulus delivered later causes an advance.
We investigate resetting in two models, one with a slow upstroke velocity and the other with a fast upstroke velocity, representing
central and peripheral nodal cells, respectively. We first formulate each of these models as a classic Hodgkin—Huxley type of model
and then as a model representing a population of single channels. In the Hodgkin—Huxley-type model of the slow-upstroke cell the
transition from delay to advance is steep but continuous. In the corresponding single-channel model, due to the channel noise then
present, repeated resetting runs at a fixed stimulus timing within the transitional range of coupling intervals lead to responses that
span a range of advances and delays. In contrast, in the fast-upstroke model the transition from advance to delay is very abrupt in
both classes of model, as it is in experiments on some cardiac preparations (“‘all-or-none” depolarization). We reduce the fast-
upstroke model from the original seven-dimensional system to a three-dimensional system. The abrupt transition occurs in this
reduced model when a stimulus transports the state point to one side or the other of the stable manifold of the trajectory
corresponding to the eigendirection associated with the smaller of two positive eigenvalues. This stable manifold is close to the slow
manifold, and so canard trajectories are seen. Our results demonstrate that the resetting response is fundamentally continuous, but
extremely delicate, and thus suggest one way in which one can account for experimental discontinuities in the resetting response of a
nonlinear oscillator.
© 2004 Elsevier Ltd. All rights reserved.
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“It is my belief that the life sciences in particular have
much to gain from, and perhaps something to con-
tribute to, mathematical developments in the general
area of topology”. Winfree (1980).

1. Introduction

One of the central premises of Art Winfree’s master-
piece, The Geometry of Biological Time (Winfree, 1980,
2000), is that the language of topologists can be used to
“extract from models or from observations what seems
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to be the essence of their behavior, independent of
quantitative variations”. This attitude, which was
revolutionary in 1980, is perhaps even more so today.
The exponential growth of computer power, combined
with refined experimental methods, makes it possible to
develop increasingly accurate mathematical models of
the behaviors of biological systems at all size scales
ranging from the subcellular to the ecological. But
computations with a mathematical model that can
simulate perfectly the behavior of some biological
system under a given experimental condition might
offer no more insight than simply carrying out the
experiment.

The topological approach offers almost magical
insights into the analysis of the resetting of biological
oscillators. In a resetting experiment, a stimulus is
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delivered to an oscillator and its effects on the oscillator
are characterized as the magnitude and timing of the
stimulus are systematically varied. Resetting experi-
ments have been undertaken in all fields of biology in
which oscillations are found (Winfree, 1980, 2000).
Winfree showed that under the assumption that the
oscillation can be described by a differential equation,
the types of resetting response that are found can be
characterized topologically. Consequently, it is possible
to make predictions about the response of biological
oscillations to perturbation even without knowing
anything about the details of the biology. Indeed, the
qualitative, topological features of the resetting ob-
served in some very simple models are amazingly similar
to those which are observed in experiments. In
particular, this topological approach of Winfree’s
stimulated experimentalists to successfully search for
two important phenomena in cardiac electrophysiology:
annihilation (the permanent cessation of spontaneous
activity in a cardiac pacemaker induced by injection of a
well-timed stimulus pulse (Jalife and Antzelevitch,
1979)) and the induction of spiral-wave reentry in a
distributed medium by a similarly well-timed stimulus
(Chen et al., 1988).

In an effort to test the predictions of the topological
approach, and also to compute the effects of periodic
stimulation on cardiac oscillators, our group has
characterized the resetting of electrical activity in
spontaneously beating aggregates of embryonic chick
ventricular cells (Glass et al., 1984; Guevara et al.,
1986). One set of data, shown in Fig. 1. (reproduced
from Guevara et al., 1986) poses a problem for the
topological approach. Fig. 1 shows the resetting effect of
a single current pulse delivered to a spontaneously
beating aggregate at three different times in the cycle.
When the stimulus is delivered on several trials at 141 ms
after the upstroke of the immediately preceding action
potential (Fig. 1A, top panel), then the timing of the
next action potential is always delayed, i.e. the action
potential following the stimulus occurs later than one
would expect from the unperturbed oscillation. In
contrast, when the same stimulus is delivered at 143 ms
after the action potential (Fig. 1A, bottom panel), the
timing of the next action potential is always advanced,
since the action potential occurs promptly after delivery
of the stimulus. However, when the stimulus is delivered
many times at 142 ms after an action potential (Fig. 1A,
middle panel; Fig. 1B), either one or the other of these
two responses is observed (i.e. no intermediate responses
are seen). Further, at the end of the trace, which occurs
several cycle lengths following delivery of the stimulus,
there is still a distinct maintained difference between the
two sets of responses (Fig. 1A, middle panel).

Our goal in this article is to make clear why the
observations in Fig. 1 pose a sharp problem for the
topological approach, to suggest an explanation of the
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Fig. 1. Resetting experiment in a spontaneously beating aggregate of
embryonic chick ventricular heart cells (diameter=149 um). The
transmembrane potential is plotted as a function of time. (A) A
depolarizing stimulus of amplitude 27nA and duration 20ms is
delivered multiple times at a coupling interval 7. (time from the
immediately preceding action potential upstroke to the start of the
stimulus) indicated above each set of traces. (B) Zoom-in on the 11
trials conducted at a coupling interval of 142ms: three of these
produced prolongation of cycle length; the other 8 produced
abbreviation. Superimposed traces are aligned on the upstroke of the
action potential occurring immediately before stimulus injection.
Notice that the individual traces in (A) are so close that they are
indistinguishable for the first few cycles. The large off-scale voltage
deflections during delivery of the stimulus pulse are artifact due to the
fact that the same intracellular microelectrode is used to deliver the
stimulus current as to record the transmembrane potential, with
imperfect bridge-balance. Adapted from Guevara et al. (1986) with
permission.

observed behavior, and to consider the implications of
these observations. In Section 2, we give the necessary
definitions and notation for presenting data from
resetting experiments. In Section 3, we develop two
different classes of mathematical models for simulating
cardiac oscillations (a classic Hodgkin—Huxley-type
model and a model composed of a population of single
channels). The results of simulations using these models
are presented in Section 4 and discussed in Section 5.

2. Mathematical background for analysis of resetting
data

Since biological oscillations often have quite station-
ary periods and amplitudes (e.g. the coefficient of
variation (standard deviation/mean) of the interbeat
interval of an isolated sinoatrial node pacemaker cell is
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on the order of 2.0% (Wilders and Jongsma, 1993)), it is
usual to associate the oscillation with a stable limit cycle
in the phase space of some appropriate nonlinear model
of the oscillation (Winfree, 1980, 2000). Recall that a
stable limit cycle is a periodic solution of a differential
equation that is attracting in the limit of r— oo for all
points in a neighborhood of the limit cycle. Say that the
period of the oscillation is Ty,. We will designate an
arbitrary point on the limit cycle to be the fiducial point,
with the phase (¢) at that point being zero. Starting a
trajectory from that point at ¢ = 0, the phase of any point
on that trajectory (which will follow the limit cycle) at a
subsequent time ¢ > 0 is defined to be ¢ = ¢t/ T (mod 1).
The phase here is thus constrained to lie between 0 and 1;
to convert it to radians multiply it by 2.

The set of all initial conditions that attract to the limit
cycle in the limit #— oo is called the basin of attraction of
the limit cycle. Let a point x(#) be on the limit cycle at
time ¢ and another point y(#) be in the basin of attraction
of that limit cycle. Denote the distance between x and y
by d[x, y]. Let the phase of x at t = 0 be ¢. Then, if in the
limit ¢— oo, d[x(t), y(£)] =0, the latent or asymptotic or
eventual phase of y(¢) is also ¢. We say that y(¢) is on the
same W-isochron as x(t). The development of the
concept of W-isochrons and the recognition of their
significance is due to Winfree (Winfree, 1970, 1980,
2000). Many mathematical results concerning W-iso-
chrons were established by Guckenheimer (Guckenhei-
mer, 1975), who considered dynamical systems in n-
dimensional Euclidean space.

We now consider the effect of a stimulus delivered to
a biological oscillator. In general, delivery of a stimulus
will perturb the state of the oscillator, so that its period
transiently changes, but with the initial period becoming
reestablished asymptotically in time. This process
corresponds to the stimulus perturbing the state point
of the system away from the limit cycle, followed by the
asymptotic return of the state point back to the limit
cycle. However, the trajectory will in general asympto-
tically approach a point on the limit cycle that has a
different phase (the new phase) from that of the initial
starting point on the limit cycle (the old phase). There
will thus be a resetting of the phase of the oscillation
(phase-resetting). Assume that a perturbation delivered
to an oscillation at an (old) phase ¢ shifts the oscillation
to a new phase ¢(¢). The function ¢(¢) is called the
phase transition curve. The following Continuity Theo-
rem summarizes important aspects of the effects of a
stimulus on limit cycle oscillations in ordinary differ-
ential equations (Guckenheimer, 1975) and partial
differential equations (Gedeon and Glass, 1998). If a
stimulus of a given amplitude delivered at any old phase
of a limit-cycle oscillation leaves the state point within
the basin of attraction of that asymptotically stable limit
cycle, then the phase transition curve will be continuous
for that stimulus amplitude.

The phase transition curve g(¢) is a circle map g :
S!'— S!. Circle maps can be continuous or discontin-
uous. A continuous circle map f(¢) can be characterized
by its (topological) degree or winding number. The degree
of f(¢) is the number of times that f(¢) wraps around
the unit circle as ¢ goes around the circle once. For very
weak perturbations, g(¢)~¢ by continuity, and the
degree of the phase transition curve is 1. In many
instances, as Winfree discusses (Winfree, 1970, 1980,
2000), the degree of the phase transition curve is 0 when
the stimulation is sufficiently strong. If the degree of the
resetting curve is 1 for weak stimuli and 0 for strong
stimuli, there must be an intermediate stimulus strength
(or range of strengths) that will result in the state point
of the system being perturbed to a location outside of
the basin of attractor of the limit cycle—though whether
the trajectory eventually reattains the limit cycle
depends on whether the stimulus perturbs the state
point into the basin of attraction of yet another stable
attractor. Similarly, if the phase transition curve is truly
discontinuous there must be a stimulus phase or range
of stimulus phases that will result in the state point being
perturbed outside of the basin of attraction of the limit
cycle (Gedeon and Glass, 1998).

In phase space, a curve can be constructed that is the
locus of state points at the end of a stimulus for any old
phase. This curve is the shifted cycle. In the case where
the shifted cycle intersects all the W-isochrons of the
limit cycle, there is type 1 resetting. On the other hand, if
the stimulus is of sufficiently strong amplitude to move
the shifted cycle to a location where it no longer
intersects all W-isochrons, type 0 resetting will occur
(see further discussion in Guevara and Jongsma, 1990).

These abstract notions can be directly translated into
a protocol that allows the phase transition curve to be
experimentally determined. A typical resetting simula-
tion for a cardiac pacemaker is shown in Fig. 2. In this
case a depolarizing stimulus is given at a coupling
interval ¢., which is measured from the crossing of the
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Fig. 2. Notation for resetting protocol in a schematic sinoatrial node
cell. A depolarizing stimulus is given at a coupling interval 7. after the
crossing of 0 mV on the upstroke of the second action potential. The
(old) phase of the cycle at which the stimulus is delivered is 7./ Tj. This
stimulus causes a delay, with the first perturbed cycle length, 77, being
larger than the unperturbed period, 7.
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0mV level on the immediately preceding action poten-
tial upstroke to the onset of the stimulus pulse. This
positive-going crossing of O0mV corresponds to the
fiducial point on the limit cycle having an old phase
(¢p) of zero. In the case of Fig. 2, the stimulus causes
the interbeat interval to be prolonged (i.e. 77 > Ty). The
intervals T}, T, and T3 in the figure are defined as
the times between the initial crossing of OmV on the
upstroke of the action potential and subsequent
positive-going crossings of 0mV (the event marker).
We will refer to the interval 7T as the perturbed cycle
length. With the definitions in the figure, the old phase ¢
and the i-th transient new phases ¢;, i=1 are given by

le
¢ = Ty (mod 1),
b, = ¢+M(mod D). (1)
Ty

The new phase is defined to be ¢; in the limit i — co.
Also in the limit i— oo, T;.; — T;— Ty as the perturbed
trajectory asymptotically approaches the limit cycle.

With this background we can now pose the dilemma
presented by the data in Fig. 1. The experimentally
determined phase transition curve is discontinuous,
since the asymptotic phase has two very different values
for a stimulus given at coupling intervals of 141 and
143 ms (Fig. 1A, top and bottom panels). Indeed, there
is overlap in the curve (i.e. g(¢) is not single-valued),
since a stimulus given at a fixed coupling interval of
142 ms results in one of two different types of response,
with no intermediate responses being seen (Fig. 1A,
middle panel; Fig. 1B). Moreover, all stimuli given to
this preparation are followed by the eventual reestab-
lishment of the spontaneous oscillation, showing that
each stimulus left the state point within the basin of
attraction of the limit cycle.

One possible resolution of these findings is that the
phase transition curve is really continuous, but because
the isochrons are very closely packed, the old phase, and
so the coupling interval, would have to be changed with
an extraordinarily fine gradation to observe the con-
tinuity. However, the electrical activity of the aggregate
is noisy: e.g. the interbeat interval of the cycle
immediately preceding stimulus injection (first cycle in
Fig. 1A) fluctuates from trial to trial, as does the
trajectory during the perturbed cycle for the entire time
preceding delivery of the stimulus (the superimposed
traces of multiple trials in Fig. 1 are thicker than the
trace from a single trial). There is thus effectively some
degree of scanning of the old phase occurring even when
t. is kept fixed at 142ms (£ 1 ps).

One problem here is thus that the fundamental
hypothesis underlying Winfree’s theory is not satisfied:
spontaneous activity in the aggregate is not well-
described by a system of noise-free differential equa-
tions. Rather, spontancous activity corresponds to a

noisy limit cycle, with the noise being generated
internally by the stochastic opening and closing of a
finite number of ionic channels (each of finite con-
ductance) lying within the membrane. This fact led us to
propose many years ago that the unitary nature of the
ion channels underlying the electrical activity of the
aggregate should be taken into account in constructing a
realistic model to be used for resetting simulations
(Guevara et al., 1986). In the next section, we develop
Hodgkin—Huxley-type models as well as single-channel
population models to explore this idea.

3. Methods
3.1. Hodgkin—Huxley-type models

Although we would have preferred to analyse an ionic
model for the electrical activity in an aggregate of
embryonic chick ventricular heart cells (Fig. 1), such a
model is not presently available. Consequently, we
investigate resetting phenomena in a model of a
different cardiac pacemaker—the sinoatrial node. We
have developed two models of a single sinoatrial node
cell that we study below. In the following, we shall refer
to these two Hodgkin—Huxley-type models as the
“noise-free models”. Both of these models (see Appen-
dix A for details) are modifications of the Irisawa—
Noma sinoatrial node model (Irisawa and Noma, 1982),
which has five currents: the fast inward sodium current
(Ina), the slow inward current (/) carried mainly by
Ca’" ions, the delayed rectifier potassium current (Ix),
the pacemaker current (I,), and the time-independent
leak current (I;). One of the major differences between
the central and more peripheral areas of the node is that
the maximal upstroke velocity of the action potential is
much higher in the more peripheral areas. Thus, one of
our models (the ‘“‘slow-upstroke model”) has a very
small Iy, and a very slow upstroke velocity (5Vs™'),
while the other model (the “fast-upstroke model’’) has a
much bigger In, and so a much faster upstroke velocity
(71 Vs~1). As we shall see below, these changes result in
significant differences in the resetting properties of the
two models.

3.2. Single-channel population models

The behavior in Fig. 1B shows that one of two results
is seen in repeated resetting trials carried out at a fixed
coupling interval. We had previously hypothesized that
this apparently random response is due to the fact that
the electrical activity in the aggregate is not determinis-
tic, but stochastic, stemming from the action potential
being generated by a population of single channels, each
of which opens and closes in a stochastic fashion
(Guevara et al., 1986). We thus wish to re-formulate
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our noise-free ionic model (above) into a model with a
finite number of channels (the parent noise-free ionic
model can then be thought of as describing a cell that in
the limit possesses an infinite number of channels, each
of vanishingly small conductance, but with the total
conductance remaining finite). A model of a single
sinoatrial node cell formulated as a population of single
channels (which we shall term a “‘single-channel model’’)
has previously been implemented using a very detailed
ionic model (Wilders and Jongsma, 1993) as well as a
simplified version of the Irisawa—Noma model (Guevara
and Lewis, 1995). This latter minimal model simulated
a population of Ik and I channels. Since our models
include Iy, and I, in addition to Ix and I,, we now add
back to the minimal single-channel model a population
of Ina. and I, channels to restore these two currents
present in the original Irisawa—Noma model. Appendix
B provides further details about the computational
methods used to implement the single-channel models.

3.3. Continuation methods

Associated with the discontinuous response in the
experiment of Fig. 1B is an abrupt transition from delay
to advance in the noise-free model. To investigate the
nature of this abrupt transition we reduced the seven-
dimensional fast upstroke model to a three-dimensional
model, where we can compute and visualize the stable
and unstable manifolds of the fixed point, which are
one- and two-dimensional, respectively.

The stable manifold of the fixed point can be
calculated by accurate integration in backward time.
The unstable manifold of the fixed point can, in
principle, be accurately computed by integrating in
forward time a discrete set of points that lie in a small
circle in the unstable eigenspace in the neighborhood of
the fixed point. However, due to the large differences in
the magnitudes of the two positive eigenvalues, the
orbits are sensitively dependent on the initial conditions.
This would result typically in large portions of the
unstable manifold not being swept out. This deficiency is
remedied using AUTO to apply continuation to the
entire orbit as an object in function space (Doedel et al.,
1997).

4. Results

4.1. Spontaneous activity in slow- and fast-upstroke
models

We modify the original Irisawa—Noma model (Irisawa
and Noma, 1982) to produce a slow-upstroke model and
a fast-upstroke model (see Methods and Appendix A for
further description). In the slow-upstroke model, the

maximal upstroke velocity is 5Vs !, the overshoot

potential is 18 mV, the maximal diastolic potential is
—66mV, the action potential duration (to 100%
repolarization) is 137ms, and the interbeat interval is
338.2ms. These values are close to those reported
previously for the unmodified Irisawa—Noma model
(Guevara and Jongsma, 1990; Irisawa and Noma, 1982).
Fig. 3 (left column) shows spontaneous activity in the
corresponding single-channel model. There is cycle-to-
cycle variability in the various traces.

In comparison with the slow-upstroke model, the fast-
upstroke model has a much larger maximal upstroke
velocity (71 Vs 1), a larger overshoot potential (31 mV),
a more hyperpolarized maximum diastolic potential
(=78 mV), a shorter action potential duration (86 ms),
and a shorter interbeat interval (282.6ms). These
changes are consistent with those found experimentally
when comparing in situ activity in central and peripheral
areas of the sinoatrial node (Bleeker et al., 1980;
Kodama and Boyett, 1985; Kreitner, 1985; Opthof
et al., 1987), and when comparing activity in smaller
single sinoatrial node cells (which presumably come
from the center of the node) with larger ones (which
presumably come from the periphery) (Honjo et al.,
1996; Lei et al., 2001; Zhang et al., 2000). The increased
Ina in the fast-upstroke model increases the maximal
upstroke velocity, while the increased Ix shortens the
action potential duration (despite the increased I;) and
hyperpolarizes the maximum diastolic potential, thereby
also increasing the maximal upstroke velocity further
due to greater voltage-dependent removal of inactiva-

Slow-upstroke model Fast-upstroke model
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Fig. 3. Spontaneous activity in the single-channel slow-upstroke
model (left) and the single-channel fast-upstroke model (right).
Voltage is in mV and current in pA. Note change in scale for the
currents (especially 71,,,,; and In,)-
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tion of Iy, The increased I, and I, contribute to a
steeper pacemaker potential, while the increased I,
hyperpolarizes the threshold potential; both of these
effects thus contribute to the shortening of the interbeat
interval. The I; waveform is very different in the two
models due to the rectification of I,.

Fig. 3 (right column) shows the activity in the
corresponding single-channel model of a fast-upstroke
cell. The fact that the number of channels is larger in the
fast-upstroke model than in the slow-upstroke model
accounts for the greater regularity of beating of the
former (the coefficient of variation of inter beat interval
is 1.5% in the former, 4.0% in the latter). Part of this
increase in regularity is due to the greater size (65 vs.
20 pF) and hence increased number of channels in the
fast-upstroke cell. By itself, this difference would be
expected to cause an increase in regularity by a factor of
\/65/20 to 2.2% (Clay and DeHaan, 1979; Wilders,
1993). However, the increased channel density of several
currents in the fast-upstroke model (see Appendix A)
causes an additional increase in regularity, decreasing
the coefficient of variation further to 1.5%.

The embryonic chick ventricular aggregate used in
Fig. 1 is very similar to a peripheral sinoatrial node cell
in terms of the particular mix of currents present in the
cell membrane. Therefore, the voltage waveforms are
alike in the two types of preparations. Specifically, the
chick aggregates also have a fast upstroke and a
relatively hyperpolarized maximum diastolic potential.

For both the slow- and the fast-upstroke models there
is only one crossing of the voltage-axis in the steady-
state total current—voltage plot, and thus there is only
one fixed point in the seven-dimensional phase space of
the system. In both cases numerical integration starting
out from an initial condition close to the fixed point
results in the eventual resumption of spontancous
activity, suggesting that the fixed point is unstable.
Computation of eigenvalues using AUTO (Doedel et al.,
1997) confirms that this is indeed the case. The
eigenvalues show that the fixed point is a saddle in both
models: two eigenvalues are real and positive, while the
remaining five are real and negative.

4.2. Resetting in the slow-upstroke model

Fig. 4 shows the T; (left column) and the first (middle
column) and second (right column) transient phase
transition curves obtained from the slow-upstroke
model at three values of the stimulus amplitude for a
pulse duration of 20 ms. The third transient phase (not
shown) was essentially equal to the second, implying
that the state point returns to the vicinity of the limit
cycle relatively quickly. These phase transition curves
are very similar to those found previously in the original
Irisawa—Noma model (Guevara and Jongsma, 1990)
and show characteristic features such as: (a) a change

T/, o ?,
4 1 1
A
/Ty
-8 pA TIT
| 1 0
0
0 1 00 1 00 1
4 1 1
]
] |ra2s!
-25 pA M —" ms
—
00 1 00 1 0O 1
4 TN g 1
g
~50 pA ?
./ A
0= 0 0
0 1 0 1 0 1
o o o

Fig. 4. Resetting curves from the slow-upstroke model. Left column:
normalized first, second, and third perturbed cycle lengths (7/7y,
T5/Ty, T3/Ty); middle column: first transient phase (¢;); right column:
second transient phase (¢,). Upper row shows type 1 resetting
(stimulus amplitude=—8pA) as does the middle row (stimulus
amplitude = —25pA). The lower row shows type 0 resetting (stimulus
amplitude=—50 pA). Negative current indicates a depolarizing stimu-
lus; stimulus duration =20 ms. Arrowhead indicates point correspond-
ing to the value of 7. used in the next two figures. Coupling interval was
incremented in steps of 1 ms in the top row and 0.1 ms in the middle
and bottom rows.

from type 1 (Fig. 4, top and middle rows) to type 0
(Fig. 4, bottom row) resetting as the stimulus amplitude
is increased; (b) a decrease in the old phase at which the
transition from prolongation to abbreviation of the
perturbed cycle length (7)) occurs with increasing
stimulus amplitude; and (c) a steeper transition from
prolongation to abbreviation during type 1 resetting as
the stimulus amplitude is increased. These features are
also observed in experiments on the sinoatrial node (see
e.g. Jalife et al., 1980) and on aggregates (Glass et al.,
1984; Guevara et al., 1986; Vanmeerwijk et al., 1984).
Although the phase transition curve does get steeper as
the stimulus amplitude is increased, we were always able
to resolve the curves using increments in ¢, down to
0.1 ms. Because of transient effects associated with the
definition of the event marker, 77 and ¢, show
discontinuities: see for example the bottom left and
middle panels in Fig. 4 (for a discussion see Kawato
(1981) and Kawato and Suzuki, 1978). However, the
new phase is determined by the asymptotic value of ¢;
(Eq. (1)) and the discontinuities associated with tran-
sient effects will not appear here. Indeed, no disconti-
nuity is detectable in the plot of ¢, vs. ¢ (Fig. 4, right
column) on the scale of that figure.

We next investigate resetting in the single-channel
version of the slow-upstroke model. Fig. 5 shows
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responses to a stimulus of amplitude —25pA and
duration 20ms at three different coupling intervals.
This is the same stimulus amplitude and duration used
in the middle row of Fig. 4. For ¢, = 132 ms, prolonga-
tion of cycle length is observed in 10 of 10 trials (Fig.
5A), while for z. = 152 ms, abbreviation of cycle length
is observed in 10 of 10 trials (Fig. 5C). There is an
intermediate range of ¢, over which, at a fixed value of
t., some trials result in prolongation while others result
in abbreviation, with a large spread in the response: e.g.
at . = 142 ms (arrowhead in Fig. 4) there is abbrevia-
tion in 6 of 10 trials (Fig. 5B). Increase in ¢, over this
intermediate range results in a greater fraction of trials
resulting in abbreviation.

A zoom-in on the voltage at the end of the stimulus
delivered ten times at 7, = 142ms in Fig. 5B shows an
interesting effect due to the single-channel fluctuations
(Fig. 6). The dashed trace shows a response that resulted
in an abbreviation of cycle length (Fig. 6, top trace).

© 0 500 1000 1500 2000
Time (ms)
Fig. 5. Resetting in the single-channel slow-upstroke model. Same
stimulus amplitude (—25 pA) as used in noise-free model in the middle
row of Fig. 4. Stimulus duration=20ms. For each value of ¢, 10

superimposed runs are shown, aligned on the upstroke of the action
potential immediately preceding stimulus injection.
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Fig. 6. Zoom of multiple trials in resetting simulations for 7,=142 ms
(Fig. 5B) showing “fuzzy threshold”.

However, this response paradoxically started out with a
more depolarized potential at the end of the stimulus
pulse than two of the other responses that ended up
firing sooner (Fig. 6, bottom trace). The concept of a
sharp threshold voltage thus does not hold here. This
type of “fuzzy threshold” must be due to an effect
involving one or more of the variables apart from the
voltage: e.g., if I, at the end of the stimulus in the dashed
trace is more inactivated than on average, the membrane
may not fire even though one would think that the
voltage is sufficiently depolarized for it to do so.
Alternatively, the delay in firing might be caused by
fluctuations in the state of the population of channels
after the end of the stimulus. There could be again an
increased inactivation of I, increased activation of an
outward current such as Ix, and/or one or more of
several other effects.

4.3. Resetting in the fast-upstroke model

In the fast-upstroke model, as was the case in the
slow-upstroke model, the transition from prolongation
to abbreviation of cycle length becomes steeper with
increasing stimulus amplitude. However, in the fast-
upstroke model, the transition eventually becomes so
steep that it cannot be resolved using an increment in ¢,
as small as 0.1 pus (Fig. 7, middle row). We refer to this
behavior in what follows as the “‘abrupt transition”.
For an even higher stimulus amplitude, type 0 resett-
ing occurs (Fig. 7, bottom row). This pattern of
changes in the features of the response for increasing
stimulus amplitude has been observed in other ionic

Ti/TO ¢1 ¢2
4 A 1 1
| 192 —»
T2/T0 ms
-50 pA 77
| )
00 1 G0 1 00 1
4 1 — 1
—
-1580pA —__—
I ~
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0 1 0 1 00 1
4 ~——
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/
C’0 1 c0 1 c0 1
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Fig. 7. Resetting in the fast-upstroke model. Notice abrupt transition
in phase transition curves with stimulus amplitude = —150 pA (middle
row). Stimulus duration=20ms. Arrows indicate points used in
resetting in the corresponding single-channel model in the next two
figures. Coupling interval was incremented in steps of 0.1 ms, 0.1 pus
around the abrupt transition in the middle row.
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models in which the upstroke of the action potential
is caused by In, (Clay et al., 1984, 1990; Guevara and
Shrier, 1987).

In the corresponding single-channel fast-upstroke
model, one observes the responses shown in Fig. 8 at
the lowest amplitude used in Fig. 7 (=50 pA, top row).
(It can also be appreciated from this figure that the
regularity of beating is greater here than in the slow-
upstroke single-channel model (Fig. 5)). When a value
of z. is chosen that lies in the steep part of the phase
transition curve (Fig. 7, top row) a mixed response
occurs: abbreviation of cycle length occurs in 8 of 10
trials at ¢, = 192 ms, with prolongation in the remaining
two trials (Fig. 8B). For ¢, = 182ms (Fig. 8A) there is
only prolongation of cycle length, while for ¢z, = 202 ms
(Fig. 8C) there is only abbreviation. This type of
behavior is also seen in embryonic chick ventricular
aggregates when the stimulus amplitude is of inter-
mediate size (see e.g. Fig. 2-18 of Guevara, 1984).

At a higher stimulus amplitude (—150 pA), where the
phase transition curve has an abrupt transition in the
noise-free model (Fig. 7, middle row), an abrupt
transition also occurs in the single-channel model. At
t. = 117ms, 5 of 10 trials show abbreviation, while the
other 5 of 10 trials show prolongation (Fig. 9B). Indeed,
in 1000 trials at this coupling interval we did not observe
a single intermediate response: the histogram of the
latency from the end of the stimulus pulse to 0mV on
the upstroke of the next action potential is bimodal
(Fig. 10). Decreasing ¢. by 1 ms causes prolongation in
10 of 10 trials (Fig. 9A), while increasing z. by 1ms
results in abbreviation in 10 of 10 trials (Fig. 9C). This
modelling result is analogous to the experimental
response in Fig. 1.

401 fc=1 82 ms

< 0 560 1OIOO 1500 20.00
Time (ms)

Fig. 8. Resetting in single-channel fast-upstroke model. Same stimulus
parameters as in Fig. 7, top row: stimulus amplitude=—50pA,
stimulus duration=20ms. Ten trials shown for each value of coupling
interval (z.).
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Fig. 9. Resetting in single-channel fast-upstroke model. Same stimulus
parameters as in Fig. 7, middle row: stimulus amplitude =—150 pA,
stimulus duration=20ms. Notice abrupt transition at 7. = 117ms.
Ten trials shown for each value of coupling interval (z,).

200

1501

100

Number of events

50

0 50 100 150 200
Latency (ms)

Fig. 10. Histogram of 1000 trials in single-channel fast-upstroke
model. Histogram gives the number of action potentials occurring at a
given latency from end of stimulus pulse. Stimulus amplitude —150 pA,
pulse duration=20ms, 7. = 117 ms.

Notice that the noise-induced irregularity in the
intrinsic interbeat interval in the fast-upstroke model is
sufficiently small to allow the two types of response
induced in Fig. 9B to persist in time (the two groups of
traces are easily distinguishable by eye several cycles
following delivery of the stimulus). The fuzzy threshold
effect seen for the slow-upstroke model (Fig. 6) is not
evident here, although we expect that it exists. This is
presumably due to two factors: the decreased noise in
the fast-upstroke model and the increased speed and size
of Ina (responsible for the upstroke phase in the fast-
upstroke model) in comparison to I, (responsible for the
upstroke phase in the slow-upstroke model).
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Thus, the major difference in the resetting response of
the fast-upstroke noise-free model and the correspond-
ing single-channel model is that in the former the phase
transition curve is single-valued, with an abrupt transi-
tion at one precise value of the old phase. In the latter
case, over a very narrow critical range of the old phase
centered on the abrupt transition, there are two narrow
ranges of new-phase values, separated by an effectively
forbidden gap. This clustering effect of the noise has
also been observed in the Hodgkin—Huxley model of the
quiescent squid axon with added voltage noise (Clay,
1977).

4.4. The abrupt transition in a reduced fast-upstroke
model

An abrupt transition in the resetting response is seen
in both experiment (Fig. 1B) and in the fast-upstroke
model (Fig. 7, middle row; Figs. 9B and 10). Since it is
difficult to visualize trajectories in the phase space of the
fast-upstroke model because it is seven-dimensional, we
study them in two simplified models. We first investigate
the abrupt transition more finely in a reduced three-
dimensional ionic model, and then provide a theoretical
interpretation by investigating a linear three-dimen-
sional model.

The reduction of the seven-dimensional fast-upstroke
model to a three-dimensional model is obtained by
making several approximations. First, we remove I,
since it contributes very little current to the total current.
Second, because the time-constants 7, and 7, are quite
small, we set the activation variables of Iy, () and I (d)
equal to their asymptotic or steady-state values
(Mo = o/ (0t + P,,) and do = ay/(aq + ;) respec-
tively). The time constants for activation of Ix (t))
and inactivation of I; (t7) are of the same order of
magnitude, and p and f essentially vary out-of-phase
with respect to each other, so that one can express either
one in terms of the other: p = 0.36 — 0.27f. (The idea of
making this approximation comes from work in the
Hodgkin—Huxley model of the squid giant axon, where
n = 0.85 — h, with n being the activation variable for Ik
and / being the inactivation variable for Iy, (FitzHugh,
1961).) There are then only three state variables left in
the model: V' (transmembrane voltage), /1 (inactivation
variable for Iy,), and f (inactivation variable for I). To
maintain the same upstroke velocity as in the seven-
dimensional model (71 Vs~ '), the maximal conductance
of Ina was reduced to 73% of its original value. To
maintain the intrinsic cycle length the maximal con-
ductance of Ik was reduced to 65% of its original value.
This caused an increase in the action potential duration
of less than 10%.

As in the full seven-dimensional model, there is again
a range of stimulus amplitudes over which the transition
from prolongation to abbreviation of cycle length is very

abrupt with a change in #. as small as 0.1us. We
investigate this transitional range more finely in the
reduced three-dimensional model by probing with
increments in ¢. of <O0.1us. Fig. 11A shows several
resetting runs: the top set of traces show increasing
prolongation of cycle length as ¢, is changed to several
values lying between 85 and 85.336376727283 ms (red
trace), while the bottom set of traces show increasing
abbreviation of cycle length as ¢. is further changed
between 85.336376727284ms (blue trace) and 86ms.
There is thus still an abrupt transition between
prolongation (upper panel, red trace) and abbreviation
(bottom panel, blue trace) of cycle length even with a
change in 7. as minuscule as 10~ '?ms. Very similar
results are found in the seven-dimensional model.

The simulations in Fig. 11A show an extreme
sensitivity of the dynamics as 7. is changed very finely.
The main effect of a small increase in ¢, in Fig. 11A is to
depolarize the membrane further at the end of the
stimulus pulse by a small amount. Thus, an increment in
the voltage at the end of the stimulus pulse can be used
to mimic the effect of an increment in ¢.. For example,
artificially increasing the voltage in this manner by
3x107"?mV at the end of a pulse delivered at
t. = 85.336376727283 ms causes the prolongation seen
at that value of ¢, (red trace in Fig. 11A) to change into
abbreviation. To quantify this behavior we carried out
simulations in which we explored initial conditions very
close to locations reached at the end of the stimuli that
lead to the red and blue curves in Fig. 11A. We vary V'
in increments as fine as 10~'*mV around the value
V* = —49.35457869225426 mV, which is the voltage at
the end of the stimulus when maximal prolongation is
observed (red trace in Fig. 11A). In Fig. 11B, we plot the
time ¢, from the end of the stimulus pulse to the start of
the next action potential (defined here as the crossing of
—30 mV) as a function of In|V — V*|. The upper curve
of points gives ¢; when a prolongation occurs (because
V' < V*), while the lower set of points gives f; when an
abbreviation occurs (because V > V*). Both curves
approximate straight lines when V is close to V™ (i.e.
for In|V — V*| small). A similar result is found in the
original seven-dimensional model.

The main reason we develop the reduced three-
dimensional model is that it is then possible to compute
and visualize important geometric features in the phase
space. Fig. 11C shows trajectories in the three-dimen-
sional phase space of the system. The black closed curve
is the unperturbed limit cycle. The trajectories corre-
sponding to the maximal prolongation and abbreviation
seen in Fig. 11A (red and blue traces with
t. = 85.336376727283 ms and ¢, = 85.336376727284 ms,
respectively) are also shown. In both cases the stimulus
takes the state point from a neighborhood of the
location labelled “A” on the limit cycle and delivers it
to the neighborhood of location ““B’’ (the purple color of
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Fig. 11. Resetting in reduced three-dimensional fast-upstroke model. (A) Voltage traces with 7. spanning a range from 85.0ms to
85.336376727283 ms (red trace) in upper panel, and 85.336376727284 ms (blue trace) to 86.0ms in lower panel. Stimulus amplitude=—150pA,
pulse duration =20ms. (B) Time taken for trajectories to cross V'=—-30mV (#;, “‘escape time”) as a function of displacement of V" from the fiducial
value V*. The upper set of points are for prolongation, bottom for abbreviation. (C) Phase-space trajectories corresponding to the red and blue
responses shown in (A). The shaded two-dimensional surface is the slow manifold (given by d¥/d=0). (D) The green curve gives the stable manifold
of the fixed point, while the gray trajectories lie within the unstable manifold. (E) Trajectories (magenta) obtained by continuation from a set of
very close initial conditions near location “B” in (C). Gray trajectories lie within the unstable manifold. (F) Stable manifold of the weak unstable
manifold (black trajectories). See text for further description. For larger, rotatable color figures, please visit www.cnd.mcgill.ca/bios/glass/
glass_j2004-2006.htm.

the trajectory indicates that the blue and red trajectories
lie very close to one another, being superimposed on
the scale of this diagram). Point “B” is very close
to the slow manifold of the system (the shaded gray
two-dimensional surface defined by dV/d¢=0). For
t, = 85.336376727283 ms, immediately following the

end of the stimulus, the state point moves from location
“B”, staying close to the slow manifold for some time
(purple trajectory) before deviating to the left (at
location ““C”), producing a prolongation of cycle
length (red trajectory). In contrast, for ¢ =
85.336376727284 ms, while the state point also stays



T. Krogh-Madsen et al. | Journal of Theoretical Biology 230 (2004) 499-519 509

close to the slow manifold for about the same length of
time (purple trajectory), it then takes off rapidly to the
right (blue trajectory) from location “C”, resulting in a
graded action potential (an action potential with smaller
overshoot potential and slower maximal upstroke
velocity) and an abbreviation of cycle length. As ¢. is
increased beyond 85.336376727284 ms, the abbreviation
of cycle length gets more marked as the trajectory stays
close to the slow manifold for shorter periods of time,
taking off to the right and leaving the purple trajectory
earlier. As t.. is decreased below 85.336376727283 ms the
amount of prolongation decreases as the trajectory takes
off to the left and leaves the vicinity of the slow manifold
earlier. These trajectories which run along close to the
slow manifold and then diverge from its vicinity are
canards (a canard is an exceptional trajectory, character-
ized by partly lying along the unstable segment of a slow
manifold, see e.g. Arima et al.,, 1997, Diener, 1984;
Guckenheimer et al., 2000).

During the time that the trajectory lingers close to the
slow manifold in Fig. 11C (from location “B” to
location “C”), dV/dt is very small, and thus the voltage
trace is almost flat following the end of the stimulus
pulse for both abbreviation and prolongation (Fig. 11A).
Although a small value of dV'/d¢ could also have been
produced if the state point were knocked into the vicinity
of the fixed point (located at the coordinates (V,h,f) =
(—40.703,0.007,0.567), indicated by * in Fig. 11C) by the
stimulus, this is not occurring here, since location “B” is
relatively far removed from the fixed point.

The eigenvalues of the fixed point are all real, two are
positive (195, 5) and one is negative (—77), so that the
fixed point is a saddle of index 2. The stable manifold is
therefore a one-dimensional curve, which is shown in
Fig. 11D (green curve). When the abrupt transition of
Figs. 11A,C occurs, the trajectories are much closer to
the slow manifold than to the stable manifold of the
fixed point. The unstable manifold of the fixed point is
a two-dimensional surface, and the gray curves in
Fig. 11D are trajectories, computed by continuation,
that lie within this unstable manifold. The eigendirection
associated with the eigenvalue 195 is called u,, the
eigendirection associated with the eigenvalue 5 is called
u,,. The two trajectories which are collinear with u; near
the fixed point are called the strong unstable manifold
(double arrows in Fig. 11D). In a linear system, as we
shall see later, u, plays an important role as the
eigendirection from which trajectories diverge. How-
ever, in the nonlinear model all trajectories, except the
pair that defines the strong unstable manifold, are
tangent to u,, at the fixed point, and so the weak unstable
manifold is not uniquely defined. For most of our
purposes a visual definition of the weak unstable
manifold as the curve from which trajectories diverge
will suffice (single arrows in Fig. 11D), but for one of
our computations we employ a strict definition (see last

paragraph of this section). For 7, = 85.336376727283 ms
and 85.336376727284ms, the trajectories come very
close to the unstable manifold of the fixed point before
deviating in directions parallel to the strong unstable
manifold (red and blue trajectories in Fig. 11D).

With an increment in ¢, of 107> ms or in |V — V*| of
107"*mV, we are at the limits of the precision of our
numerical integration routine. However, we can probe
the abrupt transition more finely using continuation
techniques. We start at a point in phase space very close
to where the blue trajectory ends up at the end of the
stimulus pulse (near location “B” in Figs. 11C,D) and
generate trajectories that start along a short line of initial
conditions passing through that point, parallel to the V-
axis. The maximal and minimal values of V" along this line
are chosen such that the maximal value is slightly larger
than the voltage resulting from the blue trajectory (V5),
while the minimal value is slightly smaller than the
voltage resulting from the red trajectory (V).

Fig. 11E shows the results. As in Fig. 11D, the gray
trajectories lie within the unstable manifold. The magenta
curves are trajectories that start off from the short line of
initial conditions close to “B”. Notice that this figure has
been rotated relative to Figs. 11C,.D to improve
visualization (the original projection is shown again in
Fig. 11F). As seen in Fig. 11D, the trajectories initially
run more-or-less parallel to the stable manifold of the
fixed point (green curve) and then zip off to the left or to
the right. As the initial V-value decreases towards V}, or
similarly, as the initial V-value increases towards V,, the
point where trajectories diverge (‘“‘the take-off point™)
moves further towards the unstable manifold. A fan of
trajectories is thus generated consisting of trajectories
which fall almost into a plane approximately parallel to
the (V, h)-plane. Decreasing V from V), or increasing V'
from V,, one eventually reaches a point where the take-
off point leaves the neighborhood of the slow manifold
and makes its way along the weak unstable manifold
(seen as the curve from which trajectories diverge) in the
direction of increasing f. Further decreasing V from V, or
increasing V' from V, results in the trajectories following
the weak unstable manifold for a longer time before
abruptly leaving it. Eventually the take-off point enters a
region at the very top of the figure where trajectories
coming off the weak unstable manifold are no longer
sharply diverging. Thus, using the continuation techni-
que, we have been able to resolve the apparent
discontinuity (Fig. 11A) and demonstrate the fundamen-
tal underlying continuity of the resetting response.

Since trajectories diverge from the weak unstable
manifold, we conjecture that this divergence occurs
because of the existence of a stable manifold of the weak
unstable manifold. (Notice that this is not a stable
manifold in the usual sense since a trajectory starting
out on it will go to the limit cycle as t— oo rather than
staying on the weak unstable manifold. However,
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trajectories on this stable manifold will get arbitrarily
close to the weak unstable manifold. This use of the
terminology is consistent with previous usage (e.g.
Wiggins, 1988, pp. 355-356)). The abrupt transition
then occurs when a stimulus brings the state point to one
side or the other of the stable manifold of the weak
unstable manifold. To compute this stable manifold,
the weak unstable manifold must be unique and
well-defined. We employ the following definition: the
trajectories which have the maximal integration time when
integrating from a small sphere of initial conditions
around the fixed point to a constant distance away from
the fixed point lie within the weak unstable manifold.
There will be two local maxima in the integration time
identifying two trajectories which are both tangent to
the weak eigendirection, but going in opposite direc-
tions. This definition thus uses the fact that state points
move slowly in the weak eigendirection. This definition
has the advantage that we can use existing continuation
methods in AUTO to compute the weak unstable
manifold and its stable manifold. The black curves in
Fig. 11F are trajectories lying within the stable manifold
of the weak unstable manifold. While trajectories that
approach the unstable manifold, e.g. the blue and the
red trajectories (Figs. 11A,D) do indeed lic in the
vicinity of the stable manifold of the weak unstable
manifold, the computations are not sufficiently accurate
to determine whether the stable manifold of the weak
unstable manifold separates diverging trajectories.

4.5. A linear three-dimensional model

Although the three-dimensional model given above is
much simpler than the original seven-dimensional
model, it is still complex. Much of the dynamics seen
in Figs. 11C-F occurs in the neighborhood of a three-
dimensional saddle of index two. Consequently, we have
explored the dynamics of a linear three-dimensional
saddle of index two.

The equations

dx 1
E—E(X—J’),
dy

"
dz 1

dr ,uZ’

where 0 <e<pu <1, result in a saddle of index two being
present at the origin. The eigenvalues are

1
=g (L V1= 4e),
1
i =5 (1= V14,

For 0<e<1, we have A;> 4, >0, while for u>0, we
have 43 <0.

We associate x with V in our simulations above, and
when x crosses over the line x = x. = 5, we associate
this with the crossing of —30mV in the simulations of
Fig. 11B when a shortening of cycle length is seen. We
will examine stimuli that take the state point from the
limit cycle to the point (x,y,z) = (yo + 9, yo, 29), Where
0<yg<x.— 9 and zy > 0. Since z is decoupled from x
and y, the solution for x of the linear three-dimensional
differential equation does not depend on z

x(1) = c1e"’ 4 e,

From the initial condition we compute

(621 — yol2),

o
R P

1) (=022 — yoi1).

T —a
Further, for initial conditions that lie along the
eigendirection corresponding to the smaller positive
eigenvalue, ¢; = 0 and the x-dynamics will be given by
x(f) = c,e”'. This occurs for initial conditions (x, y, z) =
(o + 00, y0, 20), where

_ Yo

do
A1

We can now compute the dynamics for an initial
condition (x, y,z) = (yo + 0o + 1, Yo, Zo) and compute the
time, ¢, until an action potential, i.e. until x(¢) = x.. For
A1> 5, we find

f = i ~lny—In A In(x. — ) ). )
A ;\.1 — ﬂz

For an initial condition that has (x,y)-coordinates
near the eigendirection associated with A, (the weak
unstable eigendirection, u,,), the trajectory is attracted
towards the (x,y)-plane quickly and then moves along
the weak unstable eigendirection for some time before
diverging in the eigendirection associated with A; (the
strong unstable eigendirection, uy). Such trajectories are
shown in Figs. 12A—C for ¢ = 0.02, 4 = 0.07, yo = zp =
0.5, and  varying from +107'° to +107 (the values of
¢ and u were chosen to give eigenvalues (49, ~1, —15),
which have relative magnitudes similar to those in the
three-dimensional ionic model (195, 5, —77)). The three
straight lines in Fig. 12A passing through the origin are
the eigendirections. The dashed line (Fig. 12C) lies in the
x-nullsurface defined by dx/ds = 0 (this surface is the
two-dimensional analog in a three-dimensional system
of the one-dimensional nullcline in a two-dimensional
system). The x-nullsurface corresponds to the unstable
segment of the slow manifold in the nonlinear ionic
model (Fig. 11C). In Fig. 12C, for # <0 trajectories start
off with (x,y)-coordinates to the left of the weak
unstable eigendirection and eventually diverge from this
eigendirection towards the left (i.e. in the direction of
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Fig. 12. Dynamics in three-dimensional linear model. (A) Phase space trajectories in simple three-dimensional model. Numbers give values of
displacement from the J line (). Straight lines with arrows represent the eigendirections. (B) Projection onto the (x,z)-plane. (C) Projection onto the
(x,p)-plane. Dashed line indicates the projection of the x-nullsurface (defined by dx/d¢=0). (D) Time until crossing of x = 5 (“‘escape time”, #;) as a
function of In(n), calculated from Eq. (2) (solid line) and from simulations (dots).

decreasing x). In contrast, for 5 > 0, initial state points
lie to the right of the weak unstable eigendirection and
trajectories eventually turn right, away from this
eigendirection. In this linear model, the stable manifold
of the weak unstable eigendirection is simply the plane
defined by y = x/1,, since the weak unstable eigenvector
is given by [x y z]"=[1 1/A, 0]". Therefore, initial
conditions with (x, y)-coordinates on either side of the
weak unstable eigendirection are in fact separated by the
stable manifold of the weak unstable eigendirection, in a
manner analogous to that seen in the three-dimensional
ionic model (Fig. 11F).

The symbols in Fig. 12D show the time until an action
potential in the linear model as a function of In(#), for
n > 0. These results coincide with the straight line giving
the analytical result (Eq. (2)). We can now compare our
analysis of the slope of the #; vs. In(#) plot for the three-
dimensional linear saddle with the slope of the #; vs.
In|V — V*| plot for the ionic models. The linear
approximation in the latter nonlinear cases is expected
to be best when the trajectory lies closest to the fixed
point. Thus we take the slope of the lower plot in
Fig. 11B at the smallest values of that plot. (Escape

times were computed for trajectories from numerical
integration only and not from continuation. Therefore,
escape times shown in Fig. 11B are from the “fan’-
structure of Fig. 11E and not from trajectories that
visibly track the weak unstable manifold. However, at
least in the three-dimensional linear model, the escape
time has the same linear dependence on In(y¢) for
trajectories in the fan as well as for those that track
the weak unstable manifold for longer durations.) The
negative reciprocal of the slope in Fig. 11B is 167, which
compares well with the largest positive eigenvalue (195).
For the full seven-dimensional ionic model the largest
eigenvalue is 99 and the negative reciprocal of the slope
of the #; vs. In|V — V*| plot is 102. These results provide
justification for our view that the existence of a saddle
point of index two accounts for much of the dynamics in
the nonlinear ionic models.

5. Discussion

One of most compelling results of the topological
approach of Winfree is the Continuity Theorem, which
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states that the phase transition curve must be contin-
uous, except for exceptionally timed stimuli that take the
state point of the system outside of the basin of
attraction of the Ilimit cycle. However, when the
response changes very rapidly with small changes in
the coupling interval, careful probing over a narrow
range of old phase is required in order to investigate the
theoretically predicted continuity. Such experiments
have rarely been carried out. When carried out in the
chick ventricular cell aggregate, there is no sign of
continuity, and, as explained earlier, the experimental
result at ¢, = 142 ms in Fig. 1 contradicts the Continuity
Theorem. Here, using continuation methods, we have
shown that the corresponding abrupt transition from
prolongation to abbreviation (Fig. 11A) in the reduced
ionic model is only an apparent discontinuity in that the
response is really continuous (Fig. 11E).

5.1. Dynamics in phase space: QTP-separatrix and
canards

In the linear three-dimensional model, diverging
trajectories appear as trajectories which start on either
side of the stable manifold of the weak unstable
eigendirection (Figs. 12A,C). Since the stable manifold
of the weak unstable eigendirection is very close to the
x-nullsurface, state points moving along this stable
manifold also travel in the vicinity of the x-nullsurface,
producing canards. Similar behavior has been described
in a piecewise-linear version of the two-dimensional
FitzHugh—Nagumo model (Arima et al., 1997). The
quantification of the rate of divergence in our simple
model was found to correspond well with that observed
in the three- and seven-dimensional nonlinear ionic
models.

In the reduced three-dimensional ionic model, follow-
ing the end of a well-timed stimulus pulse, trajectories
initially move along very close to the slow manifold,
producing canards (Fig. 11C). With even finer adjust-
ment of ¢, the trajectories then move along the weak
unstable manifold for some time until departing one
way or the other (Fig. 11E). Our conjecture is that the
abrupt transition occurs when the state point is
perturbed into the vicinity of the stable manifold of
the weak unstable manifold. At present, we have not
been able to compute this stable manifold to an
accuracy sufficient to prove this conjecture (Fig. 11F).
Instead, a schematic illustration of the separation of
trajectories is shown in Fig. 13. Trajectories come down
in a fan parallel to the stable manifold of the fixed point,
and are separated by the stable manifold of the weak
unstable manifold (shaded surface).

Similar behavior with the trajectories hugging the
unstable segment of the slow manifold has previously
been described in the excitable (i.e. no limit cycle
present) version of the two-variable FitzHugh—Nagumo

Stable manifold

N

Limit cycle

Strong unstable manifold

Weak unstable manifold

Stable manifold of the
weak unstable manifold

Fig. 13. Schematic representation of abrupt transition. Trajectories
are separated by the stable manifold of the weak unstable manifold
(shaded surface).

equations (FitzHugh, 1961). FitzHugh termed this
apparently all-or-none response the quasi-threshold
phenomenon (QTP) to contrast it to a true threshold
phenomenon where the stable manifold of a saddle
point acts as a separatrix, and the path (not uniquely
defined) that separates the two classes of responses the
QTP-separatrix (FitzHugh, 1955, 1961). Thus, the stable
manifold of the weak unstable manifold in the three-
dimensional system, plays the same role here as the
QTP-separatrix in the two-dimensional example studied
by FitzHugh. Three circumstances in which there can be
discontinuities in the phase transition curve are when:
(1) three fixed points are present, one of which is a
saddle (Clay et al., 1984; Glass and Winfree, 1984); (2)
the fixed point is a spiral point (Glass and Winfree,
1984); (3) there is a “black hole” (Glass and Winfree,
1984).

As was the case for the fast-upstroke model, the
seven-dimensional slow-upstroke model can be reduced
to a three-dimensional one (by setting g =h=m =10
and d = d.,). The eigenvalues of the fixed point in this
reduced model are 49, 8, and —3 (vs. 195, 5, and —77 for
the reduced fast-upstroke model). Since the ratio of the
two positive eigenvalues is not as big as in the fast-
upstroke model, the nodal structure of the unstable
manifold, with one strong and one weak unstable
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manifold from which trajectories diverge (Figs. 11D,
12A,C and 13), is not as extreme. In addition, the stable
eigendirection is not as strongly attracting and trajec-
tories therefore do not approach the surface of the
unstable manifold as easily. Hence, intermediate re-
sponses are more easily seen in the slow-upstroke model
(Fig. 5, middle panel). It is also possible in the slow-
upstroke model that a stimulus might deliver the state
point sufficiently close to the stable manifold of the
weak unstable manifold so as to produce an apparent
discontinuity. However, changing stimulus amplitude in
steps of 5pA and coupling interval in steps of 0.01 ms,
we have observed no jumps larger than 0.1 in the new
phase in the slow-upstroke model.

While we have not investigated the phase space
portrait in the full seven-dimensional fast-upstroke
model, the close similarity of the voltage traces in the
full model to those in the three-dimensional model (Fig.
11A) suggests that a very similar mechanism is operating
in the seven-dimensional model. One noticeable differ-
ence between the resetting results in the two models is
that in the seven-dimensional model, the abrupt transi-
tion occurs later on in the cycle (at 7,~117ms in Fig. 7,
middle panel and Fig. 9B vs. f,~85ms in Fig. 11A). The
maximum diastolic potential is more hyperpolarized in
the seven-dimensional model, so that after a longer ¢,
the membrane potential at the end of the stimulus is very
similar to that at the end of the stimulus in the three-
dimensional model. This suggests that the geometric
structures causing the abrupt transition in the three-
dimensional model are similarly placed in terms of V in
the phase spaces of both models.

5.2. Ionic mechanisms underlying the abrupt transition

Our simulations with the full fast-upstroke model
show that as stimulus amplitude is increased the
transition from prolongation to abbreviation of cycle
length becomes more abrupt to the point where it
appears discontinuous (Figs. 7, 9, 10). A similar result
occurs in experiment (see e.g. Glass et al., 1984; Guevara
et al., 1986; Jalife and Moe, 1976). The abrupt transition
from prolongation to abbreviation shown in Figs. | and
9 is reminiscent of classic all-or-none depolarization
(Cole et al., 1970). The pulse with ¢z, = 116 ms (Fig. 9A)
finds the membrane in a certain state and causes a
certain amount of depolarization. When the pulse turns
off, Ix and I; repolarize the membrane. The same
stimulus pulse delivered 2ms later (Fig. 9C) finds the
membrane in a different state: e.g. V is slightly more
depolarized due to spontaneous diastolic depolarization,
the activation variable of Iy, (m) is slightly larger due to
voltage-dependent activation, the inactivation variable
of Ina (h) is slightly larger due to the time-dependent
removal of inactivation (the oppositely directed voltage-
dependent increase in inactivation is not sufficient to

counterbalance this effect), and the activation variable
for Ix (p) is smaller. The membrane resistance is also
greater, since the currents Ix and [; are turning off
during diastolic depolarization, which contributes to the
larger change in ¥ produced by the stimulus. This
increase in membrane resistance contributes to the
membrane being more depolarized at the end of the
stimulus pulse. During the pulse, In, is larger because of
increased activation and decreased inactivation. At the
time that the pulse is turned off, V lies at the foot of the
my, curve and the Hodgkin cycle results, leading to an
almost immediate upstroke.

This abrupt transition has previously been seen in
resetting studies using ionic models of Purkinje fibre
(Guevara and Shrier, 1987) and the atrial aggregate
(Clay et al., 1990), and in one partial model of the
ventricular aggregate (Clay et al., 1984). In all of these
cases, as well as in ours, there is a fight between the
inward current Iy, and a net repolarizing current of
comparable magnitude. The very rapid kinetics of Iy,
makes the response very sensitive. For example, in the
full noise-free fast-upstroke model at
t. = 117.158751189269 ms, where prolongation is seen,
artificially depolarizing the membrane by a further
107" mV at the end of the stimulus pulse is sufficient
to convert prolongation into abbreviation. At this point
in the cycle, opening of a single Na " -channel for 0.1 ms
will depolarize the membrane by about 0.003 mV, while
opening or closing of one of the other channel types for
the same amount of time will change the membrane
voltage by 107°-10"*mV. Therefore, the opening or
closing of a single channel would more than suffice to
change prolongation to abbreviation or vice versa.

This sharp voltage dependence is reminiscent of the
situation in the Hodgkin—Huxley equations, where an
increase in the take-off potential of 0.2mV suffices to
convert a subthreshold response into a full-sized action
potential and increments of 10~ '>mV must be used to
demonstrate the underlying continuity of the intervening
graded responses (Clay, 1977). In the Hodgkin—Huxley
equations, a difference in stimulus amplitude of 0.01 pA/
cm” results in all-or-none behavior and a change in
stimulus amplitude as small as 10~ '*pA/cm? is needed
to show the intermediate responses (FitzHugh and
Antosiewicz, 1959). The full range of intervening
responses can only be seen in the fast-upstroke model
when we use continuation methods rather than numer-
ical integration (Fig. 11E). It is thus not surprising that
in the single-channel model one sees both abbreviation
and prolongation at ¢, = 117ms (Fig. 9B), due to
statistical fluctuations in the state of the membrane,
which occur prior to delivery of the stimulus pulse,
during delivery of the pulse, and after delivery of the
pulse. Our simulations with the single-channel model
show that for 1000 trials, no intermediate responses are
seen (Fig. 10). Fitting Gaussian distributions to the two
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peaks in this histogram suggests that an intermediate
result in an interval as broad as 25-140 ms will be seen in
only one out of every 10,000 trials. However, even if it
were possible to carry out an experiment with such a
large number of trials, keeping the preparation sta-
tionary, and one exceptionally rare intermediate re-
sponse were found, one could never be certain that, e.g.
the electrode had not slightly “unsealed” for that one
trial. Thus, in experimental work it is extremely difficult,
indeed impossible, to distinguish whether the phase
transition curve is truly discontinuous or simply very
steep.

Our single-channel model assumes that the individual
channels operate independently of each other, i.e. that
there is no cooperative behavior in the membrane.
However, there is evidence that this is not necessarily the
case for several channels, including Iy, channels (e.g.
Kiss and Nagy, 1985). Cooperative behavior, where
opening of one channel promotes the opening of other
channels, could be included in differential equations and
the single-channel formalism. This would be expected to
lead to an enhancement of the abrupt transition.

5.3. Topology of phase-resetting

The transition from type 1 to 0 resetting occurs when
the shifted cycle intersects the stable manifold of the
fixed point. With the value of —150 pA used in Fig. 11,
there is type 1 resetting. At a stimulus amplitude slightly
larger than this (—170 pA), type 0 resetting occurs and
simulations show that well-timed stimuli can again
deliver state points to the vicinity of the slow manifold
and the stable manifold of the weak unstable manifold.
Whereas in the case of type 1 resetting (Fig. 11E) state
points track the weak unstable manifold in the direction
of decreasing V' until diverging parallel to the strong
unstable manifold, in the case of type O resetting the
exceptional trajectories move along the weak unstable
manifold in the direction of increasing ¥ before
diverging. Hence, as the stimulus amplitude is varied
from —150 to —170pA, the phase transition curve
changes in a continuous manner, with an abrupt
transition present in both type 1 and type 0 regions.
The presence of an abrupt transition in type 0 resetting
has been observed experimentally in aggregates (Van-
meerwijk et al., 1984).

5.4. Applications and significance

Abrupt transitions in the phase transition curve can
also occur with hyperpolarizing stimuli delivered to the
sinoatrial node (e.g. Jalife et al., 1980) and to the
aggregate (Guevara, 1984), and this would also be
expected to happen in our model. In terms of autonomic
regulation of heart rate, the response of the sinoatrial
node to hyperpolarizing stimuli is important, as the

parasympathetic input to the sinoatrial node produces
hyperpolarization.

Our results are for resetting in a spatially homo-
geneous system that has traditionally been modelled by
nonlinear ordinary differential equations. A related set
of considerations apply also to cardiac oscillations that
take place in space. For example, it is possible to analyse
the resetting of a pacemaker embedded in a sheet of
excitable tissue, but stimulated from a distant site within
that sheet (Hall and Glass, 1999), or to analyse the
resetting of a re-entrant rhythm produced by activity
circulating along a one-dimensional ring (Glass and
Josephson, 1995) or a two-dimensional annulus (Glass
et al., 2002; Sinha et al., 2002; Sinha and Christini,
2002). Questions concerning the continuity of the
resetting curves arise in all these circumstances. Since
all experimental cardiac systems have some spatial
extent, the role of stochastic influences, such as we
consider here, in spatially distributed systems is a topic
for future study.

The fluctuating opening and closing of the ionic
channels in the single-channel implementation intro-
duces noise that is not infinitesimally small. A con-
sequence of this is that a stimulus delivered at a given
phase of a cycle may have widely different effects:
sometimes it will induce a new action potential but in
other cases it will delay an action potential. We believe
that stochastic phenomena such as those that are evident
here and others (e.g. stochastic fluctuations in vesicular
release dynamics in the neuronal control of cardiac rate)
do play a role in the genesis of cardiac arrhythmias
(Schulte-Frohlinde et al., 2001). A remarkable aspect of
clinical electrocardiographic records is that apparently
imperceptible differences in cardiac activity can lead to
very different outcomes. An abnormal cardiac complex
(e.g. a premature ventricular contraction) may in one
instance appear as an isolated abnormal beat, while the
next instance of an apparently identical premature beat
may lead to the onset of a fatal arrhythmia (e.g.
ventricular tachycardia or fibrillation). Perhaps it is
overly dramatic to imagine that the stochastic opening
or closing of a single channel may, in the appropriate
context, provide the narrow difference between life and
death. Yet, the current work gives at least indirect
support to this notion.
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Appendix A. Sinoatrial node Hodgkin—-Huxley-type
models

The rabbit sinoatrial node is an inhomogeneous
structure, with the shape of the action potential
gradually changing as one moves out from the center
of the node towards its periphery. Action potentials
recorded in situ from peripheral areas of the sinoatrial
node closer to the crista terminalis have a larger
maximum upstroke velocity, a higher overshoot poten-
tial, a larger maximum diastolic potential, and a shorter
action potential duration than those recorded from the
central area of the node (Bleeker et al., 1980). These
differences are intrinsic, since they persist in small pieces
of tissue isolated from mapped locations within the node
(Kodama and Boyett, 1985; Kreitner, 1985; Opthof
et al., 1987). Also, the interbeat interval is shorter in
small pieces isolated from peripheral areas of the
node (Kodama and Boyett, 1985; Opthof et al., 1987).
Systematic differences in current densities are seen
between larger cells and smaller cells in voltage-
clamp studies on single cells isolated from the sino-
atrial node (Honjo et al., 1996; Lei et al., 2001;
Zhang et al., 2000). Since peripherally located cells
are larger in situ than central cells, it is generally
assumed that larger isolated cells originate from more
peripheral areas of the node. The differences in the
action potential between smaller and larger isolated
sinoatrial node cells parallel the changes seen in
multicellular preparations (e.g. the maximal upstroke
velocity is higher in larger cells, and the interbeat
interval is shorter (Honjo et al., 1996)). Moreover, the
current densities in isolated cells change in a manner
consistent with the change in their action potential
parameters: e.g. the fast inward sodium current (Iva),
the delayed rectifier potassium current (/x), and the
hyperpolarization-activated pacemaker current (/,) are
all larger in the larger cells (Honjo et al., 1996; Lei et al.,
2001; Zhang et al., 2000), which are presumably of
peripheral origin.

We thus develop two models of an isolated sinoatrial
node cell, one with the slower upstroke velocity typical
of the central sinoatrial node (“slow-upstroke model”),
and the other with the faster upstroke velocity typical of
the peripheral sinoatrial node (“‘fast-upstroke model”).
Both of these models are modifications of the ionic
model of Irisawa and Noma (1982), which is
based largely on experiments carried out on strips of
rabbit sinoatrial node tissue. The Irisawa—Noma
model describes five currents: the fast inward sodium

current (In,), the slow inward current ([;) carried
mainly by Ca’" ions, the delayed rectifier potassium
current (Ik), the pacemaker current (/;,), and the time-
independent leak current (/). We do not use a more
complicated ‘‘second-generation” model, due to pro-
blems with degeneracy and drift (Dokos et al., 1993;
Endresen and Skarland, 2000; Guan et al., 1997,
Varghese and Sell, 1997). While keeping track of the
stimulus current that is injected removes drift in
one model, the model remains degenerate (Hund
et al., 2001).

A.1. Slow-upstroke model

The upstroke velocity is slow (~5Vs™') in the
Irisawa—Noma model. However, Iy, recovers from
inactivation relatively early on during the action
potential. This results in a small secondary peak in the
sodium current towards the end of the action potential.
This in turn leads to an anomalous bump in the resetting
curve when Iy, is increased for our fast-upstroke model
(developed below). The original formulation of Iy, in
the Irisawa—Noma model was based on sucrose-gap
voltage-clamp experiments on ventricular muscle from
various mammalian species (not including the rabbit).
We have thus modified the rate constants a;, and f3, (see
equations below) so that steady-state inactivation (h,, =
op/(on + f,)) and the time constant for inactivation
(tn = 1/(ou/B),)) are closer to more recent voltage-clamp
results on isolated rabbit sinoatrial node cells (Barus-
cotti et al., 1996; Muramatsu et al., 1996). With these
modifications, the time constant for inactivation is much
greater and the %, -curve is shifted to more hyperpolar-
ized potentials, both of which effects serve to decrease
the size of the secondary current peak during the action
potential and the anomalous bump in the resetting
curves.

As our model of a single cell with a slow upstroke
velocity, we use the Irisawa—Noma model with the
inactivation process of Iy, modified as described
immediately above. We set the capacitance to 20 pF
(Zhang et al., 2000), which corresponds to the experi-
mental value in the isolated sinoatrial node cells that
have slow upstroke velocities and are small in size and
presumably of central origin (Honjo et al., 1996; Zhang
et al., 2000). We also multiply the maximal conductance
of Ina by a factor of 1.3 to retain the same maximal
upstroke velocity as in the original Irisawa—Noma
model. The maximum diastolic potential also remains
unchanged at —66 mV, as does the overshoot potential
at 18 mV. The interbeat interval is 338.2ms and the
action potential duration (at 100% repolarization) is
137 ms, which are close to the original Irisawa—Noma
values (Guevara and Jongsma, 1990; Irisawa and Noma,
1982).
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The equations of the slow-upstroke model are as
follows:

dV/dt: I/Cm '(INa +IK +Is+lh +Il)9

Ing = gnaW(V — 40.0),
dm/dt = o,,(1 — m) — ,,m,
dh/dt = oy(1 — h) — B,h,
o, =0.1209 exp(—(V + 30.0)/6.534),
B, = 10%/(exp(—0.1(V + 40.0)) + 0.1),
o = 103(V +37.0)/(1.0 — exp(—0.1(V + 37.0))),
B, =4.0 x 10* exp(—0.056(V + 62.0)),

Ix = gxp(exp(0.0277(V + 90.0)) — 1.0)/
exp(0.0277(V + 40.0)),
dp/dt =o,(1 = p) — B,p,
a, =8.0/(1.0 + exp(—(V + 4.0)/13.0)),
B, =0.17(V + 40.0)/
(exp((V +40.0)/13.3) — 1.0),

I, = gsdf (exp((V — 40.0)/25.0) — 1.0),
dd/dt =og(1 — d) — pd,
df/dt =ar(1 = f) = B,
ag = 1.2 x 103/(1.0 + exp(— V' /12.0)),
By =0.25 x 10°/(1.0 4 exp((V + 30.0)/8.0)),
ar =0.7(V 4 45.0)/(exp((V + 45.0)/9.5) — 1.0),
B =36.0/(1.0 + exp(—(V + 21.0)/9.5)),

Iy = gng(V + 25.0),
dg/dt =o4(1 — q) — By,
g =0.34(V +100.0)/
(exp((V + 100.0)/4.4) — 1.0) + 0.0495,
B, =0.5(V + 40.0)/
(1.0 — exp(—(V + 40.0)/6.0)) + 0.0845,
I = g)(1.2(1.0 — exp(—(V + 60.0)/25.0))
+0.15(V —2.0)/
(1.0 — exp(—(V — 2.0)/5.0))),
where C,, = 20 pF, gna = 1.3 x 20 x 0.5 = 1318, gk =
20 x 0.91 =19.2nS, g, =20 x 15=300nS, g, =20x
0.2 =4nS, and g; =20 x 1 =20nS. Voltage is in mV,

time is in s, conductances are in nS, and rate constants
are in s .

A.2. Fast-upstroke model

In order to obtain a model of a fast-upstroke cell we
have modified some of the parameters of the slow-
upstroke model in the equations given above. The first
change is to increase the capacitance to 65 pF, to reflect

the larger capacitance of isolated cells having a fast
upstroke velocity (Honjo et al., 1996; Zhang et al.,
2000). As in other modelling work on central and
peripheral cells (Zhang et al., 2000), we have increased
the current densities of the three currents Iy, Ix and I,
in order to obtain a much larger maximal upstroke
velocity (71 vs. 5Vs™), a larger overshoot potential (31
vs. 18 mV), a more hyperpolarized maximum diastolic
potential (—78 vs. —66mV), and a smaller interbeat
interval (282 vs. 338ms) than in the slow-upstroke
model. The current density of [; is unchanged, so that
g = 65nS.

The Iy, current density is increased by a factor of 7.7
with respect to the slow-upstroke model so that
gNa = 10 x 65 x 0.5 = 325nS. The peak sodium current
density is then in agreement with experiment (Honjo
et al., 1996), as is the maximal upstroke velocity of
71 Vs~ (Bleeker et al., 1980; Kodama and Boyett, 1985;
Kreitner, 1985; Opthof et al., 1987). As in a previous
model (Zhang et al., 2000), we also increase the current
density of Ik six-fold, corresponding to the experimental
result (Honjo et al., 1996; Lei et al., 2001; Zhang et al.,
2000), so that gg = 6 x 65 x 0.91 = 354.9nS. This large
increase in Ix will tend to hyperpolarize the maximum
diastolic potential and abbreviate the action potential
duration. We are thus forced to increase the density of I
two-fold, as was done by Zhang et al. (2000), even
though the density of this current is independent of cell
size (Honjo et al., 1996), in order to obtain an action
potential of sufficiently long duration to compare with
that seen in situ (Bleeker et al., 1980), in small pieces
(Kodama and Boyett, 1985; Kreitner, 1985; Opthof
et al., 1987), and in isolated cells (Honjo et al., 1996).
The value of g, is then 2 x 65 x 15=1950 nS. The action
potential duration in our fast-upstroke model is 86 ms
(vs. 137ms in the slow-upstroke model). As in a
previous model (Zhang et al., 2000), we also increase
the current density of I, four-fold, in concordance with
the experimental result (Honjo et al., 1996), so that
gn = 4 x 65 x 0.2 = 52nS. This increase, as well as the
increases in the densities of Iy, and I, will tend to
decrease the interbeat interval, which is 282 ms in the
fast-upstroke model (vs. 338 ms in the slow-upstroke
model).

A.3. Numerical integration

Numerical integration of both models was carried out
using a forward Euler routine, i.e. V(¢ + At) = V(t) —
Al‘/cvm : (INa + IK + IS + Ih + Il + Ixtim): where Cm is cell
capacitance and [, is the stimulus current. The
integration time step (Az) was 0.1 ms in most cases for
the slow-upstroke model and 0.01 ms in most cases for
the fast-upstroke model, but time steps as small as 0.1 ps
were used when trying to resolve the abrupt transition in
the resetting curve (see Results). Thus, the maximum
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changes in voltage were 0.5mV in the slow-upstroke
model and 0.7mV in the slow-upstroke model. Pro-
grams were written in the “C” programming language
using ‘“‘long double” for the precision of real-type
variables. The value of any activation or inactivation
variable ¢ at time ¢ + Ar was determined from its value
at time ¢ from the analytic formula (Moore and Ramon,
1974) &1+ At) = &y — (& — E())(e /%), where &, s
the steady-state or asymptotic value of & (¢, = o /(o +
B:)) and 1 is the time constant of & (t: = 1/(ae + ) at
V(t). Initial conditions for the variables in the slow-
upstroke model were ¥V = —65.8990mV, p = 0.3127,
d =0.0197, f=0.5757, m =0.0330, ~#=0.5168, and
g = 0.0084, while in the fast-upstroke model they were
V =-77.5731mV, p = 0.2748, d = 0.0083, f = 0.5738,
m = 0.0074, h = 0.9990, and ¢ = 0.0094. These initial
conditions approximate the point on the limit cycle for
each model at the time when V attains the maximum
diastolic potential. For the resetting simulations, the
model equations were integrated for one full cycle prior
to the cycle in which the stimulus was given.

Appendix B. Sinoatrial node single-channel models

B.1. Estimation of single-channel conductances and
channel numbers

The first step in converting a Hodgkin—Huxley type of
model into a single-channel model is to estimate the
single-channel conductance of each current, which is in
turn then used to compute the number of single channels
responsible for carrying that current. The number of I
channels per cell (Ng) has been estimated to be
1054+254 in rabbit sinoatrial node cells having an
average capacitance of about 35pF (Shibasaki, 1987).
Assuming the same current density in our 20 pF slow-
upstroke model, we get Nx = 600. For the fast-upstroke
model, which has a six-fold higher density in addition to
the larger capacitance, we obtain Ng = 11,000. In a
previous single-channel model (Guevara and Lewis,
1995), the single-channel conductance of I; was esti-
mated to be 4pS, which results in the number of I
channels (V) being estimated to be 5250 in a 35 pF model.
We scale this to 3000 channels in our slow-upstroke model
and 20,000 channels in the fast-upstroke model, which has
twice the channel density. In another single-channel model
of a rabbit sinoatrial node cell, the single-channel
conductance of Iy, was estimated to be 20pS (Wilders
and Jongsma, 1993). Using that value, we obtain 650 and
16,300 for the number of Iy, channels (Nn,) in the slow-
and fast-upstroke models respectively. Using the esti-
mated physiological value of 0.5 pS for the single-channel
conductance of [;, (Wilders and Jongsma, 1993) gives the
number of I, channels (V) to be 8000 and 100,000 in our
slow- and fast-upstroke models, respectively.

B.2. Computational method for single-channel model

For the numerical integration of the single-channel
models we use a computational method (method 2)
described in Skaugen and Wallge (1979). In this method,
one keeps track of the ensemble of gates, rather than of
each individual gate. That is, one keeps track of the
number of channels in each possible state of the
ensemble. For the Ix channels, the single gate (p) of
the channel is either open or closed. The number of I
channels in the open and closed states are then NK, and
NK;, respectively. The I, channels have one activation
gate (d) and one inactivation gate (f), making the
number of /; channels in the possible states Nsoo (both d
and f closed), Nso; (d closed, f open), Nsio (d open, f
closed), and Ns;; (both gates open). The channel is open
to pass current only when both gates are open. The
pacemaker current /[, passes through a channel with one
gate (¢g). The number of channels with the gate closed is
Nhgy, and Nh; with the gate open. Finally the Iy, channel
has one inactivation gate (#) and three activation gates
(m). The number of channels in the possible states is
NNay, (all gates closed), NNagy; (h closed, one m open),
NNay, (h closed, two m open), NNay; (h closed, three m
open), NNay, (h open, all m closed), NNa;; (h open, one
m open), NNay, (h open, two m open), NNays (all gates
open). To save computation time, we use an approx-
imation developed by Skaugen and Wallee (1979) (their
method 2b), where one does not need to consider all the
transitions between the non-open states of the Iy,
channel (this method has also been previously used in a
sinoatrial node single-channel model (Wilders and
Jongsma, 1993)). In fact, one need only keep the states
NNagz and NNa;; stochastic, while setting their
neighboring states, NNag, and NNa;,, equal to their
expected values

3\ . .
NNa; = ( _ >h’(1 — "1 — m)* 7 Nxa, (B.1)
J

where m and / are integrated using the same scheme as
in the implementation of the Hodgkin—Huxley-type
models (see Appendix A). The lifetime ¢ of the
ensemble in a particular state is given by

ot = —In(r)/{o, NKo + B,NK; + oy Nho
+ BN + (ota + o) Nisoo
+ (%ta + By)Nsor + (B4 + or)Nsio
+ (Ba + By)Ns1i
+ (o + 2, + on)NNag,
+ (38, + an)NNays
+ (@ + 2B, + B)NNai2
+ (3B + Bp)NNays},

where r is a pseudorandom number drawn from a
uniform distribution on (0,1], «, is the opening rate
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constant of gate x, and f, is its closing rate constant.
After the lifetime of the ensemble (i.e. at 7+ 07), a
transition will occur to a new state. A second
pseudorandom number is drawn. Together with the
probability of each particular transition (given as the
sum of the probabilities of the different ways in which
that transition can occur, divided by the sum of the
probabilities of all the possible transitions), this second
pseudorandom number determines which new state the
system will go to. Finally the voltage is updated using a
forward Euler scheme: V(z 4+ d1) = V() + 0V = V(1) —
0t/Cp (Ina + Ix + I+ I + I + Ly,). We did not have
to put an upper limit on 6t (Skaugen and Wallge, 1979),
since in Fig. 3 the maximum value of é¢ was 0.04 ms in
the slow-upstroke model and 0.01ms in the fast-
upstroke model, and the maximum values of 6} were
0.01 mV and 0.006 mV, respectively. The leak current is
not (pseudo-)randomized, since the ionic nature of this
current—in particular, its single-channel conductance—
is not known (see Wilders and Jongsma (1993) for
exploration of the effect of introducing the single-
channel nature of the background current over a range
of putative single-channel conductances).

Initial conditions were given by the expected values
of the various states at V' = —65.8990mV for the
slow-upstroke model and at V' = —77.5731 mV for the
fast-upstroke model (same voltages as for the
initial conditions in the Hodgkin—Huxley-type models).
With all activation and inactivation variables taking
on the same initial conditions as in the Hodgkin—
Huxley-type model, the expected values for the sodium
channel states are given by Eq.(B.1); for the Ik
channel NK; = pi(1 —p)HNK; for the I;, channel Nh; =
¢'(1 —¢)'"'N;; and for the I, channel Ns; = d'(1 —
d)'7fI(1 — )/ N,. As with the Hodgkin-Huxley-type
models, the single-channel models were integrated for
one full cycle prior to the cycle in which the stimulus
pulse was given during a resetting trial. Furthermore,
when the time of the start or end of a resetting stimulus
pulse fell within the interval (¢, ¢ + df), ¢ was shortened
so that a transition of the ensemble occurs exactly at
the time when the stimulus is turned on and off (for
justification of this, see argument in Skaugen and
Wallge, 1979).

Our single-channel model is deterministic, not sto-
chastic, since a deterministic pseudorandom number
generator is used to determine lifetimes of the ensemble
and the state to which the membrane will switch at the
end of each such lifetime. However, ionic channels are
presently thought to open and close in a stochastic, not a
deterministic fashion (see however Guevara (1991) and
Liebovitch and Toth, 1991). Nevertheless, one would be
hard pressed to distinguish the output of our pseudor-
andom single-channel model from that of one in which
a truly stochastic random-number generator would be
used.
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