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Abstract

Electrical alternans, a beat-to-beat alternation in the electrocardiogram or electrogram, is frequently seen during the first few minutes
of acute myocardial ischemia, and is often immediately followed by malignant cardiac arrhythmias such as ventricular tachycardia and
ventricular fibrillation. As ischemia progresses, higher-order periodic rhythms (e.g., period-4) can replace the period-2 alternans rhythm.
This is also seen in modelling work on a two-dimensional (2-D) sheet of regionally ischemic ventricular muscle. In addition, in the
experimental work, ventricular arrhythmias are overwhelmingly seen only after the higher-order rhythms arise. We investigate an ionic
model of a strand of ischemic ventricular muscle, constructed as a 3-cm-long 1-D cable with a centrally located 1-cm-long segment
exposed to an elevated extracellular potassium concentration ([K ],). As [K ], is raised in this “ischemic segment’ to represent one
major effect of ongoing ischemia, the sequence of rhythms {1:1 —2:2 (alternans)—2:1} is seen. With further increase in [K ],, one sees
higher-order periodic 2N:M rhythms {2:1-54:2—-4:1-56:2—>6:1-8:2—-8:1}. In a 2N:M cycle, only M of the 2N action potentials
generated at the proximal end of the cable successfully traverse the ischemic segment, with the remaining ones being blocked within the
ischemic segment. Finally, there is a transition to complete block {8:1 >2:0— 1:0} (in an 7:0 rhythm, all action potentials die out within
the ischemic segment). Changing the length of the ischemic segment results in different rhythms and transitions being seen: e.g., when the
ischemic segment is 2 cm long, the period-6 rhythms are not seen; when it is 0.5 cm long, there is a 3:1 rhythm interposed between the 2:1
and 1:0 rhythms. We discuss the relevance of our results to the experimental observations on the higher-order rhythms that presage
reentrant ischemic ventricular arrhythmias.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Reentrant arrhythmias such as ventricular tachycardia
and ventricular fibrillation often occur during myocardial
ischemia. It is often observed that the normal 1:1 activation
sequence of the heart is disrupted before these arrhythmias
start. There can be an alternans or 2:2 rhythm, in which
there is a beat-to-beat alternation in some characteristic

*Corresponding author. Tel.: +15143984320; fax: + 1514398 7452.
E-mail addresses: allv@hp.fciencias.unam.mx (A. Lopez),
jhar@hp.fciencias.unam.mx (H. Arce),
michael.guevara@mecgill.ca (M.R. Guevara).

0022-5193/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/].jtbi.2007.06.015

feature of the recording, e.g., the T-wave in the electro-
cardiogram or electrogram, the duration of the action
potential in an intracellular recording. There can be 2:1
block, in which every second action potential stops
propagating (“blocks™) somewhere within the ischemic
area. There are in fact dozens of experimental reports
showing that these two period-2 rhythms exist seconds or
minutes before malignant arrhythmias are initiated (e.g.,
Scherlag et al., 1974; Downar et al., 1977; Russell et al.,
1979; Cinca et al., 1980; Janse et al., 1980; Hashimoto
et al., 1984; Carson et al., 1986; Dilly and Lab, 1988; Abe
et al., 1989; Konta et al., 1990; Nearing et al., 1991;
Tachibana et al., 1998; Nearing and Verrier, 2002, 2003).
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In contrast, with one exception, there have been only a few
scattered incidental reports of higher-order ‘“‘period-mul-
tupled” rhythms (e.g., period-3 and period-4 rhythms, in
which it takes 3 or 4 beats for the rhythm to recur) in the
acutely ischemic ventricle (Russell et al., 1979; Hashimoto
et al., 1984; Dilly and Lab, 1988; Laguna et al., 1999; Wu
and Zipes, 2001). In the only systematic experimental study
to date (Nearing and Verrier, 2002), these higher-order
rhythms always arose immediately out of a phase of
alternans rhythm as the ischemia progressed. Six of the 12
dogs studied eventually went on to fibrillate, and higher-
order rhythms were followed in five of these six dogs within
a few tens of seconds by more complex rhythms and
ventricular fibrillation, with the remaining dog going
directly from high-amplitude alternans to fibrillation. In
the six dogs that did not fibrillate, higher-order rhythms
were not seen; alternans was seen in four of these six
animals, and in two of these four animals, the alternans
was at very low amplitude (see Figs. 2 and 3 of Nearing and
Verrier, 2002).

The electrophysiological disturbances during ischemia are
caused by many factors (Wit and Janse, 1993; Carmeliet,
1999). Perhaps chief among these is a rise in external
potassium concentration ([K],). We have thus modelled
the regionally ischemic ventricle by increasing [K *], within a
circumscribed area (the ischemic zone) lying within the
interior of a 2-D sheet of ventricular muscle (Xu and
Guevara, 1998; Arce et al., 2000). Reentrant arrhythmias of
the spiral-wave type occur in this model in response to
incremental pacing at a fixed elevated [K*], (Xu and
Guevara (1998); see also Bernus et al. (2005) for a more
recent 3-D simulation). When [K "], is incrementally raised at
a fixed pacing cycle length to simulate the natural progression
of events during acute ischemia, 1:1 rhythm is replaced in turn
by 2:2 rhythm, 2:1 block, various higher-order rhythms (e.g.,
4:1 block), and eventually complete block (Arce et al., 2000).
We have also made a detailed modelling study of the manner
in which period-2 rhythms arise in the simpler case of a 1-D
strand of ventricular muscle containing a central segment
with elevated [K "], (Arce et al., 2002). Since 4:1 block and
other higher-order rhythms were seen in the earlier work on
the 2-D sheet (Arce et al., 2000), we decided to carry out a
more systematic study of these higher-order rhythms of block
in the model of a 1-D strand of regionally ischemic
ventricular muscle.

2. Methods

We study an ionic model of a 1-D strand of normal
ventricular myocardium, with an area of elevated [K '],
within its centre (the “ischemic segment”) to represent the
ischemic zone (Tilg and Wach, 1995; Ferrero et al., 1997;
Cimponeriu et al., 1998; Xu and Guevara, 1998; Feldman
et al., 1999; Arce et al., 2000, 2002; Wang and Rudy, 2000).
We continue to use a simple ““first-generation’ model of the
ionic currents rather than one of the several more complex
“second-generation” models incorporating the Na ™K ™

pump current and the Na®—Ca®" exchange current that
are presently available, due to the fact that in their original
formulation, second-generation models have two attri-
butes: (i) degeneracy, with non-uniqueness of equilibria
such as steady states and limit cycles, and (i) very slow
long-term drifts in the variables (further discussion of these
complicating factors can be found in Krogh-Madsen et al.
(2005)). As in other recent studies, one can avoid both of
these characteristics either by continuing to use an
explicitly first-generation model (ten Tusscher and Panfi-
lov, 2003) or by using a second-generation model that is
rendered essentially first-generation by keeping internal
ionic concentrations constant (Bernus et al., 2002). We take
the first of these approaches, selecting the Luo—Rudy (LR)
model because it has [K "], as a parameter, which is
essential for our modelling of the ischemic segment (Luo
and Rudy, 1991).

One deficiency of the space-clamped LR model, which is
carried over from the Beeler—Reuter model from which it is
derived (Beeler and Reuter, 1977), is that the time-
constants for the activation and inactivation of the slow
inward Ca®" current (I;) are both an order of magnitude
too large with respect to the experimental values. We have
thus decreased the time constant for the activation of I
(ty) by a factor of 10, which then puts 7, into the
physiologic range (Isenberg and Kloéckner, 1982; Xu and
Guevara, 1998). As in our prior work on modelling
alternans in ischemic muscle (Arce et al., 2000, 2002), we
leave the inactivation time-constant of I (t,) unchanged,
since reducing it results in the level of the plateau of the
action potential being too depressed. In addition, leaving 1,
unchanged results in a long-lasting I; waveform that is very
similar to that seen in the action-potential-clamp current
trace when Ca’’-entry is blocked in experiments on
ventricular cells (Linz and Meyer, 2000).

We use the equations appearing in Table 1 and in the
body of the text of Luo and Rudy (1991). The ionic
concentrations given there are used to calculate the reversal
potentials Ena, Ex, Exp, and Exg;. Using the equations in
Table 1 of Luo and Rudy (1991) results in current—voltage
relationships for Ix; and Ix7 that are different from
those shown in Figs. 2 and 3B, respectively, of that paper.
Nevertheless, using those equations (i.e., with unmodified t,),
and starting from infinite-rest initial conditions at the
nominal [K "], of 5.4mM, we obtain an action potential
that superimposes with that shown in Fig. 4A of Luo and
Rudy (1991). A full listing of the equations of our modified
model is given in Supplementary Material 1. In the steady
state, the action potential duration (measured between the
upstroke and the crossing through of —60mV on the
repolarizing limb of the action potential) is reduced to
~237ms from ~290 ms in the standard LR space-clamped
model when paced at a basic cycle length (BCL) of 400 ms.

We model a 1-D strand of muscle by the 1-D cable
equation

O’V Jox? = pSu(CudV J3t + Lioy), (D



A. Lopez et al. | Journal of Theoretical Biology 249 (2007) 2945 31

where V' is the transmembrane potential (mV), x is the
spatial coordinate in the strand (cm), p is the effective
longitudinal resistivity (0.2kQ-cm), S, is the surface-to-
volume ratio (5000cm™"), C,, is the specific membrane
capacitance (1 uF cm™?), ¢ is time (ms), and 7, is the total
ionic current (uA cm~2) given by our modified LR model
(Sharp and Joyner, 1980). We numerically integrate Eq. (1)
using a central difference approximation for 0°7/0x> and a
forward difference approximation for 0¥V/0t

[Vie1() = 2Vi0) + Vir (0]/AX
= pSv{Cm[V[(t + AZ) - Vl(t)]/At + Iion,i(t)}a (2)

where V; is the voltage of the ith element in the cable,
L, ; 18 the ionic current in that element, Ax is the spatial
step-size (0.01cm), and Ar is the temporal step-size
(0.01 ms). Each activation or inactivation variable ¢; is
calculated from

E(t+ Al = Eing — [Ejo0 — E(0)] &2/, 3)

where ¢;., is the steady state or asymptotic value of £; and
7; is the time constant of ¢, both of which are functions
of V. A look-up table with linear interpolation (voltage-
step = 0.2mV) is used to calculate &;, and 7;. The internal
calcium concentration [Ca®"]; is obtained from

[Ca®"](t + Ar) = [Ca®*],(1) + {d[Ca*"]i(r)/d1} At. (4)

The 1-D space-constant (1) is (R,,/pS,)"/?20.06 cm, where
R,, is the specific membrane resistance (3.55kQ-cm” at the
nominal LR value of [K "], of 5.4mM). The discretization
factor (Ax/A) is thus ~0.17, at which point the numerical
error is acceptable (see Fig. 1 of Arce et al., 2002). The
diffusion constant D = 1/(pS,C,,) = 107 ecm’ms™!, so that
the von Neumann linear stability criterion ((Ax)*/At>4D) is
satisfied. Sealed-end (i.e., zero-current flux) Neumann
boundary conditions (i.e., 0V/0x = 0) are set at both ends
of the cable. Stimulation is carried out by injecting a 1ms
duration current pulse into the first five elements of the
strand at an amplitude of 100 pA cm™> (~2 x threshold).

An implicit integration scheme (Crank—Nicholson) was
used to spot-check the results given below; the findings
were similar, but with a small shift in the exact value of
[K "], at which a particular rhythm is seen. The simulations
below were carried out using programs written in C (~16
significant decimal places). Movies of propagation down
the cable (Supplementary Material III) were made by
generating a GIF picture showing the voltage as a function
of position every 10ms and then assembling these picture
files into QuickTime movie (.mov) files.

3. Results

As ischemia progresses, there is a gradual increase in
[K “], and in the size of the ischemic zone. We now explore
the effect of increasing [K "], in the central part of the
strand (the “ischemic segment’’) at a fixed BCL of 400 ms,
but with the length of the ischemic segment kept fixed. We

choose this BCL since it is at the center of the 300-500 ms
range typically used in experimental work on ischemic
arrhythmias (see Arce et al., 2000 for references). We first
explore the case where the region of elevated [K '],
occupies the central 1-cm portion of the strand, flanked
on either side by a 1-cm segment of normal tissue (Arce
et al., 2000, 2002). We then explore what happens when the
length of the ischemic segment is different from 1 cm.

At the start of each simulation run at a new [K ],, we
obtain approximate infinite-rest initial conditions by
setting the variables in the normal- and high-potassium
regions equal to their respective space-clamped steady-state
values and then allowing the simulation to run for 1000 ms
so as to allow some time for equilibration to occur, before
injecting the first stimulus at = 0 ms. We inject at least 40
stimuli to allow transients due to initial conditions to
dissipate. We now describe the sequence of rhythms seen as
[K "], is raised.

3.1. Period-1 rhythm

Fig. 1A shows the transmembrane potential (V) as a
function of time (¢) at several points (x) along the 3-cm-
long cable at [K "], = 5.4mM, i.e., in control conditions
before [K ], is raised within the ischemic segment. In the
steady state there is a 1:1 rhythm, in which each stimulus
produces an action potential that travels down the cable
with an invariant morphology. A periodic N:M rhythm
exists at a given point in the cable when for every N stimuli
there are M action potentials seen at that point. The overall
response of the cable is described as an N:M rhythm when
for every N action potentials in the most proximal segment
there are M action potentials in the most distal segment.
Fig. 1B shows that the resting membrane potential (RMP)
and V.. (the maximum voltage achieved during one
pacing cycle, which in this case corresponds to the
overshoot potential of the action potential) do not change
with distance x, provided that one is far enough away from
the ends of the cable to avoid edge-effects. Such edge-
effects are expected over a distance on the order of a few
space constants (4 = 0.6 mm), and are in fact appreciable
over a distance of ~1.5mm, corresponding to 15 elements
of the discretized cable. Fig. 1C gives the classic ladder
diagram or laddergram, which plots the position of the
upstroke of the action potential (arbitrarily defined here as
the crossing of —40mV) as a function of time, at a
sampling interval of 2ms. The reciprocal of the slope of
this line is the conduction velocity, which is constant down
the cable at ~60cms~! (Arce et al., 2002).

When [K ], within the 1-cm-long ischemic segment is
raised, but to a level that is not too high, the 1:1 rhythm
persists. Fig. ID-F shows that for [K "], = 13mM, as the
action potential propagates into the ischemic segment, the
RMP depolarizes to about —65mV and V,,,,, falls, so that
there is a large decrease in action potential amplitude
(difference between V., and RMP). The action potential
duration (4PD) also falls (Fig. 1D), there is a decrease in
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Fig. 1. Period-1 rhythm: 1:1 rhythm. External potassium concentration ([K *],) = 5.4mM (A—C); 13.0mM (D-F). Length of ischemic segment = 1 cm.
(A, C) Transmembrane potential as a function of time (7) at selected points spaced at a distance (x) of 0.3 cm on the cable. About 40 stimuli were injected
just before the start of these traces. (B, E) The maximum voltage of the action potential (V,,,,) and the resting membrane potential (RMP) plotted as a
function of distance (x) down the cable. (C, F) Laddergram, showing position of action potential upstroke in the cable as a function of time. A data-point

is plotted every 2 ms.

the conduction velocity (Fig. 1F), and a two-component
upstroke appears (Fig. 1D, but seen much more clearly in
Fig. 2A of Arce et al., 2000). Similar results have been seen
in experimental work (e.g., Scherlag et al., 1974, Downar
et al., 1977; Russell et al., 1979; Cinca et al., 1980;
Hashimoto et al., 1984; Carson et al., 1986; Abe et al.,
1989; Koller et al., 2000; Wu and Zipes, 2001) and in earlier
modelling work (Ferrero et al., 1997, 2003; Shaw and
Rudy, 1997; Arce et al., 2000). Note that while the action
potential decrements in amplitude as it enters the ischemic

segment, it increments as it leaves (Fig. 1D and E). One can
appreciate from the laddergram (Fig. 1F) that there is a
significant slowing of conduction within the ischemic
segment, both from the change in the slope of the line
and the denser packing of data-points within the ischemic
segment. Movies showing the action potential spreading
down the strand for Fig. 1 and the other figures below are
available as Supplementary Material III on the journal
web-site (and also at: http://www.medicine.mcgill.ca/physio/
guevaralab/arce-111.htm).
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3.2. Period-2 rhythms

As [K "], is increased to just above ~13.170 mM, the 1:1
rhythm is lost and is replaced with a 2:2 or alternans
rhythm (Fig. 2A: [K "], = 13.173mM). The basic repeating
cycle of this rhythm consists of two different action
potentials, both of which are full-sized provided that the
recording site is far enough away from the distal part of the
ischemic segment (Fig. 2A). Fig. 2B gives V,,,, for the
odd- and even-numbered beats as a function of distance: as
the action potential enters the ischemic segment, every
second action potential (even-numbered beats in Fig. 2A)
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decrements to the point where it becomes very small in
amplitude within the distal part of the ischemic segment
(Fig. 2A). Note that while the even-numbered action
potentials in Fig. 2A decrement sharply within the first half
of the ischemic segment, they attain a more-or-less
constant V,,,. within the distal portion of the ischemic
segment, before incrementing back up to full-sized action
potentials as they leave the ischemic segment (beat 2 in
Fig. 2B). We have previously termed this propagating
response the “maintained small-amplitude response’ (Arce
et al., 2000, 2002). Since the maintained small-amplitude
response travels more slowly than the full-sized action
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Fig. 2. Period-2 rhythms: Left column (A—C): 2:2 rhythm, [K "], = 13.173mM; right column (D-F): 2:1 rhythm, [K ], = 13.25mM. Same format as
Fig. 1, except that in (B) and (E), V... is plotted for more than one beat and RMP is not plotted.
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potential, there is also a beat-to-beat alternation in the
conduction time through the ischemic segment, which is
just barely discernible in the laddergram of Fig. 2C. The
smaller APD and conduction velocity of the even-
numbered beats are both presumably accounted for by
the fact that the diastolic interval or recovery time
preceding them is less than that preceding the odd-
numbered beats (Fig. 2A).

With further increase in [K '], to just beyond
~13.219 mM, the maintained small-amplitude response of
the 2:2 rhythm (even-numbered beats in Fig. 2A-C) is
replaced by a decrementing response (even-numbered beats
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in Fig. 2D-F: [K "], = 13.25mM) that eventually blocks
within the distal half of the ischemic segment. The 2:2
rhythm is thus converted into a 2:1 rhythm, with the
recovery time preceding the conducted beat being longer
than that preceding the blocked beat, the more so with
increasing penetration into the ischemic segment (Fig. 2D).

3.3. Higher-order rhythms

Still further increase in [K "], eventually results in the
2:1 rhythm converting into a 4:2 rhythm (Fig. 3A-C:
[K "], = 13.437mM). A full-sized action potential (beat 1),
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Fig. 3. Period-4 rhythms: Left column (A-C): 4:2 rhythm, [K "], = 13.437 mM; right column (D-F): 4:1 rhythm, [K "], = 13.442mM. Same format as

Fig. 2.
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which is the first conducted beat in Fig. 3A, is followed by
a blocked beat (beat 2), which is in turn followed by a
maintained small-amplitude response (beat 3) that is the
second conducted beat of the cycle. This second conducted
beat is then followed by the second blocked beat of the
cycle (beat 4), whereupon the period-4 cycle repeats. Note
that there is an alternation in the depth to which the
ischemic segment is penetrated by the two blocked beats
(Fig. 3C), with the blocked beat (beat 4) that follows the
small-amplitude response (beat 3) penetrating more deeply
than the blocked beat (beat 2) that follows the full-sized
action potential (beat 1), presumably because the recovery
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Fig. 4. Period-6 rhythms: Left column (A-C): 6:2 rhythm, [K "], =
Fig. 2.

35

time before beat 4 is longer than that preceding beat 2. As
[K "], is raised still further, beat 3 of this 4:2 rhythm
increasingly decrements, eventually blocking within the
ischemic segment, yielding a 4:1 rhythm (Figs. 3D-F:
[K '], = 13.442mM).

With still further increase in [K ], the above process is
repeated, resulting first in a 6:2 rhythm (Fig. 4A-C:
[K*]o=13.472mM). The fifth beat in this rhythm
(the maintained small-amplitude response) eventually
dies out with further increase in [K'], (Fig. 4D-F:
[K], = 13.476mM), producing a 6:1 rhythm in the same
way that a 4:1 rhythm arose out of a 4:2 rhythm in Fig. 3.
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13.472mM; right column (D-F): 6:1 rhythm, [K "], = 13.476 mM. Same format as
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As [K "], is raised further, there are then 8:2 (Fig. SA—C:
[K*]o =13.4855mM) and 8:1 (Fig. SD-F: [K'], =
13.487 mM) rhythms.

Each cycle of the 6:2 rhythm consists of alternating 4:1
and 2:1 cycles (Fig. 4C), and not two different 3:1 cycles,
as, e.g., one would expect if the 6:2 rhythm arose out of a
period-doubling of a 3:1 rhythm. In the same way, an §:2
cycle is made up of alternating 6:1 and 2:1 cycles (Fig. 5C),
and not two different 4:1 cycles, as one would expect from
a period-doubling of a 4:1 rhythm. This is in contrast to
the 2:2 rhythm, each cycle of which is composed of two
different 1:1 cycles (Fig. 2A), and the 4:2 rhythm, each
cycle of which contains two different 2:1 cycles (Fig. 3A).
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In these higher-order (i.e., N>2) N:M rhythms, there is a
beat-to-beat alternation in the depth of penetration of the
ischemic segment by the blocked beats.

3.4. Subthreshold rhythms

Beyond the 8:1 rhythm, one encounters n:0 rhythms
of complete block, in which no action potentials survive to
the distal end of the cable, so that the rhythm sufficiently
distal in the cable is entirely subthreshold. A 2:0 rhythm
is first seen, with both action potentials of the cycle dying
out within the ischemic segment (Fig. 6A-C: [K '], =
13.494mM). There is again a beat-to-beat alternation
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Fig. 5. Period-8 rhythms: Left column (A—C): 8:2 rhythm, [K "], = 13.4855mM; right column (D-F): 8:1 rhythm, [K "], = 13.487 mM. Same format as
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in the depth of penetration into the ischemic segment
(Fig. 6C), with the odd-numbered beats, which are
preceded by the longer recovery time (Fig. 6A), penetrating
more deeply than the even-numbered beats. For sufficiently
high [K *],, one finds the 1:0 rhythm of classic complete
block (Fig. 6D-F: [K ], = 13.745mM) (Cranefield et al.,
1971). At the [K "], in Fig. 6E, all action potentials start to
block immediately upon entering the ischemic segment.

3.5. Bifurcation diagram

Fig. 7 is a bifurcation diagram, summarizing the results
described above. Our bifurcation index is the normalized
voltage integral (NVI), obtained by adding together the
voltages at all elements in the cable on each fifth

integration time-step, adding these summed values over
the entire 400 ms stimulation period, and then normalizing
by dividing this sum by the corresponding value obtained
at the nominal [K '], of 5.4mM (Arce et al., 2002). In this
one-parameter bifurcation diagram, the bifurcation index
NVI is plotted vs. the bifurcation parameter [K *],.

Fig. 7A illustrates that rhythms other than 1:1 and 1:0
(open red symbols) are found over only an exceedingly
narrow range of [K 7],. Fig. 7B shows the {1:1 >2:2—2:1}
transition: an NV of ~0.6 during 2:2 rhythm corresponds
to the maintained small-amplitude response (Figs. 2A—C),
while an NVI of ~0.4 during 2:1 rhythm corresponds to
the blocked beat (Figs. 2D-F). The {2:1-4:2—4:1},
{4:1-56:2—6:1}, {6:1-8:2—8:1}, and {8:1->2:0—1:0}
transitions are illustrated in Fig. 7C-F, respectively.
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Fig. 7. Bifurcation diagram: The normalized voltage integral (NV1) is plotted as a function of [K "],: (A) overall bifurcation diagram. Closed black circles
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3.6. Other lengths of the ischemic segment

During ongoing ischemia, not only does [K "], gradually
increase, but the physical size of the ischemic zone
gradually grows. We have thus carried out additional
simulations in which [K "], is increased in a cable with a
central ischemic segment that has a length (L) different
from the nominal value of 1cm used above, maintaining
the lengths of both adjacent normal segments at 1 cm. The
two-parameter ([K*],, L) bifurcation diagram of Fig. 8
summarizes our results. We have not explored all values of

L in this diagram with increments in [K 7], as fine as those
used in constructing Fig. 7 (L = 1 cm). Nevertheless, one
can already see that the sequence of rhythms encountered
as [K '], is increased is not the same at all L.

As L is reduced below 1cm (e.g., L = 0.5cm), elevation
of [K *], eventually results in a 3:1 rhythm (very small area
at lower-right in Fig. 8), which we do not encounter
at L = I cm. Fig. 9 shows examples of the 2:1 ([K '],
13.571mM) and 3:1 (K], = 13.574mM) rhythms en-
countered at L =0.5cm. During the 2:1 rhythm, the
blocked beat is preceded by a much shorter recovery time



A. Lopez et al. | Journal of Theoretical Biology 249 (2007) 2945 39

1.6—-%
“7
1.2—%\ |
:1.0—%\ |
O.BT /

1 1 T
13.1 13.2 13.3 134 13.5 13.6 13.7

K], (mM)
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stippled area. The asterisk at the top of the 4:1 zone indicates a very small
8:2 zone.

than the conducted beat (Fig. 9A), as it is in the L = 1 cm
cable (Fig. 2D). During the 3:1 rhythm the blocked beat
that penetrates the ischemic segment more deeply (beat 3) is
preceded by a recovery time that is considerably longer
than that preceding the other blocked beat (beat 2), which
does not penetrate as deeply. But while the recovery time
preceding the conducted beat (beat I, or equivalently
beat 4) is longer than that preceding the first blocked beat
(beat 2), it is shorter than that preceding the second
blocked beat (beat 3), demonstrating that the simple
concept of recovery time is not enough to explain the
dynamics here. (A similar consideration applies when one
examines the two conducted beats of the 4:2 rhythm in
Fig. 3A, where, in the more proximal elements of the cable,
the full-sized action potential (beat 1) is preceded by a
recovery time that is slightly shorter than that preceding
the maintained small-amplitude response (beat 3).) The
transition from 2:1 to 3:1 rhythm at L =0.5cm is not

direct, since, e.g., a 5:2 rhythm can be found at an
intermediate value of [K "], (13.572mM).

While it cannot be appreciated on the scale of Fig. 8, for
L sufficiently larger than 1cm (e.g., L =2.0cm), the 6:2
and 6:1 rhythms encountered at L = 1 cm (Fig. 4) are no
longer seen, and there is instead a direct transition from
a 4:1 rhythm (similar to that shown in Fig. 3) at [K "], =
13.4558mM to an 8:2 rhythm at [K '], = 13.4560 mM
(asterisk at the top of the 4:1 zone in Fig. 8). This 8:2
rhythm consists of two different 4:1 cycles that alternate,
with the conducted beat being a full-sized action potential
in one 4:1 cycle, and a maintained subthreshold response in
the other 4:1 cycle. This 8:2 rhythm is thus very different
from the 8:2 rhythm seen at L = 1cm (Fig. 5SA-C), in
which there is an alternation between 2:1 and 6:1 cycles.
Should the transition here from 4:1 to 8:2 rhythm be a
supercritical period-doubling bifurcation, the transition
would be direct, with no intervening rhythms (e.g., period-6)
being necessary (it is impossible to rule out the presence of
period-6 rhythms using numerical integration runs; how-
ever, in the absence of bistability, any such rhythms would
have to exist over a range of [K'], of less than
0.0002mM). At L = 2.0 cm, further increase in [K "], leads
to a reversion from the 8:2 rhythm back to a 4:1 rhythm in
which the conducted action potential is a maintained
subthreshold response. (See Supplementary Material III
for movies of these two different 4:1 rhythms and the 8:2
rhythm.) At the highest values of [K "], at L = 2cm, one
sees 4:0, 2:0, and 1:0 rhythms. More careful exploration of
Fig. 8 is needed to work out definitively the bifurcation
sequences, which have been explored very minutely only
for L = 1cm (Fig. 7).

4. Discussion
4.1. Period-2 rhythms in the ischemic ventricle

Alternans is commonly seen during acute myocardial
ischemia and often presages the imminent onset of malig-
nant phase-1A reentrant ventricular arrhythmias in experi-
mental work (see references in Introduction; see Narayan
(2006) for clinical applications). Our simulations reveal two
mechanisms underlying alternans. In the first scenario,
there is a 2:2 rhythm within a circumscribed region, with a
2:1 rhythm being present nowhere else (Fig. 2A-C):
“primary” alternans (Guevara, 1988). Unfortunately, in
experimental work one cannot prove the existence of
primary alternans, given that it is impossible with present-
day recording techniques to rule out the presence of some
small—perhaps only intramural—area of 2:1 block. In the
second scenario (Fig. 2D), there are coexisting areas of 2:2
and 2:1 rhythm, as is found in the ischemic ventricle
(Downar et al., 1977; Hashimoto et al., 1984; Carson
et al., 1986; Abe et al., 1989). This ““secondary’ alternans
(Fig. 2D-F) has also been seen in a false tendon with a
central segment exposed to high [K ], (Cranefield et al.,
1971), as well as in modelling of an inhomogenecous
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Fig. 9. Period-3 rhythm: Length of ischemic segment: 0.5cm. Left column (A-C): 2:1 rhythm, [K "], = 13.571 mM; right column (D-F): 3:1 rhythm,
[K*], = 13.574mM. Same format as Fig. 2, but traces in (A) and (D) taken at x = 0.3, 0.6, 0.9, 1.1, 1.25, 1.4, 1.6, 1.9 and 2.2cm.

Purkinje fibre cable (Guevara, 1988). In our simulations
(Fig. 7B and C), primary alternans occurs over a much
narrower range of [K™], than secondary alternans (see
Section 1 of Supplementary Material II for further
discussion of this point).

One often sees a gradual increase in the magnitude of
alternans (‘“‘crescendo alternans,” Dilly and Lab, 1988) in
the extracellular recording (Downar et al., 1977; Russell
et al., 1979; Abe et al., 1989; Nearing et al., 1991; Nearing
and Verrier, 2002) that often heralds the onset of
ventricular fibrillation (see, e.g., Fig. 3A(C) in Nearing
and Verrier, 2002). This increase is likely due to a
progressive extension in the size of the areas of 2:2 rhythm

and 2:1 block, with a progressive conversion of areas
initially showing 2:2 rhythm into areas showing 2:1 block
(Fig. 3 of Downar et al., 1977; Fig. 1 of Russell et al., 1979;
Fig. 12 of Hashimoto et al., 1984).

4.2. Higher-order rhythms arise out of alternans and presage
tachyarrhythmias

As ischemia progresses, the simultaneous gradual rise in
[K ], and gradual expansion of the ischemic area (Coronel
et al., 1988) would correspond to movement along a path
upwards and to the right in Fig. 8. Our computations
thus predict that immediately after alternans occurs, but
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before complete block develops, higher-order rhythms
(e.g., period-3, -4, -6, -8) would be seen.

While there have been scattered incidental reports of
period-3 rhythms (Russell et al., 1979; Hashimoto et al.,
1984) and period-4 rhythms (Dilly and Lab, 1988; Laguna
et al., 1999; Wu and Zipes, 2001) during acute ischemia,
there has been thus far only one systematic experimental
search for period-3 and period-4 rhythms (Nearing and
Verrier, 2002). Six of the 12 dogs in that study fibrillated
during the 8-min coronary occlusion period. In five of these
six dogs, alternans was followed by either a period-3
or a period-4 rhythm, then by ‘“complex’ non-repeating
rhythms, and then by fibrillation; the remaining animal
showed only very high-amplitude alternans before fibrilla-
tion occurred (Figs. 2 and 3 of Nearing and Verrier, 2002).
Of the six other animals that did not fibrillate, four showed
only alternans (two of which were at a very low level), and
the remaining two stayed in period-1 rhythm.

The narrowness of the range of [K "], over which higher-
order rhythms exist (Figs. 7 and 8) leads us to predict that
stable higher-order rhythms would be exceedingly difficult
to observe during rapidly evolving myocardial ischemia.
Estimating a rate of increase of [K "], on the order of
~1mMmin~' in the central zone (this rate is highly
variable, is considerably less in the border zone, and
declines with time (Figs. 1 and 4B of Hill and Gettes, 1980;
Fig. 2(b) of Coronel et al., 1988), one can calculate from
our results that one would expect to see period-4 rhythms,
which exist over a [K '], range of at most ~0.1mM
(Fig. 8), for only a few seconds. In the experimental work,
period-3 and period-4 rhythms, which occurred during the
last minute or so before fibrillation started up, lasted on
average for 26 and 23 s, and were “inherently unstable and
evanescent”; indeed, the existence of a higher-order
periodic rhythm was established on the basis of as few as
two consecutive cycles (Nearing and Verrier, 2002).

In the presence of temporal noise and spatial inhomo-
geneity, one expects “bifurcation gaps,” in which periodic
rhythms existing in the noise-free state over only very
narrow ranges, as well as rhythms of sufficiently long
period, are replaced by non-periodic rhythms (Crutchfield
and Huberman, 1980). In Fig. 8, for L>~0.8cm, one
might thus observe, in the presence of a bifurcation gap,
only the sequence {period-1—2—4—complete block}, or
perhaps even only {period-1—2-—complete block}; for
~0.4cm<L<~0.6cm, one might expect to see {period-
1 -2 -3 —complete block}, or perhaps even only {period-
1 »2—complete block}. Indeed, the sequence {1:1—>2:2—
2:1—1:0} has been reported during ischemia (Downar
et al., 1977). In instances where only a period-2 rhythm has
been reported before the onset of fibrillation (Downar
et al., 1977; Russell et al., 1979; Cinca et al., 1980;
Hashimoto et al., 1984; Carson et al., 1986; Dilly and Lab,
1988; Abe et al., 1989; Konta et al., 1990; Tachibana et al.,
1998), it is possible that occult higher-order rhythms would
have been identified had more sensitive signal-detection
techniques (Martinez and Olmos, 2005) been used.

Should the rate of increase of [K "], be sufficiently great,
one would traverse the region of higher-order rhythms in
Fig. 8 in a time shorter than that necessary to see a single
cycle of a higher-order rhythm. Indeed, in the one dog that
fibrillated with a direct transition from alternans to
ventricular fibrillation, there was a very much faster rate
of increase of alternans amplitude than in the remaining
five dogs that showed higher-order rhythms before
fibrillating (Fig. 3A(C) of Nearing and Verrier, 2002).
There also are 1-D maps that can display a transition to
chaos following a finite number—as small as one or two—
of apparent bifurcations (Tresser et al., 1980; Mayer-Kress
and Haken, 1984; Chialvo et al., 1990; Nusse and Yorke,
1992; Watanabe et al., 1995).

4.3. Is complete block necessary for reentry?

Since 2:1 block can proceed on to complete block
within the core of the ischemic zone (Downar et al., 1977;
Coronel et al., 1988), one can argue that complete block
is obligatory at some location in order to provide the
inexcitable obstacle that would allow classic circus-move-
ment reentry. Indeed, one can estimate from Fig. 8 that the
time-lag between the onset of a period-4 rhythm and the
onset of complete block would be on the order of only a
few seconds, which is consistent with the time-lag observed
in the experiments between the onset of the period-4
rhythms and the onset of complex rhythms (Nearing and
Verrier, 2002). Since the electrogram gives the electrical
activity averaged over some portion of the ventricular
muscle, when alternans or a higher-order rhythm is
identified in the electrogram, there might be one or more
zones of complete block present, given the great hetero-
geneity of the ischemic ventricle. Since detailed activation
mapping of the onset of the arrhythmias that follow
higher-order rhythms during ischemia has not yet been
reported, one does not know whether complete block
occurs within the ischemic zone some time following the
onset of higher-order rhythms, but just before fibrillation
starts and, if so, whether this might be the crucial initiating
event.

4.4. Origin of period-2 and period-4 rhythms during
ischemia

In 3/5 dogs demonstrating higher-order rhythms and
fibrillation, the sequence seen was {period-1-2—4—
complex —fibrillation} (Nearing and Verrier, 2002). It
was then suggested that this corresponds to the classic
period-doubling route, in which there is a cascade of
an infinite number of period-doubling bifurcations leading
to deterministically aperiodic (‘“‘chaotic””) dynamics (May,
1976). This route to chaos exists in paced cardiac tissue
(Guevara et al., 1981; Hescheler and Speicher, 1989; Savino
et al., 1989; Chialvo et al., 1990; Gilmour et al., 1997). In
the presence of bifurcation gaps, the {l:1-2:2—-2:1—>
4:2—-4:1- ... - 1:0} sequence of Fig. 7 might be converted
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into the sequence {period-1-—2—4—complete block}—
rhythms of period higher than 4 were not searched for in
Nearing and Verrier (2002). The voltage traces in Figs. 2
and 3 are suggestive of period-doubling bifurcations in
the {1:1>2:2} and {2:1 >4:2} transitions. We have been
unable to establish this, with the ticklish numerical results
leading to an effectively discontinuous 1-D map in the
former case (Arce et al., 2002). The {2:2—2:1} and {4:2—
4:1} transitions are reminiscent of changes in firing number
(Othmer and Xie, 1999).

The sequence {1:1—>2:2—-2:1—>4:2—chaos} has been
described in paced tissue (Chialvo et al., 1990) and in ionic
models (Lewis and Guevara, 1990; Vinet et al., 1990).
While it is possible that period-8 and even higher-order
period-doubled rhythms were not found due to a bifurca-
tion gap, discontinuous 1-D maps can display chaotic
dynamics following as few as two period-doubling bifurca-
tions (Lewis and Guevara, 1990).

Yet another explanation for the {period-1-2—-4— ...}
sequence would be a {1:1—2:1} transition (Yehia et al.,
1999), followed by a {2:1 —»4:1} transition. Coexisting areas
of period-2 and period-4 rhythms (Nearing and Verrier,
2002) as well as 2:1 and 4:1 block (but not 3:1 block) (Wu
and Zipes, 2001) have been reported during ischemia.

For further discussion about chaos, see Section 4 of
Supplementary Material II.

4.5. Origin of period-3 rhythms during ischemia

In 2/6 dogs, the sequence seen was {period-1>2—-3—
complex — fibrillation} (Nearing and Verrier, 2002). The
fact that these period-3 rhythms occurred later (by ~235s)
than the period-4 rhythms seen in three other dogs was
taken as being consistent with the classic period-doubling
route, where the period-3 orbit occurs later that the period-
doubled and period-quadrupled orbits (May, 1976). But in
both cases of period-3 rhythm, the preceding period-2
rhythm lasted for quite a long time, and so one might have
expected to have seen other higher-order periodic and
chaotic rhythms for a rather long time after the period-2
rhythm ceased, but before the period-3 rhythm appeared
(see, e.g., Fig. 4 of May, 1976). Instead, the period-3
rhythm arose directly out of a long-lasting period-2 rhythm
(Nearing and Verrier, 2002).

A second scenario here is an effectively direct {2:1 —»3:1}
or {2:2—3:2} transition. The 2:1 and 3:1 zones lie very
close to one another in Fig. 8, so that in the presence of a
bifurcation gap one would have a {2:1-3:1} transition.
This transition to a period-3 rhythm takes place at a higher
level of [K "], than does the transition to period-4 rhythm,
which might account for the later appearance of the
former rhythm in the experiments. Ischemic alternans
can be accompanied by “‘varying degrees of conduction
blocks with either 2:1, 3:1, or more irregular patterns of
endocardial-epicardial conduction block™ (Russell et al.,
1979), and there can be the co-existence of period-2 and

period-3 rhythms at different locations (Hashimoto et al.,
1984).

A third scenario here is the sequence {1:1-52:2—-2:1—
4:2 >chaos—3:1-6:2— ...}. In one case, the ranges of the
period-doubled (2:2, 4:2, 6:2) and chaotic rhythms were so
narrow that, in the presence of even a very small
bifurcation gap, one would expect to see the reduced
sequence {period-1—-2—3} (see Fig. 5(a) of Lewis and
Guevara, 1990).

A fourth scenario occurs in piecewise-smooth systems,
where a period-2 orbit can make a direct transition to a
period-3 orbit via a border-collision bifurcation (Nusse and
Yorke, 1992).

For further discussion about the bifurcations underlying
period-2 and higher-order rhythms, see Section 3 of Supple-
mentary Material II.

4.6. Subthreshold rhythms

The 1:0 rhythm of Fig. 6D-F (classic complete block)
has been reported in the ischemic ventricle (Downar et al.,
1977; Cinca et al., 1980; Coronel et al., 1988, 1989). The fall
in action potential amplitude with distance (Fig. 6E) occurs
in false tendons in which the middle segment is exposed to
high [K "], (Cranefield et al., 1971). The subthreshold 2:0
rhythm (Fig. 6A—C) has been described in the ischemic
ventricle (Cinca et al., 1980), in the space-clamped squid
giant axon (Kaplan et al., 1996), the space-clamped
FitzHugh—Nagumo equations (Rajasekar and Lakshma-
nan, 1988; Kaplan et al., 1996), and in homogeneous 1-D
FitzHugh—Nagumo (Horikawa, 1994) and Hodgkin—Huxley
(Horikawa, 1998) cables of reduced excitability.

The transition from 1:0 to 2:0 rhythm (Fig. 6) appears to
be due to a period-doubling bifurcation. While there can be
a cascade of these period-doubling bifurcations that
culminates in subthreshold chaotic dynamics (Rajasekar
and Lakshmanan, 1988; Horikawa, 1994, 1998; Kaplan
et al., 1996), we have not encountered this in our simu-
lations at L = 1 cm, changing [K "], in steps of 0.0001 mM.
We see three possible explanations for this absence. First,
higher-order period-doubled subthreshold rhythms and
subthreshold chaotic rhythms might exist over an exqui-
sitely narrow range of [K *],. Second, higher-order periodic
and aperiodic subthreshold rhythms simply might not exist:
the forward period-doubling cascade might be incomplete
and be terminated by a partial reverse cascade of period-
halving bifurcations (Horikawa, 1998). Third, if bistability
is present, these rhythms would not have been encountered
if our computations did not start out from within their
basins of attraction.

4.7. Atrioventricular block

Our model of regional ischemia can also be taken as a
crude model of the atrioventricular node, with the
proximal normal segment representing the right atrium,
the ischemic segment representing the atrioventricular
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(AV) node, and the distal normal segment representing the
His bundle. There are many correspondences of our results
with experimental and clinical findings during AV block. It
is known that 3:1 AV block is rare: “In experiment, 4:1
block is much more frequent than 3:1 block™ (Lewis, 1920)
(cf. our Fig. 8). In Figs. 2-5, 2N:2 rhythms are seen, in
which there is an alternation of the conduction time, in the
absence of longitudinal dissociation (“‘dual pathways’)
(Pick et al., 1962; Watanabe and Dreifus, 1972). Direct
transitions between 2:1 and 4:1, 4:1 and 6:1, and 6:1 and 8:1
AV block have been documented (Castellanos et al., 1998;
see also Fig. 252 of Lewis, 1920). In paced strips of fetal
sheep epicardial muscle, a sequence of period-4, -6, and -8
rhythms uncannily similar to those seen in our cable was
described (Watanabe et al., 1995). Direct transitions
between 4:1 and 8:1 AV block can occur (Castellanos
et al., 2005). There are multiple levels of concealment of
blocked responses (Watanabe and Dreifus, 1972), as in
Figs. 3-5. Finally, in the proximal elements of the cable in
Fig. 3A, there is behavior reminiscent of supernormal AV
conduction (Pick et al., 1962).

4.8. Limitations of the model

The ventricles are 3-D and we use a 1-D structure, so
that effects due to, e.g., anisotropy and transmural fibre
axis rotation, cannot occur. Large-scale gradients (e.g.,
apex-to-base and endocardial-to-epicardial gradients in
APD), as well as inhomogeneities on a smaller scale, are
not included. While we represent the effects of ischemia by
changing [K *],, it is well-known that other factors, such as
hypoxia, acidosis, and Ca?"-cycling play a considerable
role. We have set a sharp demarcation between the normal
zone and the ischemic zone, but there is in fact a graded
border zone. Our model is a guinea-pig model, and since
most experiments on ischemia have been done in larger
animals (typically dogs and pigs), species differences may
play a confounding role.

4.9. Future work

Recording of the transmembrane potential from many
sites, e.g., with the optical-dye technique (Wu and Zipes,
2001; Lakireddy et al., 2005) will help in elucidating the
nature of any causal relationship between higher-order
rhythms and the induction of reentrant rhythms and also in
discriminating amongst the various rhythms that can all
give rise to a period-n rhythm on the electrogram (e.g., 3:2
Wenckebach and 3:1 block both result in a period-3
rhythm). Further modelling work should remove some of
the limitations of the present model mentioned immedi-
ately above. In particular, since Ca®*-cycling can theore-
tically generate higher-order rhythms (Qu et al., 2007), it
will be interesting to see how any such rhythms intrinsically
generated in an ionic model of space-clamped membrane
might interact with the rhythms of higher-order block
described above. However, it might take some time to work

out the teething problems in the rather complicated
second-generation models that allow Ca®"-cycling (see,
e.g., Cherry and Fenton, 2007). The modelling work should
be expanded to consider the later stages of ischemia (e.g.,
phase 1b), when cellular uncoupling occurs (Pollard et al.,
2002). The close temporal association of discordant
alternans, higher-order rhythms, and spiral-wave reentry
(Nearing and Verrier, 2002; Bernus et al., 2005) cries out
for further investigation (see also Section 2 of Supplemen-
tary Material 1I). The 1-D map analysis accounting for
the {1:1 >2:2—-2:1} sequence (Arce et al., 2002) should be
extended to higher-order transitions. Finally, will it be
possible to make connections between higher-order
rhythms, discordant alternans, and the induction of
reentry—presumably spiral-wave in origin—using a low-
dimensional analysis?
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The online version of this article contains three sets of
additional material: a listing of the modified Luo—Rudy
model (Supplementary Material I), some additional dis-
cussion (Supplementary Material II), and movies corre-
sponding to Figs. 1-6 and 9, as well as three other movies
(Supplementary Material III). Please visit doi:10.1016/
j.jtbi.2007.06.015.
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Membrane potential (V)
dv/dt=—(l, + 14+ 1 + 1 + I, +1,)/C,, withC =1 uF/cm®.
lonic concentrations

[Na]o =140 mM, [Ca]o =1.8 mM, [Na]i =18 mM, [K]1 =145 mM.

Reversal potentials

E.. =(RT/F)log,([Na], /[Na],).
Ex, = B, = (RT/F)log, ([K], /[K]).
Ey =(RT/F)log, [([K], + PRy [Na], )/([K]l + PRy [Na])], PRy, =0.01833.

Fast inward Na* current (Ina)

l, =23m°hj(V —E,,).
dm/dt=a, (1-m)-g,m,  dh/dt=a,(-h)-Fh,  di/dt=a,(1-])-5i.

ForV >-40 mV:

a, =0.

B, =1/(0.13{1+exp[—(V + 10.66)/11.1]}).
a; =0.

B, =0.3exp(~2.535x 107V ) /{1 +exp[-0.1(V +32)]}.

ForV <—40 mV:
a, =0.135exp[—(80+V)/6.8].

B, =3.56exp(0.079V)+3.1x10°exp(0.35V).
a; =[~1.2714x10° exp(0.2444V ) ~3.474x10™° exp(~0.0439 IV )(V +37.78)/

{1+exp[0.311(V +79.23)]}.
B, =0.1212exp(=0.01052V) /{1 +exp[~0.1378(V +40.14)]}.



Forall V:

a, =0.32(V +47.13) /{1 —exp[-0.1(V +47.13)]}.
B. =0.08exp(-V /11).

Slow inward Ca*™" current (l)
I, =0.09df (V —E,), E,=7.7-13.0287log,([Cal).
dd/dt=a,(1-d)-B,m,  df /dt=a,(1- )2, T.
ay =0.95exp[-0.01(V —5)]/{1 +exp[-0.072(V —5)]}.
B, =0.7exp[~0.017(V +44)]/{1+exp[0.05(V +44)]}.
a, =0.012exp[—0.008(V +28)]/{1 +exp[0.15(V +28)]}.
B, =0.0065exp[—0.02(V +30)]/{1 +exp[-0.2(V +30)]}.
d([Cal)/dt=—-10"1+0.07(10* —[Ca].).

Delayed rectifier K™ current (I)
I, =G, xX,(V-E,), G, =0.282,/[K],/5.4.
dx/dt=a (1-x)— S X.
a, =0.0005exp[0.083(V +50)]/{1+exp[0.057(V +50)]}.
B, =0.0013exp[—0.06(V +20)]/{1 + exp[—0.04(V +20)]}.

X, =2.837{exp[0.04(V +77)]— 1} /{(V +77) exp[0.04(V +35)]}.

Inward rectifier K™ current (I1)

I, =G, KL (V-E,), Gy, =0.6047,[K], /54, Kl =a, /(o +Bx)-
o, = 1.02/{1+exp[0.2385(V —E,, —59.215)]}.

Be, = {0.49124+exp[0.08032(V — E,, +5.476)]+
exp[0.06175(V — Ey, —=594.31)]} /{1 +exp[-0.5143(V — E,, +4.753)]}.



Plateau K™ current (Ip)

Iy, =0.0183Kp(V - E,).
Kp= 1/{l +exp[(7.488—-V)/5.98]}.

Background current (lIp)

1, =0.03921(V +59.87).

In the above equations, voltage is in mV, time in ms, currents in uA/cmz, rate constants in ms ',
and ionic concentrations in mM. The value of RT/F is not mentioned in Luo and Rudy, 1991; we
set RT/F = 26.7 mV. We set the values of ay and Sy above to be 10 times larger than in the
original Luo-Rudy model, so as to decrease the time constant zy for the activation of I
(7, =1/(ey + ;) ) by a factor of 10, in order to bring t4 into the physiologic range. L’Hdopital’s
rule is applied when an indeterminate form arises in the formulae for am and X;. The alternative
formula for X; that applies for V < —-100 mV (Luo and Rudy, 1991) is not needed here, since in
our simulations V > —-100 mV at all times. Programs in several different programming languages

to numerically simulate the original Luo-Rudy model can be found on the world-wide web, e.g.,

http://cor.physiol.ox.ac.uk/ (for a recent listing of several other such repositories, see Table 4 in

Wilders, 2007).
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1. Role of Raised [K'], in Inducing Period-2 Rhythms in the Ischemic Ventricle

We use a single intervention to model the electrophysiological effect of ischemia — a rise in
[K]o. Period-2 rhythms occur when [K'], is ~13 mM (Figs. 2,7B). In the pig ventricle,
alternans has been detected 3—9 mins post-occlusion (Downar et al., 1977), during which time
the average [K'], in the central ischemic zone is ~7—-11 mM (Hill and Gettes, 1980; Coronel et
al., 1988). However, the marked spatial heterogeneity in [K'], and in the electrophysiological
response to ischemia (Downar et al., 1977; Hill and Gettes, 1980; Coronel et al., 1988; Coronel
et al., 1989) would tend to result in alternans starting up at a time earlier than one might expect
based on consideration of average [K'], alone: e.g., monophasic electrograms (indicating block
within or into an area) are seen at 50% of electrode locations by the time that [K'], reaches 9-10
mM, and at over 90% of locations by 12 mM (Coronel et al., 1989). In addition, several other
concurrent changes known to promote alternans and block (e.g., hypoxia, acidosis, internal Ca" -
cycling (Wit and Janse, 1993; Shaw and Rudy, 1997; Carmeliet, 1999; Ferrero Jr. et al., 2003;
Bernus et al., 2005; Lakireddy et al., 2005; Carmeliet, 2006; Jordan and Christini, 2006; Qu et
al., 2007) would undoubtedly lower the [K'], at which 2:2 and 2:1 rhythms would first be seen.
Nevertheless, regional perfusion of the rabbit coronary system with a high-K" solution (= 9 mM)
leads to both alternans and arrhythmias (Curtis, 1991) and similar experiments in the dog result
in 2:1 endocardial-epicardial block and arrhythmias (Ettinger et al., 1973), indicating that
elevated [K'], in and of itself can be a major cause of alternans, block, and tachyarrhythmias (see
also modelling work of Bernus et al., 2005).

The fact that the 2:2 zone is so narrow in our simulations (~0.04 mM wide in Fig. 7B)
implies that during ischemia the duration of the phase of primary alternans would be exceedingly
brief — indeed almost certainly ephemeral — before secondary alternans would ensue. At the
time that alternans starts up, [K'], is rising at a rate on the order of 1 mM min™' in the central
ischemic zone (Hill and Gettes, 1980; Coronel et al., 1988), so that one would then predict from
our simulations that the phase of primary alternans would last for a time on the order of only
~2.4 seconds (this estimate is very rough, given that the rate of increase of [K'], is highly
variable from site to site, is considerably less in the border zone, and declines with time (Fig. 4B
of Hill and Gettes, 1980; Fig. 2(b) of Coronel et al., 1988). In contrast, the 2:1 zone in Fig. 7B,C
is much wider (~0.2 mM), so that the phase of secondary alternans would be predicted to last for
~12 seconds. This is considerably shorter than the mean duration of ~82 seconds observed
experimentally for alternans in the dog (Nearing and Verrier, 2002). This discrepancy is again
likely due to the fact that in our model we are neglecting several germane factors that promote
alternans (e.g., spatial inhomogeneity, hypoxia, acidosis, Ca" -cycling).

Alternans and arrhythmias are commonly seen upon reperfusion following a period of
coronary occlusion. The rapid premonitory increase in alternans amplitude (Downar et al., 1977;
Carson et al., 1986; Nearing et al., 1991; Tachibana et al., 1998) might be accounted for by the
fact that areas coming out of complete block start to produce action potentials (Downar et al.,
1977). The resulting increase in spatiotemporal asynchrony almost certainly produces the
inhomogeneity necessary for starting up reentrant rhythms (Downar et al., 1977). Again, [K '], is
almost certainly playing a key role, since the very rapid fall in [K'], (much faster than the rate of



increase following occlusion (Hill and Gettes, 1980; Coronel et al., 1988)) has a time-course that
parallels the much more rapid increase in alternans and arrhythmias seen following reperfusion
(Downar et al., 1977; Curtis, 1991; Nearing et al., 1991). Furthermore, arrhythmias are seen
following washout in experiments on regional coronary hyperkalemia (Curtis, 1991).

2. Alternans Does Not Necessarily Proceed Directly on to Reentrant Arrhythmias

In our modelling work of a two-dimensional sheet of regionally ischemic ventricular muscle, as
[K'], increases in the ischemic zone, primary alternans occurs first, followed by 2:1 block, i.e.,
secondary alternans (Arce et al., 2000). When this 2:1 block occurs, the breaking of the
excitation wavefront on every other beat creates a pair of nascent spiral wave-tips that might be
expected to initiate a figure-of-eight spiral-wave reentrant rhythm, along the lines described in a
recent modelling study on the effect of premature stimulation on a two-dimensional sheet of
regionally ischemic ventricular muscle (Ferrero Jr. et al., 2003). However, reentrant arrhythmias
were not seen; rather the 2:1 block proceeded on to higher-order rhythms and eventually
complete block as [K'], was raised further. This finding in the model agrees with the
experimental results, in so far that alternans does not typically lead directly to reentry, but rather
to higher-order rhythms — in only 1/6 animals did fibrillation arise immediately out of alternans,
without an intervening higher-order rhythm being seen (Nearing and Verrier, 2002). The rate of
increase of the amplitude of the alternans in that animal was very high (Fig 3A(C) of Nearing
and Verrier, 2002), so that it is all too conceivable that the range of [K'], over which higher-
order rhythms exist was traversed too quickly for such rhythms to be seen. However, we have
no firm explanation at present for why we did not see spiral-wave reentrant rhythms in our
simulations following the onset of higher-order rhythms (and even complete block).
Nevertheless, both the experimental and modelling work indicate that it is not obligatory that
reentry occur immediately following a period-2 rhythm; indeed, the experimental results
demonstrate that higher-order rhythms typically must occur first.

3. Bifurcations Responsible for Producing Period-2 and Higher-Order Rhythms

Perhaps the commonest way in which a period-2 rhythm arises directly out of a period-1 rhythm
is via a supercritical period-doubling bifurcation (Guevara et al., 1981; Guevara et al., 1984).
But this is not the only way: e.g., there can be a subcritical period-doubling bifurcation (Vinet
and Roberge, 1994), or a saddle-node bifurcation of periodic orbits resulting in the creation ex
nihilo of two period-2 orbits, one stable (corresponding to 2:2 rhythm), the other unstable
(Singer, 1978; Mayer-Kress and Haken, 1984; Vinet and Roberge, 1994). A border-collision
bifurcation has been implicated in producing the period-2 orbit underlying the PR—alternans seen
in a model of time-delayed atrial stimulation (Chen et al., 1998).

When the atrium is paced at a gradually increasing rate, one eventually encounters 2:1
atrioventricular block. But consideration of a 1-dimensional map indicates that there can be
mathematically an infinite number of different Wenckebach rhythms interposed between the 1:1
rhythm of normal sinus rhythm and the 2:1 rhythm of atrioventricular block (Guevara, 1991), so
that the 2:1 rhythm of block cannot be said, on the basis of this one particular finding alone, to be
a period-doubled rhythm arising directly out of a period-doubling bifurcation. In periodically
driven isolated quiescent rabbit ventricular cells, the transition from 1:1 to 2:1 rhythm can be
direct (Yehia et al., 1999), via a 2:2 rhythm (Guevara et al., 1989), or via Wenckebach-like



thythms (Yehia et al., 1997), depending on the stimulus amplitude (analogous results are seen in
spontaneously beating re-aggregates of embryonic chick ventricular cells (Guevara et al., 1990)).

In a similar vein, not all period-4 rhythms necessarily arise from a period-doubling of a
period-doubled rhythm: e.g., a unimodal one-dimensional map such as the prototypical quadratic
map has a second period-4 orbit that arises via a tangent or saddle-node bifurcation, and not via a
cascade of two period-doubling bifurcations (May, 1976). This orbit is visited in the sequence
ABCD (where A < B < C < D are the points of the orbit), whereas the true period-quadrupled
orbit in the quadratic map has the ordering ACBD. The orbits constructed from return-maps
obtained from our 4:2 and 4:1 rhythms at L = 1 cm (Fig. 3) have the ordering ACBD. In
contrast, a 4:1 rhythm in which there is a monotonically increasing growth in the amplitude of
the blocked responses (e.g., Bandura, 1980) will have the ordering ABCD. In the 4:2 rhythm of
Fig. 3A, the two action potentials are not consecutive, being separated by a subthreshold
response. However, this is not the only type of 4:2 rhythm that can exist: e.g., there is a different
4:2 rhythm in which each cycle consists of two consecutive action potentials followed by two
consecutive subthreshold responses (Fig. 4B of Watanabe and Dreifus, 1972).

Similarly, a period-3 rhythm does not necessarily have to correspond to the particular
period-3 orbit seen on a unimodal map, which arises via a saddle-node bifurcation and has the
ordering ABC: e.g., one analysis of the 3:2 Wenckebach rhythm of atrioventricular block results
in a period-2 orbit that visits both branches of a discontinuous map, each branch of which is
monotonically increasing (Guevara, 1991). To avoid premature — and hence potentially
misleading — attribution of a bifurcation route to the origin of a particular rhythm, we use the
more neutral term period-2 (or period-4) rhythm, rather than period-doubled (or period-
quadrupled) rhythm, in referring to a rhythm that has not necessarily been proven to arise out of
one period-doubling bifurcation (or two successive period-doubling bifurcations); we have also
used the terminology period-3 rhythm rather than period-tripled rhythm (Ritzenberg et al., 1984;
Nearing and Verrier, 2002; Nearing and Verrier, 2003).

4. Chaos?
The exact nature and origin of the “complex” rhythms that follow higher-order rhythms during
ischemia is unclear (Nearing and Verrier, 2003). One possibility is that these are higher-order
periodic thythms corrupted by stochastic effects due to temporal noise (e.g., membrane noise)
and spatial noise (e.g., small-scale inhomogeneities in the ventricle). Indeed, the latter
mechanism almost certainly accounts for the fact that different, rapidly changing rhythms are
seen in adjacent areas of the ischemic ventricle, especially just before arrhythmias start up
(Downar et al., 1977). While electrotonic interactions would help to maintain spatiotemporal
synchrony, this becomes more difficult as the order of the rhythm increases, since smaller
changes then suffice to destroy the rhythm, thus producing a bifurcation gap. It is also clear that
when spatial heterogeneity is larger there will be a greater effect of noise in breaking up the
temporal correlations between activity at different sites. It is thus perhaps not surprising that
rather disordered (“complex”) electrograms are seen following higher-order rhythms and just
before reentrant beats occur during ischemia (Nearing and Verrier, 2003). There is also a
considerable clinical literature on the impact upon arrhythmogenesis of spatiotemporal lability of
repolarization: “QT dispersion” (beat-to-beat variability within a single electrocardiographic
lead) and “T-wave complexity” (variability across different leads).

An alternative possibility to a stochastic mechanism is that the complex rhythms are
deterministically chaotic. This prospect is particularly intriguing, given that the complex



rhythms proceed directly on to fibrillation, which appears to be due to spiral-wave break-up,
which itself might be a form of spatiotemporal chaos (Strain and Greenside, 1998). Perhaps the
best evidence to date for causal links between a bifurcation sequence, chaos, and
arrhythmogenesis is in the rapidly paced toad ventricle, where the sequence {1:1 — 2:2 — 4:4
— chaos — arrhythmia} has been observed (Savino et al., 1989). In these chaotic rhythms there
is one action potential for each stimulus. We have not seen any chaotic rhythms in our
simulations. Should such rhythms in fact exist, they would cover minuscule areas in Fig. §,
leading to the conclusion that their relevance to the real world of experiment and the clinic would
be minimal.

Another point of view is that there is no direct relationship between any putative chaotic
pre-fibrillatory rhythm and any later chaotic fibrillatory rhythm. Since fibrillation can be
bistable with normal sinus rhythm (as shown by the ability to fibrillate or defibrillate at will with
a brief electrical shock), it might be that the pre-fibrillatory rhythm — chaotic or not — is simply
setting up the initial conditions (e.g., unidirectional block) that allow the initiation of the
reentrant rhythm that eventually terminates in fibrillation, whether that fibrillation itself be
chaotic or not.

The claim has been made, alluding to the much-misapplied theorem of Li and Yorke
(1975) that the existence of a period-3 rhythm (“tripling”) implies the existence of all
periodicities, as well as “pseudorandom” (i.e., deterministically chaotic) rhythms (Nearing and
Verrier, 2002; see also Ritzenberg et al., 1984). However, this is not necessarily the case; e.g., a
3:2 Wenckebach rhythm, which is a period-3 rhythm, can be generated by a discontinuous two-
branched map that yields neither period-doubled orbits nor chaos (Guevara, 1991). Other kinds
of rhythms can also produce period-3 behaviour: e.g., a period-5 reverse Wenckebach 5:3 rhythm
of atrioventricular block produces a “tripling” in the ventricular response (Fig. 1b of Ritzenberg
et al., 1984). Indeed, it is not even clear at the present time that a one-dimensional map — much
less one satisfying the more restrictive conditions of the Li-Yorke theorem — can account for the
experimental results during ischemia.

It is almost certain, given the heterogeneity of the response to ischemia, that different
sequences of rhythms occur in different individuals, and that there will be no universally
observed one-parameter bifurcation sequence, even in the first few minutes of ischemia (e.g.,
Wenckebach rhythms have been described during acute ischemia (EI-Sherif et al., 1975) and are
characteristically seen in the 3-7-day-old infarct (El-Sherif et al., 1977)). It is already clear from
Fig. 8 alone that the sequence of rhythms seen as ischemia progresses will depend on exactly
which path is taken through this two-parameter bifurcation diagram, with both L and [K'],
increasing as ischemia progresses. One also has to admit that in many cases in experimental
work it will not be possible to definitively determine a complete bifurcation sequence due to the
rapidly evolving substrate inherent during acute ischemia.
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movies available at journal web-site  and at www.medicine.mcgill.ca/physio/guevaralab/arce-Ill.htm

SUPPLEMENTARY MATERIAL 1l (“MOVIES OF PROPAGATION”")

A. Lbpez et al.:
“Rhythms of high-grade block in an ionic model of a strand of regionally ischemic ventricular muscle”

These movies show propagation down the one-dimensional cable at the indicated
external potassium concentration at three different lengths of the ischemic segment (L =
0.5 cm, 1.0 cm, and 2.0 cm). Each frame of the movie is a snapshot of the membrane
voltage (mV) plotted against distance (cm). Propagation is from left to right, and the
time between individual frames is 10 ms. Each movie loops, repeatedly showing the
same one cycle of each periodic rhythm. The movies are in QuickTime (.mov) format
(the QuickTime movie player can be downloaded from www.apple.com/quicktime). The
figure numbers in the listing below refer to the figures in the main text of the article.

Length of Ischemic Segment =1 cm

Figure No. Rhythm [K'], (mM) Supplementary Materials

Fig. 1A-C 11 54 A
Fig. 1D-F 1.1 13.0 B
Fig.2A-C 22 13.173 C
Fig.2D-F  2:1  13.250 D
Fig. 3A-C 42 13.437 E
Fig. 3D-F  4:1  13.442 F
Fig. 4A-C 62  13.472 G
Fig. 4D-F  6:1  13.476 H

Fig. 5A-C 8:2 13.4855 I

Fig. 5D-F 81  13.487 J
Fig. 6A-C 2.0  13.494 K
Fig. 6D-F 1.0  13.745 L


guevara
Text Box
movies available at journal web-site and at www.medicine.mcgill.ca/physio/guevaralab/arce-III.htm


Length of Ischemic Segment = 0.5 cm

Figure No. Rhythm [K'], (mM) Supplementary Materials

Fig. 9A-C 2:1 13.571 M

Fig. 9D-F 3:1 13.574 N
D e e e e e e e e e ]

Length of Ischemic Segment = 2.0 cm

Figure No. Rhythm [K'], (mM) Supplementary Materials

none 4:1 13.45 @]
none 8:2 13.46 P
none 4:1 13.47 Q
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