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Abstract

Over the last fifteen years there has been
much interest in the topic of chaos in biologi-
cal systems. There are several hundred reports
dealing specifically with electrophysiological
systems. In this article, we review experimen-
tal and modelling work on chaotic dynamics in
electrophysiology, concentrating on examples
drawn from the cardiovascular and nervous
systems, which have been the two systems most
studied. We survey the techniques that have
been used in claiming the existence of chaotic
activity in these studies, giving a fairly com-
prehensive, but not exhaustive, list of the situ-
ations in which these techniques have been
used. These techniques include: description of
one-or-another of several well-characterized
routes to chaos, extraction of a one-dimensional
map from a time series (�return map�), exami-
nation of the power spectrum for a broadband
component, reconstitution from the time series
of a geometrical portrait of the strange attractor

generating the chaotic behaviour (�method of
time delays�, �embedding�), construction of a
Poincaré section (and perhaps a one-dimen-
sional return map) from the reconstituted
attractor, determination of the fractal dimen-
sion of the attractor and its Liapunov
exponent(s), and testing for nonlinear determin-
ism. We also give a few caveats along the way,
including examples where the claim for chaos
was wrong (or at best premature).

Chaos

One can find several definitions of chaos
floating about in the literature. Many of these
are mathematical in nature, and therefore of lit-
tle use to an experimentalist or to a modeller
carrying out numerical simulations (e.g. defi-
nitions involving the existence of an infinite
number of unstable periodic orbits). A useful
working definition of chaos might perhaps be
something along the lines of aperiodic dynam-
ics in a deterministic system demonstrating
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sensitive dependence on initial conditions
[143]. There are clear methodological problems
if one takes a few moments to reflect on each
of the three requirements in this definition.

Many experimentalists think of a trace
as being chaotic when it is irregular or aperi-
odic (and obviously not just a periodic trace
with some noise superimposed), but with some
degree of determinism or predictability (i.e. not
purely random or stochastic). It is not good
enough to call a trace chaotic simply because
it is aperiodic, as has been done in many pub-
lished papers [125, 157]. An example of a be-
haviour that would not be viewed as chaotic at
the present time is the irregular beating of a
single pacemaker cell isolated from the
sinoatrial node. The irregularity in this case can
be accounted for by the fact that the electrical
activity underlying spontaneous activity is be-
ing generated by a population of ion channels
lying in the membrane, with each individual
channel opening and closing in a random fash-
ion [106, 288]. Note that while one cannot pre-
dict the exact time at which a particular chan-
nel that is presently open will close (or vice
versa), the probability that it will do so is
known, being controlled for most channels by
the transmembrane potential.

Since Johnson, membrane, and some-
times synaptic noise are intrinsic to all electro-
physiological systems, there are no electro-
physiological systems that are purely determin-
istic (i.e. have no stochastic components). Thus,
when one states that chaos exists in such a sys-
tem, the underlying implication is that there is
some deterministic mechanism at work that is
responsible for generating the aperiodicity. A
further implication is that this deterministic
mechanism is in some sense more important to
the production of the irregular dynamics than
any stochastic processes that might be present.
One way of demonstrating this deterministic
contribution to the dynamics is to develop a
realistic, physiologically-based, deterministic
model of the system, and then to have that
model generate chaotic behaviour resembling

the experimentally observed irregular dynam-
ics.

The third requirement in the definition
(sensitive dependence on initial conditions) is
not very often proven, or even tested, in ex-
perimental work. Demonstration of this prop-
erty involves calculation of the largest
Liapunov exponent. Among other things, this
third requirement means that quasiperiodic phe-
nomena - which are both aperiodic and deter-
ministic - are not chaotic.

There are several recent publications spe-
cifically reviewing chaotic dynamics in the car-
diovascular field [17, 49, 60, 127, 130, 140,
198] and in the neural field [60, 131, 152, 207,
210, 211, 220, 262]. Many publications sum-
marize the broader physiological and biologi-
cal literature [19, 47, 78, 80, 124, 143, 163, 197,
260, 287]. There has also been a great deal of
discussion about the possible rôles of chaos in
norrno- and patho-physiology [44, 86, 87, 140,
151, 163, 206, 238, 260, 287] and higher brain
function [53, 60, 114, 151, 152, 186, 207, 210,
211, 258].

We now briefly consider the main tech-
niques that have been used to provide evidence
for the existence of chaotic dynamics in
electrophysiological systems, along the way
providing an entrée into the literature and point-
ing out some practical problems. We shall not
go into the details of these techniques, since
they are described in several recent review and
tutorial articles [48, 49, 60, 80, 92, 127, 131,
137, 152, 163, 184, 210, 211, 217, 247, 250].

Routes to Chaos

One of the tests most frequently used to
establish the existence of chaos is the determi-
nation that one of several well-characterized
�routes to chaos� is being followed as some
experimental parameter is systematically
changed. There have been several routes to
chaos described. These include period-dou-
bling, intermittency, crises, period-adding,
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Sil�nikov, and quasiperiodicity [20, 57, 97, 152,
252].

Period-Doubling Cascade
The period-doubling route to chaos is

probably the route that has been the most re-
ported. A period-doubling bifurcation occurs
when there is a doubling of the period of a regu-
lar, periodic oscillation as some parameter is
changed. It is well-known in mathematical
work that a cascade of an infinite number of
period-doubling bifurcations can lead to cha-
otic dynamics [20, 49, 60, 78, 143, 174, 252,
267]. Irregular rhythms seen in experiments on
cardiac [36, 38, 76, 107, 109, 112, 122, 147,
244], vascular [98], and neural [116, 145, 173,
272] tissue can, and have been, interpreted in
this light.

In experimental work on biological sys-
tems, it is very rare to find reports of a period-
doubling bifurcation beyond a second consecu-
tive period-doubling (which produces a period-
4 orbit); a rare example of a period-8 orbit can
be just barely made out in Fig. 5B of Hescheler
& Speicher [122]. Thus, only one, two, or, very
rarely, three period-doubling bifurcations have
been described in biological systems before the
irregular dynamics appears. There are probably
two main reasons for this. First, the noise
present corrupts higher-order period-doubled
orbits that would presumably exist in the ab-
sence of the noise, producing a �bifurcation
gap� [45, 81]. This gap exists because the small
differences between the higher-order orbits that
would occur in the noise-free system are within
the background noise level, resulting in orbits
that resemble at best a noisy period-2n orbit,
and which can be mistaken  for �noisy perio-
dicity� or �banded chaos� [166]. Secondly,
since the range of the experimental parameter
over which one would expect to encounter a
period-doubled orbit decreases as the cascade
is penetrated, it is often impossible to hold the
experimental system stationary enough to al-
low period-doubled orbits of longer periods to
be seen. This effect is accentuated in the pres-
ence of noise. However, this line of reasoning

soon gets one into the hot water reminiscent of
the famous question of Bishop Berkeley.  Thus,
it remains a matter of the individual investiga-
tor�s judgment in a particular case as to when
to claim that a cascade of period-doublings is
leading to chaotically irregular dynamics [107,
111].

Evidence for the period-doubling route
to chaos has also been found in modelling work
on cardiac [24, 134, 160, 181, 281], neural [3,
4, 8, 25, 33, 34, 108, 116, 129, 135, 283, 284],
and pancreatic [31] systems, as well as in mod-
elling work on tremor [5].

Alternans is a rhythm seen on the elec-
trocardiogram (ECG) in which there is a beat-
to-beat alternation of one or more of the
electrocardiographic complexes. It is often as-
sumed that the alternans arises out of normal
sinus rhythm via a period-doubling bifurcation.
Alternans can be seen in the setting of acute
myocardial ischaemia, and often precedes the
phase of induction of malignant ventricular
arrhythmias [229, 235, 265, 279]. It is thus
tempting to speculate that the alternans might
be the first sign of a period-doubling cascade
that would eventually lead to chaotic dynam-
ics, which would correspond to ventricular fi-
brillation [264]. Since the transition from ven-
tricular tachycardia to ventricular fibrillation
can be thought of as being due to the breakup
of a spiral wave into multiple spirals [148], a
recent report in which spiral breakup occurs
when the system is sufficiently close to
alternans is especially intriguing [148].

Caveats
1. As a single parameter is changed, it is math-

ematically possible for chaos to be seen fol-
lowing one [176, 276] or two [160] period-
doubling bifurcations. It can also appear
abruptly, not being preceded by any period-
doublings, producing �instant chaos� [195].
Thus the interpretation proffered above of
noise corrupting an infinite cascade is not
necessarily the explanation when one sees
chaotic dynamics following a finite number

�
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of period-doublings in the presence of noise.
2. An incomplete cascade of period-doublings

can occur, sometimes followed by a sym-
metrical cascade of reverse period-doublings
(�period-halvings�), producing a bifurcation
diagram containing �bubbles� ([100], Fig-
ure 5). Since such partial cascades can ex-
ist, it is prudent not to assume that chaotic
dynamics must necessarily ensue if a se-
quence of a few period-doublings is seen
[278].

3. The first period-doubled orbit shows up in
the time series as a simple cycle-to-cycle
alternation between two components in the
waveform. When one sees such an alterna-
tion, it is thus tempting to claim that the
rhythm has been produced by a period-dou-
bling bifurcation. However, this is not al-
ways the case. A nice example of this is in
2:1 atrioventricular heart block. If one
records from within the atrioventricular
node, one can see a beat-to-beat alternation
in action potential morphology. However,
this is not the result of a period-doubling,
since the transition from the period-1 rhythm
is not direct, but rather, from a mathemati-
cal point of view, involves an infinite
number of other periodic rhythms, which are
termed Wenckebach and reverse
Wenckebach rhythms [102, 257].
Another example would be when one sees
alternation in the force of contraction of a
multi-cellular muscle (cardiac, smooth, or
skeletal), in which one [72] or two [182]
subpopulations of cells are contracting on
every other response, with perhaps the ma-
jority of cells contracting on each response.
If the 2:1 response in the subpopulation(s)
arises out of a Wenckebach sequence, the
alternating rhythm cannot be said to have
arisen out of a period-doubling bifurcation.
It is difficult to rule out this possibility in an
experiment in which one simply has an iso-
lated trace showing an alternans rhythm,
since it is technically difficult to measure
from all - or indeed even a few - sites in a
multicellular preparation.  The best that can
be done here perhaps is to vary a parameter

and see whether intermediate rhythms can
be seen during the transition from normal
rhythm to alternans rhythm.

Intermittency
There are three types of intermittency

(types I, II, and III). These are found when the
system is chaotic, but close to (i.e. a relatively
small change in a parameter will produce) a
saddle-node, Hopf, or period-doubling bifur-
cation respectively [20, 205, 252]. The charac-
teristic feature of a waveform showing inter-
mittency is that, as time proceeds, there is a
switching back-and-forth between two forms
of behaviour, which appear very different: a
laminar phase, in which the waveform looks
quite regular (with some sort of slow drift),  and
a turbulent phase, in which the waveform is
much more irregular.

Type I intermittency has been reported
in neurons [116, 120] and axons [270], as well
as in periodically driven heart cells [83]. Type
III intermittency has been seen in the squid gi-
ant axon [173, 270] and in the elecroencepha-
logram [215]. There also is a report of inter-
mittency, which might be of type I, in vascular
smooth muscle [98]. We are not aware of any
reports of type II intermittency in electrophysio-
logical systems (reports of this type of inter-
mittency are very rare in the literature on physi-
cal and chemical systems).

Caveat
1. Part of the definition of intermittency is that

the system be close to the appropriate kind
of bifurcation. However, this is a necessary,
but not sufficient, condition. For example,
systems that can have only periodic and
quasiperiodic behaviours, and no chaotic
behaviour  - e.g. a limit-cycle oscillator sub-
jected to periodic forcing of sufficiently low
amplitude [82] - can display a form of be-
haviour which can be misidentified as type
I intermittency when the system is close to
a saddle-node bifurcation.  We have previ-
ously termed this phenomenon �tangency�
[20, 100]. Thus, showing a slow drift in a
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waveform is not enough to establish the ex-
istence of a chaotic intermittency ([118], Fig.
1(b); [83], Fig. 11.4).

Crises
A crisis occurs when an unstable peri-

odic orbit collides with a chaotic attractor [94].
Crises come in two flavours: interior and
boundary. The former results in the sudden
widening or narrowing of a pre-existing cha-
otic attractor, while the latter converts transient
chaos into chaos, producing a chaotic attractor
(or vice versa). Unlike the case in theoretical
work or numerical simulation, it is usually im-
possible in experimental work to track an un-
stable orbit as a parameter is changed. Thus, it
is virtually impossible to obtain prima faciae
evidence for a crisis in experimental work, since
one will simply see the sudden appearance, dis-
appearance, or change in size of a chaotic
attractor, and there is always the alternative
explanation of bistability between a periodic
orbit and a chaotic attractor, or between two
different chaotic attractors.

While crises have been documented in
many physical systems, there are very few re-
ports in the physiological literature. For exam-
ple, an interior crisis can be seen in the peri-
odically driven FitzHugh-Nagumo model
[283], which is a simplifed version of the
Hodgkin-Huxley equations for squid axonal
membrane, and a crisis has been associated with
the transition from beating to bursting in a
model of a pacemaker neuron [284]. We have
previously noted that crisis-induced intermit-
tency has several characteristics reminiscent of
the behaviour displayed by single ionic chan-
nels, whose kinetics are taken to be stochastic
at present [103, 162].

Quasiperiodicity
Quasiperiodic behaviour occurs when the

trajectory of the system lies in the surface of a
torus, producing a motion made up of two or
more frequencies that are incommensurate [20,
48, 96, 143, 152, 252]. A chaotic attractor can
occur when quasiperiodic motion on a torus of

dimension three [194] or higher [234], which
results in a quasiperiodic waveform with three
or more incommensurate component frequen-
cies, is destabilized by a nonlinear perturba-
tion [57, 96, 152]. One nice aspect of this sce-
nario is that the chaotic strange attractor pro-
duced is structurally stable: i.e. it will persist
despite changes in parameters in the system,
provided that they are sufficiently small.

We know of only one report claiming this
quasiperiodic route to chaos in electrophysiol-
ogy, which will be discussed below. This rela-
tive lack of evidence might simply be because
this route is not well-appreciated by
experimentalists, and so there may not have
been many serious attempts made to find it or
produce it experimentally. However, the ma-
jority of physiological variables (e.g. heart rate,
blood pressure) are controlled by systems with
many different characteristic response times.
The weak interaction of these many different
control systems would lead to N-tori with N
large [96]. One might thus expect chaotic be-
haviour arising from the Newhouse Ruelle-
Takens scenario to be quite commonplace in
vivo, since these control systems are generally
nonlinear and interact in a nonlinear fashion.
However, unlike the case in the physical sys-
tems where this scenario has been described
[20, 96, 252], it might be difficult to provide
direct experimental evidence for this route,
since to do so one would have to set up a sta-
tionary quasiperiodic behaviour with three or
more component frequencies. In addition, one
would then have to subject the system to the
appropriate nonlinear perturbation, which
might have to be very carefully chosen, espe-
cially when the perturbation is small [96]. An
additional consideration to be borne in mind in
this case is that this route might be intrinsically
rare, since it was not seen very often in a nu-
merical study of one particular system in which
a search was made over a wide range of ran-
domly chosen parameters [96]. In addition,
while the theory says that chaos should occur
for an infinitesimally small, but appropriately
chosen perturbation, it was found in this study
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that the chaotic attractors became increasingly
common as the amplitude of the perturbation
was increased.

Caveats
1. Quasiperiodicity is a mathematical concept

that cannot be proven in an experimental or
numerical setting, having, like chaos, fun-
damental methodological problems inherent
in its definition (e.g. irrational numbers). In
a noisy system, it becomes impossible to
discriminate between quasiperiodic orbits
and periodic orbits of long period ([83], Figs.
11.7 and 11.8). In addition, a fundamental
conflict between the measure-theoretic and
generic points of view has been pointed out
[100].

2. Should the nonlinear perturbation be pre-
existing (i.e. not added after the 3-torus is
established, as in the Newhouse-Ruelle-
Takens scenario), it is possible that only two
frequencies would be seen as a parameter is
changed before the chaotic attractor would
appear, since the 3-torus that would other-
wise occur would not come into existence
because of the destabilizing effect of the
nonlinear perturbation [252]. For this rea-
son, chaotic activity seen following a 2-fre-
quency quasiperiodic motion has been in-
terpreted in terms of the Ruelle-Takens-
Newhouse scenario in experimental work on
physical systems [20, 252]. Unfortunately,
diagnosis of the Newhouse-Ruelle-Takens
scenario cannot definitely be established in
this circumstance, unless one could some-
how remove the perturbation and show that
a 3-torus would result instead of the strange
attractor in the absence of the perturbation.

3. It is possible to obtain chaos from a 2-torus,
e.g. in the Curry-Yorke model [20]. This
route is probably connected with another
very-well studied �route to chaos� involv-
ing quasiperiodicity in one-dimensional
maps [20, 152]. There are also several other
reports in which there are still other routes
to chaos involving tori - e.g. period-
doublings of tori [9, 66].

4. In the one report that we have been able to

find in the electrophysiological literature in
which the quasiperiodic route to chaos was
claimed [98], there was apparently a transi-
tion to a period-doubled rhythm, and then
to a quasiperiodic rhythm, and then to chaos.
This is not consistent with the classic
Newhouse-Ruelle-Takens scenario (unless
some variant of the situations described in
caveats 2 or 3 above existed).

The Sil�nikov Scenario
The Sil�nikov scenario (or bifurcation or

phenomenon) is a very complex phenomenon
in which the system generates an infinity of pe-
riodic and aperiodic orbits as a parameter is
changed away from a value at which the sys-
tem admits a homoclinic orbit (an orbit of infi-
nite period) associated with a saddle-focus type
of equilibrium point. As one changes a param-
eter away from the one precise value where the
homoclinic orbit exists, there is an explosion
producing an infinite number of periodic or-
bits, each of which undergoes a cascade of an
infinite number of period-doubling bifurcations
leading to chaos. There is numerical evidence
that this scenario is being followed when
�mixed-mode� rhythms containing action
potentials and delayed afterdepolarizations are
seen in numerical work on an ionic model of
the sinoatrial node [105]. It is also possibly oc-
curring in other situations in which delayed
afterdepolarizations are seen in cardiac ([101],
see also references therein) and neural [104,
113, 285] oscillators, as well as in still other
situations in which early afterdepolarizations
[29, 30] or internal calcium oscillations [278]
occur. The Sil�nikov scenario has also been in-
voked to account for phenomena seen in respi-
ration [240] and in human neuromuscular co-
ordination [151].

Caveats
1. There are many problems with establishing

the existence of the Sil�nikov scenario. As
recently emphasized, it is not sufficient to
simply show that a homoclinic orbit exists
[233]. Determination of the amplitude of the
real parts of the eigenvalues of the saddle-

�
�
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focus equilibrium point is one of the key
measurements to be made in establishing
this scenario. Unfortunately, while this cal-
culation can be carried out in modelling
work [105], it has not been done in experi-
mental work.

2. There is one experimental report on a chemi-
cal reaction in which mixed-mode oscilla-
tions occurred, but with no sign of chaotic
activity [171]. Modelling work on this re-
action reveals that the range of the param-
eter over which the chaos exists is exceed-
ingly small, and the chaos itself can be on
such a fine scale that it would almost cer-
tainly not be observable in the correspond-
ing  - necessarily noisy - experimental sys-
tem ([226], Fig.17). This �chaos on a fine
scale� is presumably what accounts for the
lack of aperiodic behaviour in the model-
ling work hitherto carried out on ionic mod-
els of heart and nerve (references above).

3.  Noise can produce rhythms reminiscent of
the mixed-mode rhythms expected from the
Sil�nikov scenario in situations where this
scenario cannot exist [35, 165].

Power Spectrum

The power spectrum of many chaotic sig-
nals has a background level that is significantly
above the instrumental noise floor. In this con-
text, the power spectrum has been determined
in experimental work on the cardiovascular [98,
244, 291, 292, 294, 295, 296], neural [1, 117,
173, 177, 202, 249, 270], respiratory [239, 240],
and hormonal systems, as well as in reports on
human speech [191] and periodically driven
plant cells [121]. Spectral analysis has also been
employed in modelling work on periodically
stimulated cardiac cells [134] and axons [133],
as well as on bursting pacemaker neurons [25]
and spiral waves in an excitable medium [297].

While the lack of a broadband compo-
nent in the power spectrum of ventricular fi-
brillation has been taking as evidence for con-
cluding that fibrillation is not chaotic [86], it is
possible to construct chaotic models that have

a narrow-band spectrum similar to that seen in
fibrillation [139]. In contrast, the spectrum dur-
ing atrial fibrillation has been reported to be
broad-band in nature [146].

Caveats
1. One should be cautious in concluding that a

system is chaotic simply on the basis of the
existence of a broad-band spectrum com-
puted from a single time series. The evi-
dence is more convincing  if one can show
a sequence of bifurcations involving peri-
odic orbits, with the sudden emergence of a
large-amplitude broad-band component in
the spectrum, coinciding with the transition
from periodic to aperiodic behaviour [25,
133, 244].

2. It has been known for some time that cha-
otic systems can have a 1/fα-like spectrum
[126, 170, 214]. While cardiovascular [136,
142, 153, 188, 190, 200, 201, 242, 256, 282]
and neural [75, 188, 189, 193, 209, 243]
systems can also have a 1/fα-like spectrum,
caution is indicated in so far as drawing a
causal connection, i.e. implying or conclud-
ing that the electrophysiological system is
therefore chaotic [256]. In this respect, we
must note that stochastic systems can have
a 1/fα spectrum [41, 65, 199], and that there
exist strange (i.e. fractal) attractors that are
not chaotic [95]. Caution is also suggested
in cases when their seems to be some fractal
structure in the signal - e.g. fractal cluster-
ing in auditory spike trains [271] and in ven-
tricular extrasystoles [266]. Finally, a 1/fα

spectrum can be replicated by a system
whose component parts individually have
appropriately chosen Lorentzian spectra
[243]. Thus, as previously stated [106, 142],
the 1/fα falloff in heart-rate and blood-pres-
sure spectra could conceivably be simply the
result of many different control systems
working over widely different time scales.
It is thus not necessarily correct to deduce
that there is some form of fractal process
simply because there is a 1/fα-like spectrum
[190].

3. Fractal anatomy does not imply chaotic dy-

�
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namics [249], nor does the existence of a 1/
fα spectrum imply the existence of a fractal
anatomy [21, 37, 161], as has been claimed
for the cardiac His-Purkinje system ([85,
287], and references therein).

Attractor  Phase-Portrait

This technique has been particularly at-
tractive to many investigators, in no small
measure because it is very simple. A time se-
ries of a measured variable x(t) is sampled at
an interval ∆t producing the discrete data set
{x(0), x(∆t), x(2∆t), ..., x(N∆t)}. One then
forms n-tuplets (often triplets for purposes of
illustration) of points (x(i∆t), x((i+1)∆t), ...,
x((i+(n-1)∆t))), i�0 and plots the trajectory
traced out by these n-dimensional points in the
n-dimensional phase space. This method of re-
constructing or reconstituting a phase-space
trajectory is called �the method of time delays�
or �embedding�. Alternatively, a phase portrait
can be obtained by plotting one measured vari-
able against another, or a two-dimensional
phase-plane plot can be obtained by plotting
the first derivative of a variable vs. the variable
itself.

Examination of the phase-portrait some-
times reveals a banded structure that is remi-
niscent of  �strange attractors� (described be-
low) seen in numerical simulations of math-
ematical systems that are commonly accepted
as being chaotic (e.g. Lorenz, Rössler attrac-
tors). Whether this resemblance is of any sig-
nificance, or merely superficial, is unclear. In
the area of neurophysiology, portraits have been
constructed in one of the three ways mentioned
above for the EEG [12, 13, 50, 67, 68, 177,
211, 216], multi-unit recordings from the tec-
tum [192], the H-reflex [245], the electro
oculogram [1], visual evoked potentials [249],
epileptiform hippocampal bursts [117], respi-
ration [238, 239, 240], speech [191], bursting
molluscan neurons [116, 186], driven neurons
and axons [2, 62, 115, 116, 117, 119], and mod-
els of axonal and neuronal membrane [3, 116,
169]. There are also many articles in the car-

diovascular field, dealing with normal sinus
rhythm [12, 26, 50, 123, 178, 187, 225, 295],
atrial fibrillation [123, 146, 196], ventricular
fibrillation [139, 224, 225], irregular rhythms
in periodically driven preparations [36, 38,
244], irregular blood flow and blood pressure
[99, 230, 282, 292, 294], and models of car-
diac cells [24, 181] and of spiral waves [297].
Portraits have also been made for periodically
driven plant cells [121] and for activity in a
model of respiration [238]. Finally, of great in-
terest to electrophysiologists, it is apparently
possible to reconstruct a chaotic attractor that
is generating a spike train via an integrate-and-
fire mechanism from a record of the spike train
itself [241]. Embedding is now perhaps most
frequently used as a preliminary step in obtain-
ing a Poincaré section or in calculating the cor-
relation dimension or Liapunov exponent.

Caveats
1. The visual appearance of the attractor can

change depending on the choice of embed-
ding time delay ∆t (see [12] for the ECG;
[80] for the heartrate). One of the very few
places where one can find nice systematic
illustrations demonstrating this point in an
experimental system is in an article on a
chaotic chemical reaction ([231], Figs. 2,3).
An incontrovertible example of the effect
of choice of time delay on the reconstituted
attractor can be seen when one embeds a
time series obtained from a deterministic set
of equations: in this case, the reconstituted
strange attractor can be made to look very
different from the real strange attractor
([282], Fig.3).

2. Filtered noise can sometimes give a recon-
stituted trajectory that looks similar to a
strange attractor, in that it appears to con-
tain some �structure�  ([216], Fig. 3). In
some situations in which the existence of
low-dimensional chaos (and therefore a
strange attractor) is claimed, the phase por-
trait is comparable to a  �ball of string� or
�tangle of  spagetti� ([26], Fig.1;  [67],
Fig.1a; [87], figure on page 48;  [292],
Fig.6), that is reminiscent of the phase por-
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trait constructed from a random system
([73], Johnson noise from a resistor in Fig.3;
[216], Fig.4). In such an instance, the pos-
sibility also exists that there has been a
misdiagnosis of low-dimensional chaos, and
that there is instead an orbit (which might
or might not be chaotic) of very high dimen-
sion ([73], summated output of 12 oscilla-
tors in Fig.3).

3. Interaction between two approximately pe-
riodic processes at different frequencies (e.g.
respiratory sinus arrhythmia) can produce a
quasiperiodic rhythm, which, in the presence
of noise, can sometimes result in a portrait
that superficially has the banded shape char-
acteristic of many strange attractors (e.g. the
Rössler attractor). The same sort of phenom-
enon can occur in periodically stimulated
cells that have some sort of �memory�, the
time constant of which is long with respect
to the period of the stimulation.

4. In modelling work, reconstitution of an
attractor can still be carried out using the
method of time delays, even though one can
plot the phase-space trajectory directly [24,
116].

Poincaré Sections

Once an attractor has been reconstituted,
it is possible to take a Poincaré section of that
attractor. This is done in a three-dimensional
reconstruction, for example, by placing a plane
tangential to the overall direction of the trajec-
tory in that region of the phase space, and keep-
ing track of where successive passes of the or-
bit pierce that plane (a nice example of this is
in a study on a chaotic chemical reaction -
[231]). One can then sometimes also extract
out a one-dimensional return map. Poincaré
sections have been taken for the ECG [12, 291],
experiments on neural [2, 116, 117, 186] and
cardiac [244] tissue, respiration [239], vocali-
zation [180], and modelling of cardiac [24,
181], neural [116, 284], respiratory [238], and
multiloop feedback [79] systems.

Return Map

Perhaps the simplest context in which
one can visualize and appreciate chaotic behav-
iour is in the setting of a one-dimensional fi-
nite-difference equation or map [78, 143, 174].
It is therefore not surprising that the approach
of reducing consideration of experimentally or
numerically obtained data to consideration of
the properties under iteration of a one-dimen-
sional map has been very popular. This proce-
dure can be carried out in two ways. The
method most commonly used is to construct a
return map directly from the time-series show-
ing the chaotic behaviour. Less commonly,
what one might call a �forward map� may be
constructed from an experiment independent
of the experiment producing the chaotic trace
[23, 38, 39, 82, 107, 108, 131, 160, 280].

A return map can, in turn, be produced
in one of two ways. As described in the section
just above, one can construct a Poincaré sur-
face of section for a reconstituted attractor and
then keep track of where this surface is pierced
on successive passes of the trajectory. Alterna-
tively, one can simply measure some charac-
teristic feature of the waveform on each �cy-
cle� of the waveform (or on each cycle of the
waveform of a periodic forcing stimulus, yield-
ing a �stroboscopic map�) and plot successive
values as a function of the immediately pre-
ceding value. This latter approach results in an
approximately one-dimensional first-return
map in experiments on plant [118, 121],  car-
diac [38, 76, 82, 107, 109, 112] and neural [3,
115, 117, 119, 120, 145, 179] preparations, as
well as in the cries of newborn infants [180].
A one-dimensional map has also been extracted
in this way in work modelling cardiac [160,
181, 281], neural [2, 25, 129], and pancreatic
[31] activity. In other situations, when a first-
return plot is made, one or more clouds of points
showing little or no hint of one-dimensional
structure results [12, 40, 71, 74, 76, 106, 110,
164, 238, 240, 246, 289]. This result is vari-
ously ascribed to the existence of random or
chaotic dynamics. In some cases - digitalis-in-
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toxicated cardiac muscle [71], hipppocampal
bursting [246], and ventricular fibrillation [289]
- the interpretation is that there is a two- or
higher-dimensional map underlying the proc-
ess. The extracted two-dimensional return map
has then been used in �controlling chaos� [255]
in neural [246] and cardiac [71] preparations
in which the authors claim the existence of cha-
otic activity ([40], for an alternative interpre-
tation).

Caveats
1. The fact that there is no one-dimensional

structure apparent on a return map does not
necessarily imply that the system is
stochastic. For example, if the map is deter-
mined from a Poincaré section, it might be
that the surface of section is inappropriately
placed: changing the location of the plane
of section might result in a more one-dimen-
sional map ([231], Figs. 9,10 ). Perhaps more
importantly, there is no requirement that
chaos must have some sort of one-dimen-
sional description, since one might expect
this only in systems in which the flows are
strongly contracting.

2. Establishing that a period-3 orbit exists on
a return map has been used to claim the ex-
istence of chaos in periodically driven plant
cells, since the existence of such an orbit
implies that the system �is chaotic in the
sense of Li & Yorke� [118]. However, the
existence of chaos in the sense of Li & Yorke
is of questionable significance, since what
one invariably sees in experimental or mod-
elling work is the stable period-3 orbit, and
not the aperiodic orbits that theoretically
coexist with that orbit. Thus, the correspond-
ence between Li-Yorke chaos and the irregu-
lar experimental trace obtained by Hayashi
et al. [118] is not as direct as these authors
claim.

Fractal Dimension

The irregular waveform produced by a
chaotic system is a reflection of the aperiodic
trajectory traced out by the state-point of the

system. This trajectory is a consequence of the
existence of a strange attractor in the phase-
space of the system [234]. This object is termed
an attractor since it attracts trajectories start-
ing from a set of initial conditions (its basin of
attraction). It is termed strange, since its geo-
metric properties are not those of a simple
curve, surface, or volume, but rather those of a
more exotic structure, such as a Cantor set. One
can calculate the dimension of this fractal ob-
ject using one of several different algorithms
[63, 64, 92, 137]. This determination of some
form of dimension is probably the most com-
monly used basis on which claims of chaotic
dynamics have been made in biological sys-
tems. This is undoubtedly due in no small part
to the ease with which many of these algorithms
can be implemented on the computer. Another
reason for the widespread use of this approach
is that in situations where one only has a single
time-series and cannot systematically change
a parameter in the system, one cannot apply
some of the other tests mentioned above (e.g.
establishing a route to chaos or demonstrating
an increase in the background level of the power
spectrum). The most widely-used algorithm to
date is that due to Grassberger & Proccacia [90,
91], which estimates the correlation dimension
([137], for a nice introduction to this algorithm).

Since the initial reports in the mid-1980�s
[11, 13, 56, 175], there have been on the order
of a hundred papers published in which the
fractal dimension of the electroencephalogram
(EEG) has been calculated  (see references cited
immediately below and also [15, 16, 54, 84,
131, 132, 175, 207, 210, 212, 275]).  These ar-
ticles deal with the influence on the calculated
dimension of the EEG of several factors, in-
cluding smoking [213], intelligence [167], state
of consciousness [11, 13, 50, 68, 177, 178],
mental tasks [177] and various diseases [11, 50,
68, 187]. Staying within the field of neurophysi-
ology, dimension calculations have also been
made for the magnetoencephalogram [177,
237], nystagmus [1, 253], olfaction [67, 183],
vocalization [180, 191], the H-reflex [245],
tremor [69, 154, 178], postural sway [43], visual
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perception [159, 192], visual evoked potentials
[249], auditory event-related brain potentials
[220], respiration [137, 203, 238, 239, 240], sin-
gle-unit recordings from monkey motor cortex
[219], molluscan neurons [186], periodically
stimulated squid axon [173], model neural net-
works [84], and a model of respiration [238].

In the cardiac field, there have been many
reports of the fractal dimension of normal si-
nus rhythm, including investigation of the ef-
fect of circadian rhythms, cardiac transplanta-
tion, the autonomic nervous system, altitude,
stage of development, and various diseases [12,
22, 26, 50, 70, 123, 136, 144, 158, 178, 259,
261, 277, 291, 295]. One interesting finding is
a decrease in dimension with age [144].

Estimates of dimension have also been
made for atrial flutter [123]. Two studies on
ventricular fibrillation showed that the dimen-
sion is very high or that fibrillation is random
[139, 224]. In contrast, in some instances of
atrial fibrillation, the algorithm yields a low-
dimensional estimate [123, 196]. The sugges-
tion has been made that the lack of low-dimen-
sional behaviour in ventricular fibrillation is
due to the fact that the correlation length is small
when compared to the size of the ventricles
[18]. It has been reported that the dimension
falls during the early stages of myocardial is-
chaemia in pigs, and falls still further just be-
fore fibrillation ensues [261]. A reduction in
dimension also occurs in patients before ven-
tricular fibrillation occurs [156, 259, 263]. In
contrast, another report on three clinical cases
found that the dimension gradually rose as nor-
mal sinus rhythm was replaced sequentially by
non-fibrillatory ventricular arrhythmias
(extrasystoles, bigeminy, tachycardia), coarse
fibrillation, and finally fine fibrillation, which
was not low-dimensional [225]. In a model of
a single hypermeandering spiral wave, which
might be a mechanism involved in ventricular
fibrillation [93], there is also a low correlation
dimension [297].

In addition to heart and brain, there have

been applications to systems in which smooth
or skeletal muscle is involved: blood flow [98,
99, 282, 292, 294], electromyography [6], vo-
calization [180, 191], tremor [69, 154, 178],
and finger tapping [154]. Finally, the correla-
tion dimension has been calculated for hormo-
nal levels [208].

Caveats
1. It has been known for a long time that there

are significant methodological problems
with calculation of the fractal dimension.
These centre around the choices of sampling
rate, time delay, amount of data, precision
of A-D converter, filter characteristics, sur-
rogate data set, and length of scaling region,
as well as problems due to stationarity, noise,
and geometrical effects [14, 51, 56, 59, 61,
92, 137, 177, 185, 199, 211, 216, 221, 224,
225, 232, 250, 273]. The technical quality
of the studies cited above runs from fatally
flawed to �state-of-the-art� at the time study
conducted. Indeed, for the former group, one
might well take the point of view recently
expressed: �One of our conclusions is that
for a number of problems the only mean-
ingful solution will be not to report a dimen-
sion at all� [137].

2. In an attempt to control for some of the
above problems, the method of �surrogate
data� has been employed. Data is scrambled
in some way so as to randomize it (produc-
ing e.g. phase-randomized, Fourier-shuffled,
or Gaussian-scaled surrogates), but keeping
intact some property of the original signal
[27, 245, 247 (with source code for algo-
rithms), 274] . The dimension is then calcu-
lated for both the original and the surrogate
data sets, and various null hypotheses con-
cerning the two data sets can then be tested.
However, this method is not foolproof, and
has its own problems: for example, there can
be spurious identification of noise as chaos
[223, 274], there can be comparable incom-
plete saturation in both the original and the
surrogate data [136, 158], and there is at least
one report where the surrogate data is iden-
tified as being of low-dimensional origin
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while the original unscrambled data is not
[245]. In addition, this author has methodo-
logical reservations about the practice of the
technique of surrogate data, since the �ran-
dom number generator� used to scramble
the data is almost invariably a pseudo-ran-
dom number generator, which uses a deter-
ministic algorithm that has more in common
with a chaotic process than with a stochastic
one [106]. A similar criticism can be made
for studies in which �random� signals are
constructed using pseudo-random number
generators and used for testing-out dimen-
sion algorithms [221], or for showing that
putatively chaotic systems are in fact prob-
ably stochastic [40, 46, 106].

3. There is a much more fundamental question
that is intimately tied in with the above tech-
nical problems. It is now becoming increas-
ingly clear that the reservations that some
members of the community have held for a
long time are in fact well-founded: there are
real problems in the calculation of dimen-
sion and in the interpretation of the result-
ing number. Perhaps most tellingly, when
the input to the algorithm is coloured noise,
there can be spurious identification of a low-
dimensional attractor [137, 199, 221]. Per-
haps the clearest statement of this view to
date has been by Osborne & Provenzale
[199]: "This in turn implies that the deter-
mination of a finite and non-integer value
for the fractal dimension is in general not
sufficient to indicate the presence of a
strange attractor."
Thus, a revisionist school of thought is now
developing, in which investigators
reexamining the question are now finding
no evidence for the existence of low-dimen-
sional chaos, or else reinterpreting the evi-
dence of earlier studies that suggested the
existence of low-dimensional chaos based
on estimation of fractal dimension. In
electrophysiological work, this has been true
thus far for the EEG [84, 202, 212, 216, 274,
275] and for normal sinus rhythm [136,
158]. In addition, studies on binocular ri-
valry [159], respiration [137], postural sway

[43], neuromuscular jitter [74], and the H-
reflex [245] in human beings could find no
evidence for low-dimensional chaotic dy-
namics using attempted calculation of the
fractal dimension. Similar work with other
signals will undoubtedly follow. This obser-
vation perhaps accounts for the trend in
many of the most recent articles to banish
the term fractal dimension or correlation di-
mension, and replace it instead with innocu-
ous terms such as �dimensional complexity
parameter� [177], �dimensional complex-
ity� ([210] and references therein), �com-
plexity� [144, 277] and �apparent correla-
tion dimension� [22, 277].

4. As mentioned above, many physiological
systems have a 1/fα falloff in their power
spectra. Random systems with this kind of
spectrum show spurious evidence for the
existence of low-dimensional dynamics
[199].

5. When the dimension algorithm shows no
indication of low-dimensional chaos [137,
202], this can indicate either that the sys-
tem is stochastic or that there is a high-di-
mensional chaotic attractor. The highest di-
mension that has been reliably reported in
experimental work is 12, but this involved
reconstructing an orbit that was not chaotic
using 107 points in a physical system (a col-
lection of 12 electronic oscillators) that has
low noise by biological standards [73].

6. Another context in which the word �fractal
dimension� appears in the literature is when
one makes a measurement of the fractal di-
mension of the waveform itself, treating it
as a fractal curve. Thus, by one measure
[150], a straight line has a dimension of one,
while a very wiggly curve will have a di-
mension closer to 1.5. Variants of this kind
of �length of coastline� analysis have been
carried out for the EEG [150], respiration
[128], heartrate [88, 89, 293], individual nor-
mal and abnormal electrocardiographic
complexes [150], blood flow [230], ven-
tricular ectopy [266], the EMG [6], and
postural sway [43]. In the majority of the
above investigations, surrogate data sets
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were not constructed. However, in one case
where a surrogate data set was constructed
- for the human H-reflex [245] - it was found
that there was no difference between the
original and the shuffled data. We reiterate
the point that �the existence of fractal prop-
erties in the irregular line does not of itself
imply underlying deterministic dynamics
(e.g. chaos)� [89].

7. It has been stated several times that fractal
anatomy can lead to fractal dynamics [249].
However,  there is at least one case on record
where it has been shown that this conclu-
sion was prematurely taken [21, 37, 161].

8. The dimension of the attractor provides a
lower bound on the dimension of the state-
space. It thus provides no added informa-
tion about the dimension of the state-space
(i.e. the number of variables) in a physiologi-
cal system, which is known a priori to be
very high. Thus the statement that one com-
monly encounters to the effect that �the di-
mension is the number of independent vari-
ables or degrees of freedom necessary for
explaining the system�s total [emphasis in
original] behavior or dynamics� [262], while
true, is highly misleading. For example, all
periodic phenomena in the physical and bio-
logical world have a dimension of one. The
majority of experimentalists would take ex-
ception to the conclusion that the dynamics
are thus �explained� in these various sys-
tems.

9. Not all �chaotic� attractors are �strange�
[96], and vice versa [95].

Liapunov Exponent

The Liapunov exponent is a measure of
sensitive dependence on initial conditions. An
n-dimensional system has n Liapunov expo-
nents, and chaos occurs when at least one ex-
ponent is positive. There are several algorithms
for estimating the Liapunov exponents directly
from a time series ([290]; [84, 92, 217, 250],
for references to more recent methods). Calcu-
lation of the most positive exponent has been
carried out for several cases in electrophysiol-

ogy: e.g. EEG [11, 13, 68], respiration [52],
tremor [69], vocalization [191], postural sway
[43], molluscan neurons [186], periodically
driven squid axon [62] and hippocampus [47],
ECG [12, 79], ionic models of neural  [10, 25,
33, 133] and cardiac [134, 281] cells,  blood
pressure and flow [282], hormonal levels [208],
neural network models [4], and a model of a
hypermeandering spiral wave [297]. A simpler
approach is to extract a one-dimensional return
map from the time series, or formulate a for-
ward map, and then to calculate the Liapunov
exponent from iterations of the map [160].  The
Liapunov exponent has also been calculated in
a model of tremor formulated as a one-dimen-
sional map [5].

Caveats
1. The big problems here are the large amount

of stationary data needed [59] and the cor-
rupting influence of noise on the estimate
[92, 250, 274]. It is also essential that ap-
propriate choices of delay time and embed-
ding dimension be made: e.g. there can be
an artefactually large Liapunov exponent if
too small an embedding dimension is cho-
sen, so that trajectories that are really widely
spaced lie close together on the reconstituted
attractor [290]. This is especially true in
�stiff� systems, where the trajectory moves
alternately on faster and slower time scales
(e.g. action potentials or electrograms): - a
nice picture of this for the ECG is shown in
Fig.6 of [84].

2. Although there have been many reports pub-
lished on the calculation of the Liapunov
exponent for the EEG, there is one investi-
gator working with the EEG who has re-
cently made the frank statement: �I have not
been able to measure Lyapunov exponents
with our biological data� [217]. As with cal-
culations of the fractal dimension, the tech-
nical quality of the studies cited above var-
ies dramatically.

3. Stochastic systems can have a positive
Liapunov exponent ([184], and references
therein). There is also the somewhat para-
doxical result that addition of noise to a cha-
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otic system can convert the sign of the
Liapunov exponent from positive to nega-
tive [172].

Entropy

Various kinds of entropies [92, 204, 250]
have been estimated for the EEG ([68]; other
references in [211]), EMG [221], the H-reflex
[245], respiration [238], normal sinus rhythm
[12, 123, 144, 204, 236, 293], atrial flutter and
fibrillation [123, 196], periodically driven ven-
tricular cells [122], hormonal levels [204, 208],
and models of respiration [238]. As with fractal
dimension, there is a trend to replace the term
�entropy� with �complexity�. Two interesting
findings are that heart-rate entropy decreases
with age and that women have a greater �com-
plexity� in their heartrate than do men [236].

Tests for Nonlinear Determinism

The problems noted above in using esti-
mation of the fractal dimension and Liapunov
exponent to establish the existence of chaos
have led - at least in some people�s minds - to a
questioning of the interpretations of results ob-
tained from these methods [48, 59, 77, 79, 80,
84, 233]. This fact might account for the recent
upsurge of interest in developing algorithms
that carry out the lower-level task of simply
providing evidence for determinism in a time
series, since determinism is one of the three
components in the definition of chaos given
earlier. Several of these tests are now available:
e.g. nonlinear prediction [268], local flow
[141], local dispersion [286], and exceptional
events [138]. Further information on these and
other related methods can be found in four re-
cent review/tutorial articles ([28]; [92]; [217];
[247] (with code for implementing algo-
rithms)). As with estimation of fractal dimen-
sion, surrogate data sets are constructed to test
a null hypothesis.

One or more of these tests have been
applied to recordings of normal sinus rhythm
[84, 136, 158, 291], ventricular fibrillation

[289], the EEG [84, 187], the MEG [187], hip-
pocampal evoked responses [241, 248], local
field potentials arising during visual responses
[192], binocular rivalry [159], monosynaptic
spinal cord reflexes [27], spike trains from sen-
sory neurons [164], and neural network mod-
els [84]. In addition, prediction has been car-
ried out using tessellation and neural networks
in data obtained from the forced squid giant
axon [179]. In several of the above cases, the
conclusion is that there is no evidence for
nonlinear determinism in the data.

Caveat
1. Coloured noise can produce results similar

to those from a chaotic system when
nonlinear forecasting is used [158, 268].

Spatial Considerations

The majority of the clinical and experi-
mental reports cited above that claim the exist-
ence of chaos are in situations in which the sys-
tem variables are functions of both space and
time. Each of these systems is thus described
by a system of partial differential equations
rather than by a system of ordinary differential
equations. It is therefore perhaps surprising that
the chaotic dynamics in these cases, where the
phase-space is of infinite dimension, can often
be reduced to the examination of the dynamics
of a one- or two-dimensional map. It is our view
that the reason for this is that there must exist
an inertial manifold, on which the dynamics is
finite-dimensional [228]. The flows in the re-
sultant finite set of differential equations (the
inertial form) must then be strongly contract-
ing, so that a low-dimensional finite-difference
equation provides a good approximation to the
system.

In addition, in these spatially-distributed
systems, measurements are typically made at a
single site. Thus, there has been virtually no
experimental investigation of spatiotemporal
chaos in electrophysiological systems, record-
ing from multiple sites. However, since it is no
more difficult to �record� from multiple sites
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than from a single site in modelling work, there
are several numerical studies of chaos in spa-
tially-distributed systems [7, 129, 160, 181].
One of these studies raises the interesting pos-
sibility of controlling spatiotemporal chaos [7].

The ability to record from multiple sites
also opens up the possibility that multichannel
reconstruction of the attractor can be carried
out. In this process, one uses signals simulta-
neously acquired from several different spatial
locations to produce a phase-space portrait of
the system, and to then perhaps estimate fractal
dimension and the Liapunov exponent [58].
This procedure has been carried out both for
the EEG [50, 55, 211] and for the ECG [12,
50].

Time delays

A time-delay differential equation arises
naturally when one considers the systems (in-
trinsic, neural, and hormonal) controlling the
activity of cardiac, skeletal, and smooth mus-
cle, as well as when one considers information
processing in the nervous system. It has been
known for some time that chaos can arise in a
time-delay differential equation [168], and that
one can calculate return maps, power spectra,
fractal dimension, Liapunov exponents, etc. of
such systems. Nevertheless, like spatiotemporal
chaos, this remains an almost completely un-
explored area in electrophysiology.

Conclusions

As mentioned early on in this article, a
fundamental problem in establishing the exist-
ence of  chaos in an electrophysiological sys-
tem is that noise is present in all such systems.
This random noise can be due to membrane
noise, synaptic noise, or simply Johnson noise.
There are now several modelling studies show-
ing that experimentally observed irregular
traces are consistent with random (or at least
pseudo-random) mechanisms involving
populations of single channels [32, 42, 46, 106,
254, 288]. Thus, unless a deterministic inter-

pretation can be put on single channels kinet-
ics [103, 162] and vesicular release [155], one
is left with the fact that a stochastic mechanism
is at the base of all phenomena seen in experi-
mental work, including �chaotic� ones. Perhaps
a view recently expressed by Ruelle [233] is
the one that we should all adopt: �In fact we
should not be obsessed by chaos: The whole of
the dynamics of a real system is interesting,
and not just the occurrence of chaos�.
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