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We simulate the effect of periodic stimulation on a strand of ventricular muscle by 
numerically integrating the one-dimensional cable equation using the Beeler-Reuter 
model to represent the transmembrane currents. As stimulation frequency is 
increased, the rhythms of synchronization { 1 : 1 -* 2 : 2 -* 2 : 1 -* 4: 2 -* irregular-* 3 : 1 -* 
6: 2 -* irregular-* 4: 1 -* 8 : 2 -* . . .  --~ 1 : 0} are successively encountered. We show that 
this sequence of rhythms can be accounted for by considering the response of the 
strand to premature stimulation. This involves deriving a one-dimensional finite- 
ditierence equation or "'map" from the response to premature stimulation, and then 
iterating this map to predict the response to periodic stimulation. There is good 
quantitative agreement between the results of iteration of the map and the results 
of the numerical integration of the cable equation. Calculation of the Lyapunov 
exponent of the map yields a positive value, indicating sensitive dependence on 
initial conditions ("chaos"), at stimulation frequencies where irregular rhythms are 
seen in the corresponding numerical cable simulations. The chaotic dynamics occurs 
via a previously undescribed route, following two period-doubling bifurcations. 
Bistability (the presence of two different synchronization rhythms at a fixed stimula- 
tion frequency) is present both in the simulations and the map. Thus, we have been 
able to directly reduce consideration of the dynamics of a partial differential equation 
(which is of infinite dimension) to that of a one-dimensional map, incidentally 
demonstrating that concepts from the field of non-linear dynamics--such as period- 
doubling bifurcations, bistability, and chaotic dynamics--can account for the 
phenomena seen in numerical simulations of the cable equation. Finally, we sketch 
out how the one-dimensional description can be extended, and point out some 
implications of our work for the generation of malignant ventricular arrhythmias. 

1. Introduction 

Ventr icu lar  muscle,  which does not  beat  spon taneous ly ,  is normal ly  dr iven by a 
per iodic  electrical i npu t  or ig ina t ing  in the s inoatr ia l  node  of  the heart.  Periodic 
s t imula t ion  appl ied  at a high rate can lead to a variety of  per iodic  a nd  aper iodic  
rhythms,  inc lud ing  a l t e rnans  (a rhythm in which there is a beat - to-beat  a l te rna t ion  
in one  or more  act ion potent ia l  parameters)  and  vent r icu lar  f ibri l lat ion (Savino & 

t Presented by T. J. L. at the "Theory of Heart" workshop held at the University of California at San 
Diego (La Jolla) in July, 1989. 
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Valentinuzzi, 1988). Within the last decade, the identification of  the onset of  ditterent 
forms of  alternans with a period-doubling bifurcation has been made in several 
different cardiac preparations (Guevara et ai., 1981, 1984, 1989, 1990; Adam et al., 
1982, 1984; Goldberger  et a t ,  1984; Guevara,  1984; Chialvo & Jalife, 1987; Smith 
et al., 1988; Hescheler & Speicher, 1989; Savino et al., 1989; Chialvo et al., 1990). 
In many of  these reports, the alternans is often seen just prior to the phase of 
induction of  irregular rhythms, including ventricular fibrillation. Since it is well- 
known that a cascade of  period-doubling bifurcations can lead to chaotic dynamics 
(May, 1976; Thompson & Stewart, 1986), the hypothesis has been put forth that 
irregular rhythms, such as fibrillation, might be manifestations of  chaotic dynamics 
occurring as the result o f  a cascade of  period-doubling bifurcations (Guevara et al., 
1981; Guevara & Glass, 1982; Adam et al., 1982; Chialvo & Jalife, 1987; Smith et 
al., 1988; Savino et al., 1989). We therefore decided to carry out a systematic study 
o f  the effect of  pacing at different rates in an ionic model of  a strand of  ventricular 
muscle. Our goal was to determine whether or not chaotic dynamics could be 
produced,  and if so, to study the bifurcation sequence leading to chaos. 

2. Cable Simulations 

The transmembrane potential along a 6.25 mm long cylindrical strand of ven- 
tricular muscle was calculated (Sharp & Joyner, 1980; Victorri et al., 1984; Guevara,  
1988), assuming that the strand obeyed the one-dimensional cable equation: 

( a / 2 R , ) d 2 V / a x  2= C OV/Ot+  In ,  (1) 

with x the distance along the cable (cm), t the time (msec), V the transmembrane 
potential (mV), a the cell radius (7.5 I~m), R~ the internal resistivity (200 f~-cm), C 
the capacitance (1 ~F cm-2), and I,, the net membrane ionic current as described 
in the Beeler-Reuter  ionic model of  ventricular muscle (Beeler & Reuter, 1977). 
This current is the sum of  six individual currents: the fast inward sodium current 
(INa), the slow calcium current (I,), the delayed rectifying potassium current (lx~), 
and two background or t ime-independent currents (IK~, INa.C). Sealed-end (Dirich- 
let) boundary conditions were set, and the strand divided into 100 segments, each 
having a length (Ax) o f  62"5 p.m. Numerical integration was carried out on a CRAY 
X-MP computer  (14 significant decimal digits), using a mixed implicit-explicit 
half-step integration routine (Hines, 1984) with a variable time-step (At) algorithm 
(Victorri et al., 1985). With 1 p .sec-  < At ~ 8.192 msec, the change in transmembrane 
potential A V from time t to time t + At was always less than 0.4 mV in all segments. 
When AV was less than 0.2 mV, At was doubled for the next iteration. The strand 
was periodically stimulated by injecting depolarizing current pulses of  amplitude 
100 I~A cm -2 and duration 10 msec into its first segment. The first stimulus pulse 
was always delivered at t = 50 msec. The interval between successive stimuli during 
periodic stimulation is denoted by L- To reduce the length of  transients, unless 
stated otherwise, initial conditions at t = 0 in all segments were set to values taken 
from computations employing an isopotential patch of  Beeler-Reuter  membrane 
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stimulated at ts -- 500 msec: V = -83.42 mV, m = 0.01275, h -- 0.9821, j - -  0.9683, 
d = 0-003280, f = 0.9973, xt = 0.1533, [Ca2+] i  = 0" 1860 mM. 

With the above parameter  values, the surface-to-volume ratio of  the strand 
(2667cm - t )  and the space constant (1 .07mm) are close to the experimentally 
accepted values for healthy ventricular muscle, as are the computed  conduction 
velocity (66 cm sec -~) and the action potential upstroke velocity (99 V sec -~) in the 
middle of  the cable at ts = 500 msec. Thus, the small discretization factor (Ax/space  
constant) of  0.06, together with the upper  bound of 0.4 mV on AV, leads to a 
relatively low numerical error (Victorri et al., 1984). 

We investigate the effect o f  changing ts in 1 msec decrements. At each t~, eqn (1) 
was integrated to produce a t ime series at least 10 sec long. When ts is sufficiently 
large, each stimulus provokes an action potential in the proximal end of  the strand, 
which successfully propagates  to its distal end, thus resulting in a 1 : 1 rhythm [Fig. 
l (a)] .  An N : M  rhythm (N_>I ,  M->0) is periodic with period Nts, consisting of  
repeating N : M  cycles, each containing N stimulus pulses and M action potentials 
with distinct morphologies.  As ts is decreased, the 1 : 1 response is maintained down 
to ts = 307 msec, with the action potential duration in the steady-state decreasing. 
A transient alternation in action potential morphology is increasingly apparent  as 
ts decreases, with both the degree of the alternation and the duration of the transient 
increasing. 

At ts = 306 msec, the 1:1 rhythm is replaced by a 2:2  rhythm. In a 2:2  rhythm, 
there is still one propagated  action potential produced by each stimulus, but there 
is a strict beat-to-beat  alternation in the morphology of  the action potential and its 
conduct ion velocity [Fig. l(b)] .  As ts is lowered further, the degree of  alternation 
in the steady-state becomes more marked.  At t~ =293 msec, there is an abrupt  
transition to a 2 : 1 rhythm, in which every second stimulus is blocked, i.e. does not 
produce a propagated action potential [Fig. l(c)]. Further decrease in t~ to 151 msec 
leads to a 4 :2  rhythm, in which every second response is still blocked, as in the 
2:1 rhythm, but again with an alternation in the morphology of  the propagated 
action potential  [Fig. l(d)] .  For 150 msec-> ts -> 140 msec, periodic rhythms are no 
longer seen: only irregular, apparent ly  aperiodic rhythms occur [Fig. l(e)].  These 
aperiodic rhythms are composed  of laminar  stretches consisting of  4 :2  cycles in 
which the degree of alternation increases progressively until an intermittent sequence 
of  one or more consecutive 1 : 1 cycles appears ,  after which there is a return to a 
stretch of  4 :2  cycles. The average duration of  the laminar phase consisting of 
successive 4 :2  cyles decreases as ts decreases within the range of  ts over which an 
irregular rhythm is produced.  The fraction of  action potentials getting through to 
the distal end of  the cable is slightly greater than 1/2 throughout this irregular zone, 
whereas it is exactly 1/2 for the 4 :2  rhythm. There is thus a paradoxical  reduction 
in the degree of  block produced by decreasing t~ through 150 msec. 

For 139 m s e c -  > t~ -> 105 msec, the irregular rhythms are replaced by a 3 : 1 rhythm 
(not shown). As ts is reduced in the range 105 m s e c >  t~_>44 msec in 1 msec steps, 
one repeatedly sees transitions analogous to the {2:1 ~ 4 : 2 ~  i r regular~  3 : 1} 
sequence described above: i.e. {n : 1 ~ 2n : 2 ~ irregular ~ n + 1 : 1}, with 3 -< n -< 6. For 
43 msec_> ts _> 25 msec, one sees only irregular rhythms (except at ts = 38 msec, where 
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FIG. 1. Response of one-dimensional cable to periodic stimulation. (a), l : l  rhythm, t.~ = 4 0 0 m s e c ,  
(b), 2 :2  rhythm, t., = 301 msec, (c), 2 : 1 rhythm, t~ = 290 msec, (d), 4 : 2  rhythm, t ,  = 151 msec, (e), irregular 
rhythm, t~ = 143 msec. In (b), the A P D  in the segment 90 alternates between 62 and 249 msec, and the 
conduction velocity in the middle of the strand between 62 and 67 cm sec -1. (a) - (e) ,  Bottom to top: 
stimulus pulses and transmembrane potential (V)  vs. time (t) in segments 1, 10, 2 0 , . . . ,  90, 100 of strand. 
Voltage traces are displaced vertically with an offset of  125 inV. Traces in (a)-(d)  taken from near end 
of  a 10-see simulation run, at which point the transient due to initial conditions has largely damped out. 
Note the small-amplitude voltage responses in (c) - (e)  that decrement in amplitude with distance down 
the strand. Calibration bar in (e) also refers to (a)-(d) .  

an 8 : 1 rhythm is seen).  Finally, for 24 msec > ts -> 11 msec, a 1 : 0 rhythm is encoun-  
tered in which all stimuli are blocked,  producing only local, spatially decrementing,  
subthreshold responses in the proximal part o f  the strand. 

All the above simulations were started from the same initial condit ions in all 
segments o f  the cable, corresponding to pacing the space-clamped membrane at 
t, = 500 msec  (see Methods) .  When the initial condit ions are changed to those 
corresponding to an infinite rest (i.e. all activation and inactivation variables set to 
their asymptotic  values),  the { 2 : 2 - ~ 2 : 1 }  transition occurs between t s = 2 9 6  and 
297 msec instead o f  between ts = 293 and 294 msec. Figure 2 shows an example at 
t ,  = 295 msec,  in which a 2 :2  rhythm is seen starting from our standard initial 
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FIG.  2. Bistability in the response of  the cable to periodic stimulation, t~ = 295 msec. (a), 2 :2  rhythm, 

obtained starting numerical integration from standard initial conditions (given in Methods).  (b), 2:1 
rhythm, obtained starting numerical integration from asymptotic rest initial conditions. Traces taken 
from near end of  a 10-sec simulation run in order to allow transients to dissipate. APD of first action 
potential at start of  simulation run from which (b) is taken was 22 msec greater than than in (a) .  APD 
in segment 90 in the steady-state: 250 and 43 msec (a ) ,  254  m s e c  (b) .  

conditions [Fig. 2(a)],  while a 2:1 rhythm occurs starting from asymptotic initial 
conditions [Fig. 2(b)]. Thus bistability--the simultaneous coexistence of  two 
different periodic rhythms (v iz  2:2  and 2 : l ) - - i s  present between t~=293 and 
297 msec. 

3. Reduction to a One-dimensional Map 

There are several experimental reports showing that the response of  a variety of  
cardiac preparations to periodic stimulation with a train of  pulse stimuli can be 
accounted for by their response to premature stimulation with a single such stimulus 
(Moe et al., 1977; Scott, 1979; Guevara et al., 1981; Shrier et al., 1987; Chialvo et 
al., 1990; Guevara, 1990). In fact, it is clear that the various responses in Fig. 1 are 
due to the existence of  refractoriness in the membrane. We therefore investigated 
the recovery properties of  the cable using a premature stimulation protocol, which 
is a standard technique used in experimental cardiac electrophysiology. The system 
is paced at a basic cycle length long enough to produce a 1 : I rhythm and a premature 
stimulus applied every so often so as to probe the recovery or restitution process 
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of  the system, as characterized by some parameter describing the system (e.g. 
conduction velocity, action potential duration, upstroke velocity, etc . . . .  ). 

Figure 3(a) shows an example in which a premature stimulus delivered at a 
coupling interval (to) of  400 msec following the last action potential of  the basic 
drive train produces an action potential with a significantly reduced action potential 
duration (APD). Initial condition corresponding to pacing at a basic cycle length 
of  500 msec are used (see Methods). Figure 3(b) gives the APE) restitution curve 
(Boyett & Jewell, 1978 and references therein), which plots APE) as a function of  
the recovery time (tr), both of  which are measured at the distal end of  the cable 
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FIG. 3. (a), Response of  one-dimensional  cable to premature  stimulation. The first action potential 
shown is the last one o f  the basic drive train. The second action potential is produced by injecting a 
premature  s t imulus  into segment  1 o f  the strand at t,. = 4 0 0  msec. The coupling interval (t ,)  is defined 
as the time from the onset  o f  the last s t imulus pulse of  the basic drive train to the onset  o f  the premature 
st imulus.  The action potential durat ion (APE)) is defined as the time from - 6 0  mV on the upstroke to 
- 6 0  mV on the repolarizing limb of  the prematurely elicted action potential in segment  90 of  the cable. 
The recovery t ime (t,) is defined as the time from - 6 0  mV on the repolarizing limb of  the last action 
potential of  the basic train in segment  90 to - 6 0  mV on the upstroke of  the prematurely elicited action 
potential. Bottom to top: segments  I, 10, 2 0 , . . . ,  80, 90. (b), Action potential duration restitution curve. 
APD is plotted as a function of  t r for t,. changing in steps of  I msec in the range 292 m s e c <  t, <367  msec, 
2 msec steps for 367 msec < t¢ < 545 msec, and 10 msec steps for 545 msec < t,. < 1005 msec. 
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(segment 90). The restitution curve shows that there is a monotonic decrease in 
A P D  with decreasing tr until t,m~ ° (53.50 msec), the minimum recovery interval for 
which conduction is successful. This curve is fit very well (r 2= 0.996) by the sum 
of  two exponentials, which agrees with the experimental finding in ventricular muscle 
(Elharrar & Surawicz, 1983; Robinson et al., 1987). One obtains 

A P D = g ( t r ) = A - B l e x p [ - t r / ~ h ] - B 2 e x p [ - t J 7 2 ]  , t r>trmin , (2) 

where A = 2 7 0 m s e c ,  BI =2441 msec, B 2 = 9 0 . 0 2  msec, ~-~ = 19-60msec, and ~'2 = 
200.5 msec. The asymptotic value of  A P D  (A) was obtained directly by setting initial 
conditions in the model to their asymptotic quiescent values and stimulating once 
to produce a single propagated action potential; it is not a result of  the fitting 
procedure.  On the scale of  Fig. 3(b), the fit given by eqn (2) superimposes with the 
data shown there. 

Making two assumptions, we now use the response to premature stimulation [Fig. 
3(b)] to predict the response to periodic stimulation (Figs 1 and 2). The first 
assumption is that during periodic stimulation at arbitrary ts, the A P D  of  any given 
action potential is controlled only by its immediately preceding recovery time and 
that this dependence is given by the A P D  restitution curve of Fig. 3(b). One can 
then write [Fig. 4(a)] 

APDi+1 = g(t~,+~), (3) 

where APDI+~ is the A P D  of  the ( i + l ) s t  action potential, t .... is its associated 
recovery time, and g is the double-exponential  function of  eqn (2) describing the 
restitution curve of  Fig. 3(b). From Fig. 4(a), it can be seen that L ~ - A P D i  + tr,+,, 
and so 

tr,+, -- ts - A P D i .  (4) 

Substituting eqn (4) into eqn (3), one has 

APD,+ , ~- g(ts - A P D ,  ). (5) 

We now make our second assumption: should one or more stimuli be blocked, 
producing only a spatially decrementing subthreshold response in the cable, the 
relationship between the A P D  of the subsequent action potential and its recovery 
time is not affected by the presence of  the subthreshold response(s). One then has 

APDi+I  = g(n ts  - A P D , )  = f ( A P D , ) ,  (6) 

if  ( n - 1 )  blocked stimuli occur in the recovery interval t .... (i.e. n is the smallest 
integer such that nt~ - APD~+ ~ >~ t,m~o). 

Equation (6) was first derived by Guevara et al. (1984), but with g extracted 
from the response during periodic stimulation runs carried out over a range of  
stimulation frequencies, and not from a premature stimulation protocol as described 
above. Nolasco & Dahlen (1968) used a graphical iteration technique, extracting 
g from the transient following a step change in rate. Thus, in both of  these studies, 
the response to periodic stimulation was used to retrospectively account for that 
very response. Mahler & Rogel (1970), who studied the contractile response of  the 
heart, derived eqn (6) for the special case n = 1, employing a premature stimulation 
protocol. 
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FIG. 4. (a) Schematic diagram used in deriving eqn (5), as described in text. Panels (b)-(e) show 
plots o f  the map  of  eqn (6) at four different values o f  t,. Iterations are also shown,  starting from an 
initial condit ion o f  A P D  i = 240 msec, which is close to the A P D  of  the first action potential in the 
s imulat ions o f  Fig. 1. The arrows give the direction o f  iteration. Transients  are suppressed in (c)-(e).  
(b), h =400  msec. Iterates asymptotically converge to the stable period-1 orbit, corresponding to a 1:1 
rhythm. (c), t, = 301 msec. Iterates converge to the stable period-2 orbit shown,  corresponding to a 2 :2  
rhythm. For some initial condit ions,  iterates converge to the stable period-I orbit on the r ight-hand 
branch of  the m a p  [n  = 2  in eqn (6)], corresponding to a 2:1 rhythm. Bistability is thus  present (see 
text). (d), L = 150msec.  A third branch has  now appeared  on the map  corresponding to n = 3  in eqn 
(6). The period-I orbit on the  r ight-hand branch (n = 2) in (c) above has  period-doubled,  leading to a 
period-2 orbit on the middle branch here, corresponding to 4 :2  rhythm. (e), G = 146 msec. Aperiodic 
orbit, visiting the leftmost (n = 1) and  middle (n = 2) branches  of  the map. The r ightmost  (n = 3) branch 
has  not yet intersected the line of  identity APDi+~ = APD~. 

Equation (6) is a one-dimensional finite-difference equation or map, in that given 
t., and the function g, APDi+~ is a function ( f )  of  APDi alone. From any starting 
value or initial condition APD~, one can calculate APD2; once APD2 is found, 
APD3 can then be calculated from APD2; and so on. In this fashion, one can iterate 
the map to determine the dynamics. 
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Figures 4(b) - (e)  show plots of  APD~+I vs. APD~ (i.e. the function f describing 
the map)  and iterations of  the function f for various t~. The intersection of  f and 
the diagonal  line of  identity (APDi+~ = APDI) gives the steady-state(s). The iterations 
shown in Fig. 4(b) (ts = 400 msec) demonstrate  that the stable-steady state or period-1 
orbit at APD~ = APDi+I = 231 msec is asymptotically approached in an alternating 
manner.  This steady-state corresponds to a 1 : 1 rhythm with an APD of  231 msec. 
As ts is decreased, the map  moves down and to the left, so that the steady-state 
value of  APD decreases and the alternating transient becomes more marked,  as 
found in the cable simulations. Also, the slope of  the map at the stable steady-state 
becomes more negative. Eventually, as this slope becomes more negative than - 1 ,  
the period-1 orbit becomes unstable and is replaced by a stable period-2 orbit, 
corresponding to a 2 :2  rhythm [Fig. 4(c)]. This period-2 orbit arises out of  a 
per iod-doubl ing bifurcation (May, 1976; Thompson  & Stewart, 1986) that occurs 
at t~ = 301.8 msec. 

The value of  t~ has by now become sufficiently small so that blocked stimuli can 
occur  should APD~ be sufficiently large, thus making tr,÷, < t .... . The map  thus has 
two branches: the left-hand branch obtained from eqn (6) with n = 1, and the 
right-hand branch with n = 2, corresponding to a single blocked stimulus preceding 
the ( i + l ) s t  action potential. In Fig. 4(c) (t, =301 msec), for an initial condition 
APD~ > 248 msec, the iterates converge to a period-1 orbit on the right-hand branch 
of  the map  at APD~+t = APD~ =254 msec, corresponding to a 2:1 rhythm. For 
APD~ < 248 msec, the period-2 orbit  illustrated, corresponding to a 2: 2 rhythm, is 
approached  asymptotically.  Bistability is thus present on the map:  iterates converge 
to one orbit  or the other depending upon the initial condition (i.e APDt) chosen. 
The set o f  initial conditions ("basin of  at tract ion")  leading to each of  the two orbits 
in Fig. 4(c) is a single interval [g(t,m,,)---APD~ < 248 msec for the period-2 orbit; 
270>APD~>248 msec for the period-1 orbit]. In contrast, as t, is reduced, the 
basin of  attraction of  the period-2 orbit is split into two intervals; if APDt is 
sufficiently large, the period-2 orbit is asymptotically approached.  As t, is decreased 
from the value used to produce the period-1 orbit on the n = 1 branch of  Fig. 4(b), 
the n = 2 branch intersects the APDi÷~ = APD~ line of  identity before the period-1 
orbit on the n = 1 branch period doubles. Thus, a {1 : 1 ,,-->2: 1} bistability is first seen 
which turns into the {2:2~-~2: 1} bistability as t~ is decreased further [Fig. 4(c)]. 

As t~ is decreased still further, the following changes occur: the period-2 orbit of  
Fig. 4(c) grows in ampli tude (corresponding to an increased degree of  alternation 
in APD), until at t~ = 297-94 msec, it collides with an unstable period-2 orbit and 
disappears  in an abrupt  fashion via a reverse saddle-node bifurcation (Thompson 
& Stewart, 1986). However,  the period-1 orbit on the n = 2 branch (corresponding 
to the 2:1 rhythm) remains, and all initial conditions lead to this stable orbit. As 
t~ is reduced further, the right-hand branch of  Fig. 4(c) steepens, and once again 
there is a per iod-doubling bifurcation at ts = 150.8 msec, in which the period-1 orbit 
on the n = 2 branch is replaced by a period-2 orbit on that same branch [Fig. 4(d)]: 
the 2:1 rhythm is thus replaced by a 4 :2  rhythm. By this point, the n = 3 branch 
has already appeared,  and can be seen at the extreme right-hand side of  Fig. 4(d). 
The period-2 orbit on the n = 2 branch in Fig. 4(d) disappears at t~ = 148.9 msec in 
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a d iscont inuous  way, unlike that  on  the n = 1 b ranch  [Fig. 4(c)],  which d isappeared  
via a sadd le -node  bifurcat ion.  That  is, as ts is decreased,  the period-2 orbit  on  the 
n = 2 b ranch  [Fig. 4(d)]  s imply grows until,  at ts = 148.9 msec,  it becomes  too large 
to be suppor t ed  by that  b ranch  and  "falls off" the top  lef t -hand edge o f  the branch.  
At this t,, the n = 3 b ranch  does not  yet intersect the line o f  identity, which would  
result in a 3 : 1 rhythm. There  is thus no bistability between the 4: 2 and  3 : 1 rhythms. 
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FIC. 5. (a), Bifurcation diagram (APO~ vs. t.,) for t.~= 10-400msec. At each t~, eqn (6) was iterated 
20000 t imes and the first 19 800 iterates discarded to suppress  transients due to initial conditions.  
Increment  in t, was 1 msec. To demonstra te  bistability, two initial condit ions were used at each t, 
( A P D  I = 240 and  270 reset) .  (b), Expanded  view of  bifurcation diagram of  (a) in range t, = 140-155 msec. 
The per iod-doubl ing o f  the period-I orbit on t h e ,  = 2 branch (corresponding to the 2 : 1 rhythm of  Fig. 
l (c)]  to a period-2 orbit [corresponding to the 4 :2  rhythm of  Fig. l (d)]  is clearly shown,  as is the 
transit ion from the 4: 2 rhythm to aperiodic dynamics  [ Figs 1 (e) and 4(e)]. Increment  in t~ was 0.05 msec. 
(c), Liapunov number  (;t) calculated over the same range o f  t~ as displayed in (b). A was calculated 
from eqn (7) with N = 20 500. The first 500 iterates were discarded to minimize the contribution to ;t o f  
chaotic transients seen close to the 3 : 1 boundary  (Grebogi et al., 1984). Computa t ions  shown in Figs 4 
and  5 were carded out  on an HPI000 minicomputer  in double precision (approximately 15 significant 
decimal digits). 
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In fact, at values of  t~ lying in the gap between values for which the 4 :2  and 3:1 
rhythms are seen, one obtains chaotic orbits: trajectories spiral outward on the n = 2 
branch in an alternating fashion and are injected onto the n = 1 branch, only to be 
reinjected onto the n = 2 branch after one or more iterations on the n = 1 branch 
[Fig. 4(e)]. This behaviour  is reminiscent of  type-I I I  intermittency as described by 
Pomeau & Manneville (1980). Finally, at ts = 144.9 msec, a stable period-1 orbit 
appears  on the rightmost (n =3 )  branch in Fig. 4(e) (i.e. 3:1 rhythm), with the 
concurrent  abrupt  disappearance of aperiodic dynamics.  However,  long chaotic 
transients resembling the nonperiodic orbit shown in Fig. 4(e) are present before 
the n = 3 branch is approached,  provided that the initial condition APDt is chosen 
appropriately.  The average lifetime of these "chaotic  transients" decreases as one 
moves deeper  into the 3 : 1 zone (Grebogi et al., 1984). 

Further decrease in ts leads to the successive appearance  of more branches from 
the right-hand edge of  the range of the map,  producing stable period-1 orbits (i.e. 
n : 1 rhythm, n -< 6). These orbits period-double,  producing 2n : 2 rhythms, and then 
go on to aperiodic orbits. For ts<50.33 msec, n: 1 or 2n :2 ( n - 7 )  orbits are not 
seen when t, is decreased in steps of  0.1 msec: only aperiodic orbits are evident. 
Unlike the case in Fig. 4(e), some of these aperiodic orbits visit more than two 
branches of  the map. 

Figure 5(a) shows a bifurcation diagram (APDi vs. ts) which summarizes the 
changes in steady-state dynamics of  the map.  Note the {1:1--~2: 1} bistability for 
307.3 m s e c -  > ts > 301-8 msec and the {2:2,~,2: 1} bistability for 301.8 m s e c -  > ts > 
297.9 msec. Figure 5(b) is an expanded view of the chaotic region between the 2 : 1 
and 3 : 1 zones. The structures seen in this chaotic zones of  the bifurcation diagram 
(the gradations in density) are a result of  the shape of  the map and the presence 
of  an inherent discontinuity. 

We have claimed above that the aperiodic behaviours shown in Figs 4(e) and 
5(a) and (b) are manifestat ions of  chaotic dynamics.  We do so based upon calculation 
of  the Lyapunov exponent  (A) 

N 

A = lim ~ In ]df/dAPD, lAeD, I, (7) 
N~co  i = I  

which measures the average exponential  divergence of  trajectories starting with very 
close initial conditions. A positive Lyapunov exponent  indicates the existence of  
sensitive dependence  on initial conditions, which is often taken as a definition of  
chaotic dynamics (Grebogi  et al., 1983). Figure 5(c) gives A over the same range of 
ts as in Fig. 5(b), demonstrat ing that A is negative in ranges over which periodic 
orbits exist, but is positive in the irregular zone. In the other irregular zones of  Fig. 
5(a), A is also positive (not shown). We have thus demonstrated that the irregular 
zones are manifestat ions of  chaotic dynamics in the map. 

4. Comparison Between Cable Simulations and Map Iterations 

The above results indicate that the one-dimensional  description derived from 
premature  st imulation captures the dynamics of  the partial differential equation 
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very well, providing not only qualitative agreement (i.e. predicting bistability, period- 
doubling bifurcations, chaos, etc), but good quanti tat ive agreement with the simula- 
tions over a large range of  ts. Figure 6 provides a quantitative comparison, giving 
the range of  ts over which a particular rhythm is seen in both the simulations and 
the iterations, demonstrating that the iterative technique predicts the existence of  
various rhythms to within a few msec of  where they are actually found in the 
simulations. The only major discrepancy occurs at very small ts, where a 1 : 0 rhythm 
is seen in the simulations, but not in the iterations. By continuity, a 1:0 rhythm 
must  be seen for ts just larger than 10 msec (at the current pulse amplitude used 
here), since injection of  a constant bias current (i.e. ts = 10 msec) of  the same 
amplitude simply causes a depolarization of  the membrane. The range of  t.~ over 
which the 1 : 0 rhythm is seen decreases as the pulse amplitude used in the simulations 
is increased. 

It is quite clear that eqn (6), being one-dimensional, can give only an approxima- 
tion to the dynamics of  the full-fledged partial differential equation describing the 
cable [eqn (1)], which is an 800-dimensional finite-difference equation in the discret- 
ized approximation used in the numerical integration routine. One can determine 
how well the system can be represented by a one-dimensional description by plotting 
a first-return map during irregular dynamics (Glass et al., I984). Figure 7 shows an 
example, in which the square symbols are n e x t - A P D  data points extracted from a 
numerical simulation corresponding to a 60-sec long periodic stimulation run at 
t~ = 143 msec [Fig. l(e)]: APDi+,  (1 -< i<-230) in segment 90 is plotted as a function 
of  the immediately preceding A P D  (APDi ) .  T h e  data points lie within two relatively 
thin bands, thus suggesting that the dynamics can indeed be approximated by a 
one-dimensional description. However, there is a slight degree of  overlap between 
the bands, again indicating the higher-dimensional nature of  the dynamics. 

3 2 0  3 0 0  2 8 0  160 140 120 100 
t ,  (msec )  I , t , I _ _ _  I , I , I , t 

I:1 2 : 2  2:1 2:1 4 : 2  3:1 6 : 2  
I t e r a t i o n s  ........ , - - - - - - - ~ - , ~ , - , ,  ~ m 
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FIG. 6. Comparison between results of cable simulations and map iterations. Since 10 sac of activity 
in the cable was simulated, the number of iterations carried out at a given t~ was the smallest integer 
just larger than lO000/Nt,, where N is the average ratio of conducted beats to stimuli in a given 
simulation run. For t~ < 38 msec, N = 8. APD~ = 240 msec, which is close to the APE) of the first action 
potential  in the s imulat ions ,  t~ changed  in 1 msec  steps.  (~7), 1:0;  ( • ), irregular; (O), 2n :2; (O) ,  n:  1. 
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FIG. 7. The return map. Symbols give return map (APDI+ ~ vs. APD~) obtained from numeri- 
cal simulation of the cable equation at t ,=  ]43 msec [see Fig. l(e)] for 60sec. Superimposed is the 
three-branched map [see Fig. 4(e)], eqn (6), derived from the response to premature stimulation, at the 
same t~. 

Also shown in Fig. 7 is the three-branched map derived from eqn (6) for ts = 
143 msec, which predicts the existence o f a  3 : 1 rhythm. Note that the points obtained 
from the cable simulations lie quite close to the map  of  eqn (6), especially along 
the middle (n = 2) branch• There are four main areas where the data points deviate 
from the map  in Fig. 7. 

(i) The data points falling along the n = 1 branch of  the map lie substantially 
above that branch. Since the points lie above the branch, this means that APDi+I, 
for a given APDi, is considerably larger than one would predict f rom the map. The 
reason for this deviation, as we shall now explain, is essentially that APDi is very 
small (<100 msec). The restitution curve from which the map shown in Fig. 7 was 
derived was established at a basic cycle length of  500 msec (Fig. 3), when the APD 
of  the action potential associated with the basic drive train was quite long. When 
the restitution curve is determined at a shorter basic cycle length, so that the APD 
of  the action potential associated with the basic drive train is smaller, one finds that 
the APD of  a premature  beat  elicited at a given tr is longer (see also Boyett & 
Jewell, 1978; Elharrar & Surawicz, 1983). When the basic cycle length is in the 1 : 1 
zone (above 306 msec), this effect is small, since the APDs associated with the basic 
drive train in the 1 : 1 zone are all quite large. However,  when the restitution curve 
is derived at a basic cycle length in the 2 : 2 zone and the premature  stimulus follows 
the action potential with short duration, substantial effects may be seen. This is the 
reason why the data points lie above the n = 1 branch in Fig. 7: APDi+I is underesti- 
mated by the map,  because APDi is short. Thus, APD~+I not only depends on tr, 
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(and therefore, during periodic stimulation, on APDI implicitly), but on APDi 
explicitly (see also Kaplan,  1989). 

(ii) Data  points also lie systematically above the left-hand end of  the n = 2 branch. 
The deviation away from the map  is less than that for the n = 1 branch, and decreases 
as APD~ increases, being close to zero at APD~ ~--210-230 msec, which is very close 
to the APD of  the action potential at the basic cycle length at which the restitution 
curve was determined. Thus, the reason for this deviation is exactly that detailed 
above for the n = 1 branch: APD~ is shorter than the APD of  action potentials in 
the basic drive train used for determining the restitution curve (and hence the map).  

(iii) While most data points lie within two thin bands, there are a few exceptions. 
For example,  two pairs o f  points lie at a considerable distance above the n = 1 and 
n = 2 bands.  Upon  inspection of  the precursors of  these points, one finds that both 
APD~ and APD~_~ were quite short. These points lie above the thin bands for a 
reason similar to that explained above for the thin bands lying above the map. The 
dependence on prior history extends past the immediately preceding action potential: 
APD~+~ seems not only to depend strongly on APDi, but on APDH as well. This 
dependence is especially evident when APDi and APD~_~ are both short. 

(iv) The data points associated with the extreme right-hand-end of  the n = 2  
branch lie increasingly above and to the right of  that branch as APDi increases. 
(There is a hint of  similar behaviour  on the n = 1 branch). This is due to the fact 
that APD~+~ is very short for these points, indicating that t .... is also extremely small. 
When tr,÷, is very close to the minimum recovery time, trm,,, one begins to see a 
slowing of  conduction velocity of  the ( i +  1)st action potential. The recovery time 
in the 90th segment, approximated  by tr,÷,-~ ts-APD~ [eqn (4) and Fig. 4(a)] ,  is 
then underestimated,  since additional recovery time is provided by the extra conduc- 
tion time. APD~+~ is thus longer than would be predicted from the map:  data points 
therefore lie above the map.  The additional recovery time provided by the slowitag 
of  conduction when recovery time is extremely short also should allow action 
potentials to conduct that would otherwise block. Note that the thin band of  data 
points lying near the bot tom end of the n = 2 branch also extends more to the right 
in Fig. 7 than does the n = 2 branch itself. Since conduction velocity slows appreciably 
only over a very short range of  recovery times close to t~m~,, the deviation from the 
map is seen only over a relatively short range of  APD~. 

5. Discussion 

5.1. C O M P A R I S O N  W I T H  E X P E R I M E N T A L  R E S U L T S  

As far as we are aware, no systematic laboratory experiments corresponding to 
the numerical cable simulations presented above have been carried out on ventricular 
muscle. However,  there is experimental  evidence for many  of  the phenomena  seen. 

(i) The transition {1 : 1 ~ 2: 2}, which is the result o f  a period-doubling bifurcation, 
has been observed in many  studies on ventricular muscle preparat ions of  various 
sorts, including papil lary muscle (Hoffman & Suckling, 1954; Boyett & Jewell, 1978), 
quiescent and spontaneously beating aggregates of  embryonic  chick ventricular cells 
(Guevara,  1984; Guevara  et al., 1984, 1990), and isolated rabbit ventricular cells 
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(Guevara et  al., 1989). In the latter two sets of  studies, the transition { 2 : 2 ~ 2 :  1} 
was also seen. Transisent alternation is often seen in studies on ventricular muscle 
paced at high rates (see Guevara, 1984 for references), and has been described in 
modelling work on Purkinje fibre (de Beer, 1977). Transient alternation is essentially 
due to the fact that the period-1 orbit in Fig. 4(b) lies on a branch with negative 
slope: thus, the approach to the fixed point has to be alternating. A similar situation 
is found in spontaneoulsy beating aggregates, where one obtains a non-invertible 
circle map having a region of negative slope (Guevara & Shrier, 1990). 

In the majority of  the experimental studies mentioned above, the focus was on 
the alternation of action potential duration during the 2:2 rhythm. However, there 
is also a simultaneous beat-to-beat alternation in conduction velocity, for which 
there is experimental evidence in ventricular muscle (see Guevara, 1984 for referen- 
ces). Since one can obtain a beat-to-beat alternation in conduction time in a 
one-dimensional cable [Fig. l(b)],  it is perhaps not necessary to postulate the 
existence of  longitudinal dissociation of  the conduction system ("dual pathways") 
to obtain this effect in all cases where it is observed in experimental work. 

(ii) The transition {2:1 ~ 4:2}, which is the result of  yet another period-doubling 
bifurcation, has been seen in spontaneously beating aggregates (Guevara, 1984; 
Guevara et  al., 1990), in single guinea-pig ventricular cells at a raised external 
potassium concentration (Hescheler & Speicher, 1989), and in rabbit ventricular 
cells at low temperature (Guevara et al., 1989). In the last mentioned case, the 
transition {3 : 1 ~ 6: 2} was also described. 

(iii) The presence of  chaos following 1 : 1, 2 : 2, 2 : 1, and 4 :2  rhythms has been 
documented in isolated guinea-pig ventricular cells at an elevated external potassium 
concentration (Hescheler & Speicher, 1989), and in isolated rabbit ventricular cells 
at low temperature (Guevara & Jeandupeux, unpublished). In addition, a very recent 
report on strands of Purkinje fibre reports the transition {4:2 ~ chaos} [Chialvo et  
al., 1990: Fig. l(b)]. This chaotic rhythm however consists of  mixtures of 4:2 and 
3:1 cycles, and does not contain any 1:1 cycles. We have not seen such traces in 
our simulations, changing t~ in 1 msec steps. The transition {3 : 1 ~ 6 : 2-~ chaos} has 
been reported in the propagated action potential of the squid giant axon (Matsumoto 
et  al., 1987a, b). 

(iv) The 1:0 rhythm seen at very high stimulation rates is a consequence of 
post-repolarization refractoriness and has also been seen in shortened strands of  
Purkinje fibre (Chialvo & Jalife, 1987). 

(v) The {2:2~--~2 : 1} bistability (and consequent hysteresis) present in the simula- 
tions (Fig. 2) and the map [Fig. 4(c)] can be seen in isolated ventricular cells 
(Guevara et  al., 1989). A different kind of  {2:2,~-~2: 1} bistability was described a 
long time ago by Mines (1913), who studied a ring cut from the auricles of  a tortoise. 
However, the phenomenon in that instance depends on the distributed, 
inhomogeneous nature of  the preparation. The {1:1 *-~2: 1} bistability predicted by 
the map, but not seen in the simulations, was also observed in the pioneering report 
of  Mines (1913), who studied the atropinized ventricle of the frog; many years later 
it was redescribed in spontaneously beating aggregates ofventr icular  cells (Guevara, 
1984; Guevara et  al., 1990) and quiescent isolated ventricular cells (Guevara et  al., 
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1989). Mines, who used extracellular recording techniques, did not describe a 2:2  
rhythm in his experiments. In this regard, one should note that it is possible to 
obtain a direct transition from a 1 : 1 to a 2: 1 rhythm should the slope of  the left-hand 
branch of  the map  in Fig. 4(c) not become steep enough to generate a per iod-doubled 
orbit (Guevara  et al., 1989; Kaplan,  1989). Iterations using eqn (6), but with the 
function g of  eqn (3) extracted from periodic stimulation runs, and not from a 
premature  stimulation protocol,  retrospectively predicted the existence of  both the 
{1:1<->2: 1} and {2:2<-->2: 1} bistabilities in quiescent aggregates (Guevara  et ai., 
1984); however,  no experimental  search was carried out for these phenomena  in 
that preparat ion.  

The bistability between two different 2 : 2 rhythms described by Nolasco & Dahlen 
(1968)--see also Mahler  & Rogel (1970)--is not seen on the map considered here. 
However,  as described above, the stable period-2 orbit of  Fig. 4(c) generating the 
2: 2 rhythm is destroyed by collision with an unstable period-2 orbit as t, is decreased 
[Fig. 8(a)]. This unstable period-2 orbit arises in a discontinuous fashion upon 
decrease in ts. However,  should the minimum possible A P D  in Fig. 4(c) be decreased, 
so that left-hand branch of  the map in Fig. 4(c) will be extended downwards,  this 
unstable period-2 orbit arises via a saddle-node bifurcation in which a stable period-2 
twin orbit is also born [Fig. 8(b)]. Thus, a change in the parameters  describing the 
restitution curve would be all that would be needed to obtain the coexistence of 
two 2 : 2 rhythms. While a premature  beat or a pause in stimulation can convert one 
2:2  rhythm into another  2:2  rhythm in the ischaemic ventricle (Hashimoto et al., 
1984 and references therein), the degree to which this particular bistability might 
be due to spatial interactions is not clear at the present time. This existence of  two 
stable periodic orbits on the same branch of  the map  is possible since its Schwarzian 
derivative can be positive. In such maps,  it is also possible to have the coexistence 
of  a 1 : 1 and a 2:2  rhythm or of  a 1 : 1 rhythm and chaos (Mayer-Kress & Haken, 
1982). While we know of  no experimental  evidence for these two bistabilities in 
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FIG. 8. Schematic bifurcation diagrams. (a), Bifurcation diagram illustrating how period-2 orbit of 
Fig. 4(c) (corresponding to a 2:2 rhythm) is destroyed. (b), Alternative bifurcation diagram showing 
how it is possible to obtain coexistence of two stable period-2 orbits (corresponding to two different 2 : 2 
rhythms). Solid lines indicate stable orbits, dashed lines unstable orbits. Saddle-node bifurcations occur 
at turning points in (a) and (b). See text for further description. 
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space-clamped systems, there is evidence for the coexistence of 1 : 1 and 2: 2 rhythms 
in distributed systems (Mahler  & Rogel, 1979) and it is well known that normal 
sinus rhythm and ventricular fibrillation can coexist, with one being converted into 
the other with a fibrillating or defibrillating shock. 

In the cable simulations, we did not find the {2 :1~ ,  1:1} bistability predicted to 
exist from the iterations of  the map. This could be because the bistability does not 
exist in the cable equation, or because we only investigated two sets of  initial 
conditions, and the bistability is predicted to exist over a range of L that is only a 
few msec wide. One practical point in simulation work is that it is very difficult, 
and expensive, to carry out a systematic search for bistability, since this involves, 
at each ts, making many  simulation runs from a large number  of  initial conditions. 
Thus we cannot rule out the possibility that there exist bistabilities in the cable 
equations other than those we have described above. In this respect, consideration 
of  the map  can be most useful in predicting the existence of  the bistability and in 
narrowing down the range of  initial conditions to be searched. In fact, it was the 
finding of  the {2:2*--*2: 1} and {2:2+-,1:1} bistabilities on the map that prompted 
our search for them in the simulations. However,  as in the case of  the simulations, 
the search for bistability on the maps is also t ime-consuming, and we cannot 
guarantee that bistabilities other than those we have described are not supported 
by the map,  e.g. in Fig. 7, there is bistability between the period-1 orbit corresponding 
to a 3 : 1 rhythm and a chaotic rhythm. The existence of  transient chaos also creates 
computat ional  limitations: an orbit that appears  chaotic in a finite-time computat ion 
might actually be transient chaos (Grebogi et  al., 1984). 

In many of  the experimental  findings listed above, an effectively isopotential 
preparat ion is used-- i so la ted  single ventricular cells or aggregates of  small embry- 
onic cells. Thus, a systematic experimental  study on the propagated ventricular 
action potential is needed to determine the extent to which the rhythms predicted 
to exist in the cable simulations do in fact occur. 

5.2. R E D U C T I O N  TO A O N E - D I M E N S I O N A L  D E S C R I P T I O N  

While period-doubling and chaotic behaviour  have previously been demonstrated 
in numerical simulations of  partial differential equations (e.g. Moore et al., 1983), 
this is the first example that we know of  in which a direc t  reduction to a one- 
dimensional description has been successful in capturing the dynamics,  since pre- 
vious reductions have involved the intermediate step of  reduction to a system of 
ordinary differential equations (e.g. Moore et  al., 1983; Kahlert & R6ssler, 1984). 
However,  since in certain instances the asymptot ic  behaviour  of  partial differential 
equations can be reduced to consideration of  a set of  ordinary differential equations, 
their "inertial fo rm"  (Foias et  al., 1988; Temam,  1988), and since it is well-known 
that ordinary differential equations often have dynamics that is well approximated  
by a one-dimensional  description, it is perhaps not surprising that a one-dimensional 
description works so well in this instance. However,  in one study on a delay- 
differential equation, which like the cable equation is of  infinite dimension, it was 
found that a one-dimensional  map  derived in the singular perturbation limit did 
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not have the same bifurcation structure as the delay-differential equation itself 
(Mallet-Paret & Nussbaum, 1986). 

The one-dimensional description works here mainly because the existence of  a 
blocked stimulus does not significantly affect the activity in the distal part of  the 
cable, since the subthreshold response decays electronically rapidly with distance 
[Fig. l(c),  (d) and (e)]. This is not the case if one considers the non-propagated 
Beeler-Reuter  action potential. 

Although the one-dimensional description works very well in accounting for the 
various rhythms observed (Fig. 6), Fig. 7 shows that there is still room for improve- 
ment, since there are systematic deviations of  the data points (obtained during 
periodic stimulation) from the map (obtained from premature stimulation). Our 
analysis of  the discrepancies suggests two main ways in which the one-dimensional 
description applied above can be improved and extended in future work. First, 
Fig. 7 demonstrates that APDi+~ depends not only on tr,÷. (and thus indirectly on 
APDi--Fig.  4), but also directly on APDi. Thus APD~+t will have to be made a 
function of  both tr,÷. and APDi. This extension of  the theory could be carried out 
by determining the restitution curve at several different basic cycle lengths as has 
been done in experimental work (Boyett & Jewell, 1978; Elharrar & Surawicz, 1983), 
and interpolating. Second, one will have to include the effect of  conduction time 
on recovery time in the distal segments of  the cable, since Fig. 7 shows that this is 
an appreciable effect at very short recovery times. This could be accomplished by 
determining a restitution curve for conduction velocity, and incorporating this into 
the finite-difference equation in a manner  similar to that recently utilized in the 
analysis of  experiments on Purkinje fibre (Chialvo et al., 1990). Incorporation of  
both of the above effects should produce much better agreement between simulations 
and iterations, but at the cost of  losing the one-dimensional nature of  the theory. 

5.3. R O U T E  T O  C H A O S  

The route to chaotic dynamics in the map as t~ is decreased is not the commonly 
described one involving an infinite cascade of  period-doubling bifurcations (May, 
1976): only two such bifurcations occur (Figs 4 and 5). This previously undescribed 
route occurs because of  the presence of a discontinuity in the map, which is in turn 
a direct consequence of  the fact that there is a true discontinuity in the response 
to premature stimulation [Fig. 2(b)] arising from the all-or-none nature of  propaga- 
tion in a cable (Miller & Rinzel, 1981). The only equilibrium point present in the 
phase space of  the Beeler-Reuter  system of  ordinary differential equations is not a 
saddle point. Thus, in the space-clamped or non-propagated action potential model, 
one would not obtain such a discontinuous map, since the response of  the membrane 
is then not all-or-none, due to the absence of  any saddle points (Clay et al., 1984). 
In that instance, one would not expect a direct transition from a 4 :2  rhythm to 
chaos; rather, a period-4 orbit corresponding to an 8 :4  rhythm might then be 
expected to arise out of  a period-doubling of  the period-2 orbit corresponding to 
a 4 :2  rhythm. Indeed, there is some recent experimental evidence for the transition 
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{4: 2 ~ 8 : 4} in periodically stimulated ventricular cells (Hescheler & Speicher, 1989), 
and period-8 rhythms are seen in a simple two-variable excitation-refractoriness 
model of  periodically forced space-clamped excitable tissue (Feingold et al., 1988). 
We have not been able to find evidence of  any such higher-order period-doubled 
orbits in the simulations of  Fig. 1. To check for the existence of these orbits would 
involve changing ts in very small fractions of  a millisecond, since the period-4 orbit 
is found at ts = 151 msec, and not at ts = 150 or 152 msec. In that case, one would 
also probably have to improve the accuracy of  the numerical integration scheme. 
In an earlier study involving sinusoidal current stimulation of the space-clamped 
Beeler-Reuter  membrane, only period-l ,  2 and 4 rhythms were described; a period-8 
rhythm was not seen before the onset of  chaotic dynamics (Jensen et al., 1984). A 
similar finding occurs in the response to a pulsatile input (Vinet et al., 1990). One 
would not expect such higher-order period-doubled rhythms to exist in the cable 
simulations provided that propagation in a cable of  finite length is indeed all-or-none 
during periodic stimulation, since in that case there would still be a true discontinuity 
present in the response (as the return map of  Fig. 7 might suggest). However, we 
are not aware of  any such theoretical result. Finally, one should also keep in mind 
that the full nature of  the bifurcation sequence is often not revealed in a one- 
parameter  bifurcation analysis, and that an incomplete period-doubling cascade 
can occur in one-dimensional maps with non-neative Schwarzian derivative (Mayer- 
Kress & Haken, 1982) and in maps of dimension higher than one (Arneodo et al., 
1983). 

All of  the above assumes that ventricular tissue is accurately represented by 
models of  the Hodgkin-Huxley type, which are deterministic and continuous. 
However, there are stochastic effects present in cardiac tissue, since the electrical 
activity is generated by a population of  channels in the membrane, which are 
presently thought to open and close in a random fashion. In addition, there is recent 
experimental evidence for a true all-or-none threshold for excitation of a prematurely 
elicited action potential in well-polarized, effectively space-clamped ventricular 
aggregates (Guevara et al., 1986: fig. 4), in the absence of  any saddle points in a 
Hodkin-Huxley- type model of  the aggregate (Clay et al., 1984). Thus, a study on 
propagation in an inherently stochastic model is indicated. 

The sequence of transitions { l : l ~ 2 : 2 ~ 2 : l ~ 4 : 2 - - ) c h a o s ~ 3 : l - ~ 6 : 2  
c h a o s ~ . . . }  described above in the propagated ventricular action potential might 
not be universal, since it appears that, in a piecewise linear approximation to the 
class of  maps studied here, the first transition to chaos can occur after the 3:1 
rhythm is seen (Kaplan, 1989). In addition, it is also possible to obtain the transitions 
{ 1 : 1 ~ Wenckebach ~ 3 : 2 ~ revel:se Wenckebach ~ 2 : 1 ~ . . . )  and { 1 : 1 ~ 2 : 1 } in a 
model of  the propagated action potential in Purkinje fibre (Guevara, 1988). While, 
as mentioned above,  the two-branched maps studied here have negative slope 
everywhere and can produce the {1 : 1 ~ 2 : 1} transition (with bistability), the transi- 
tion involving Wenckebach rhythms involves a 2-branched map in which both 
branches have positive slope everywhere (Shrier et al., 1987; Guevara, 1990). 

Finally, for a homogeneous cable of semi-infinite length, only 1 : M rhythms are 
possible in the absence of  supernormal conduction (Miller & Rinzel, 1981). Many 
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o f  the  n o n - I  : M rhy thms  seen in the  hea r t  thus  h inge  u p o n  the fact  tha t  the  ven t r i cu la r  
wal l  is on ly  a few space  cons tan t s  thick.  

5.4. C O N N E C T I O N S  W I T H  T Y P E  I11 I N T E R M I T T E N C Y  

The irregular behaviour in the simulations [Fig. l(e)] and maps [Fig. 4(e)] strongly 
resembles type III intermittency (Pommeau & Manneville, 1980; Mayer-Kress & 
Haken, 1982; Dubois et  al., 1983), in that there is a long laminar phase with a 
progressively increasing level of  alternation followed by a relatively short irregular 
"burst" and then re-injection into a new laminar phase. The only biological example 
that we know of  in which type III intermittency has been described is in the case 
of  the propagated action potential in the squid giant axon, where one can see the 
transition {3:1-> type IlI  intermittent chaos} as stimulus amplitude is increased at 
fixed ts (Matsumoto et  al., 1987b: fig. 6). In other experiments on squid axon, the 
route to chaos is similar to that we have described above, in that one sees {3 : 1 -> 6 : 2 - >  

chaos} (Matsumoto et  al., 1987b: fig. 3). In the bifurcation diagram of  Fig. 9(a), 
which represents the type lII  intermittency results of Matsumoto et  al. (1987b), an 
unstable 6:2 rhythm coexists with the stable 3:1 rhythm (there is experimental 
evidence for this coexistence, Matsumoto et  al., 1987b: fig. 6(c)]. As the stimulus 
pulse amplitude is increased beyond the bifurcation point, one obtains a direct 
transition from a 3 : 1 rhythm to type III intermittent chaos. The definition of type 
III intermittency hinges upon there being a subcritical period-doubling bifurcation, 
such as that shown in Fig. 9(a), in which the onset of chaos occurs simultaneously 
with the period-doubling bifurcation (Pomeau & Manneville, 1980). Since such a 
subcritical bifurcation does not occur in our simulations or maps, but rather a 
supercritical bifurcation [Fig. 9(b)], type III intermittency is not the mechanism for 
producing chaos above. However, our results [Fig. 9(b)] are in some sense close to 
type III intermittency [Fig. 9(a)], in that a change in the parameters describing the 
restitution curve would change our bifurcation diagram from that shown in Fig. 
9(b) to that shown in Fig. 9(c), where there is a discontinuous appearance of an 
unstable period-2 orbit as h is reduced, as in Fig. 8(a). In fact, Fig. 5(b) shows that 
the {2 : 1 -> 4: 2-> chaos} bifurcation diagram is close to this form, i.e. the turning-point 
associated with the saddle-node bifurcation in Fig. 9(c) is almost attained prior to 
the appearance of chaos. Should the range of ts over which the stable 6: 2 rhythm 
seen in Fig. 9(c) be progressively reduced, the limiting case of Fig. 9(a), i.e. type 
III intermittency, would be approached. 

5.5. C O N N E C T I O N S  W I T H  C I R C L E  M A P S  

Earlier, when we compared the results of  our simulations with the results from 
experimental work, we made reference to experiments in which a spontaneously 
active preparation was studied. For example, the transitions {1 : 1 -> 2: 2-> 2 : 1} and 
{2: 1->4:2} are seen in periodically driven spontaneously beating aggregates of  
ventricular cells (Guevara, 1984; Guevara & Shrier, 1990; Guevara et  al., 1990). In 
a fashion similar to that described above, the response to premature stimulation 
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FIG. 9. Schematic bifurcation diagrams. (a), Bifurcation diagram illustrating type 111 intermittency 
of  Matsumoto  et  al. (1987b) in squid giant axon. C T  i is the conduct ion time of  the ith action potential 
to propagate down the axon. (b), Bifurcation diagram illustrating transition from 3 : 1 rhythm to chaos 
in Figs 5(a) and (6), Bifurcation diagram obtained from that in (b) by modifying A P D  restitution curve. 
Solid lines indicate stable orbits, dashed lines unstable orbits. Saddle-node bifurcation occurs at turning 
point in (c). See text for further description. 

("phase-resetting") can be investigated, and a map derived and iterated. Since the 
preparation is spontaneously oscillating, that map is a continuous circle map, rather 
than a multi-branched interval map as in this study. In such a circle map, which is 
of  topological degree zero at a current pulse amplitude high enough to obtain the 
sequence of  transitions {1:1-->2:2-->2:1-->4:2}, the {1:1-->2:2} and {2:1--,4:2} 
transitions are again the result of two consecutive period-doubling bifurcations 
(Guevara, 1984; Guevara & Shrier, 1990). The transition {2:2--*2: 1} is due to a 
smooth shift in the position of  a period-2 orbit (Guevara & Shrier, 1990: fig. 6), 
whereas the transition in Fig. 4(c) is due to moving from a period-2 orbit on the 
n = 1 branch to a period-1 orbit on the n = 2 branch. Similar behaviours occur in a 
very simple limit-cycle model when type zero phase-resetting occurs (Guevara & 
Glass, 1982). It is not surprising that results like those we have described above are 
found in a spontaneously active preparation, since, at the high stimulation rates 
needed to obtain the phenomena,  the membrane potential spends little or no time 
in the phase of  spontaneous diastolic depolarization. The saddle-node bifurcation 
producing two period-2 orbits [Fig. 8(b)] has also been described in two-extrema 
degree-0 maps (Caste & Peyraud, 1982; B61air'& Glass, 1985). Thus, while there 
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are similarities in the bifurcation structure of  degree-0 circle maps and two-branched 
interval maps, a comprehensive comparative study is yet to be made. 

5.6. T H E  A P D  R E S T I T U T I O N  C U R V E  

The A P D  restitution curve of  Fig. 3(b) is fit very well by a sum of  two exponentials. 
While an early modelling study on Purkinje fibre (de Beer, 1977) and an early 
experimental study on ventricular muscle (Boyett & Jewell, 1978) found that the 
A P D  restitution curve could be fit by a single exponential function, later experimental 
studies on ventricular muscle (Elharrar & Surawicz, 1983; Guevara et aL, 1984; 
Robinson et al., 1987), and Purkinje fibre (Elharrar & Surawicz, 1983) used a 
double-exponential  fit, finding two time constants in the ranges 43-66 msec and 
653-3000 msec for ventricular muscle at short basic cycle lengths (-<500 msec). In 
contrast, in our modelling study, we find time constants of  20 and 201 msec. The 
absence in our work of  the longer time constant found in the experimental work 
(653-3000 msec) indicates that it is probably due to some factor(s) not present in 
the Beeler-Reuter model. Indeed, it has been attributed to the Na÷-K ÷ pump and 
to ion accumulation, neither of  which comes into play in the Beeler-Reuter  model. 
It is thus not surprising that we do not find the longer time constant. Our results 
suggest that the single-exponential process described by the shorter time constant 
(43-66 msec) in the experimental work might actually be better represented by a 
sum of  two exponentials. 

The ionic mechanisms underlying restitution of  action potential duration remain 
undetermined. Various authors have suggested roles for INa, Ix1, Is, the transient 
outward current, the Na+-K + pump, and intracellular and extracellular ion accumu- 
lation and depletion. It is already clear that both Is and Ix~ are involved in controlling 
the recovery process in the Beeler-Reuter model (Beeler & Reuter, 1977; Drouhard 
& Roberge, 1982). In particular, the long time constant for deactivation of  Ix1 causes 
significant amounts of  Ixt to flow during an action potential elicited at a very short 
tr, thus producing a dramatic shortening of  A P D  (Drouhard & Roberge, 1982: fig. 
8). However, the time constant for the restitution of  the duration of  the action 
potential plateau at short tr agrees very well with that for reactivation of  Is (Gettes 
& Reuter, 1974). The experimental value of  30 msec is of  the same order of  magnitude 
as our faster time constant. Thus further work, both experimental and modelling, 
needs to be carried out to elucidate the genesis of  the A P D  restitution curve. 

It is important to determine the factors governing the form of  the A P D  restitution 
curve, since its exact shape is important in controlling the bifurcation structure of  
Fig. 5(a). Three examples were mentioned above in which a change in this shape 
changes the bifurcation structure, producing: (i) a direct {1 : 1 ~ 2: 1} transition rather 
than the {1 : 1 -~ 2: 2-~ 2: 1} transition; (ii) bistability between two 2 : 2 rhythms; and 
(iii) a direct { 4 : 2 ~ 3 : 1 }  transition rather than the { 4 : 2 - ~ c h a o s ~ 3 :  1} transition. 
Finally, if the connection between alternans (and higher-order period-doubled 
rhythms?) and arrhythmias is a causal one, it might be possible in the furture to 
reduce the incidence of  arrhythmias by pharmacologically modifying the steep 
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left-hand port ion of the restitution curve of  Fig. 3(b), which controls the bifurcation 
sequence. 

5.7. I M P L I C A T I O N S  F O R  V E N T R 1 C U L A R  A R R H Y T H M I A S  

It has been known for many  years that the 2:2  rhythm of alternans can be seen 
during myocardial  ischaemia, hypothermia,  and fast pacing of  the ventricle, often 
immediately preceding the phase of  induction of malignant ventricular arrhythmias 
such as tachycardia and fibrillation (Adam et al., 1982, 1984; Smith et  ai., 1988). 
There are also very recent reports of  4 :4  rhythms in ventricular tissue during 
ischaemia (Dilly & Lab, 1988), hypothermia  (Kaplan,  1989), and fast pacing (Savino 
et  al., 1989). These three reports o f  4 : 4  rhythms are the only ones of  which we are 
aware in situations predisposing to ventricular arrhythmias.  The relative rarity of  
4 : 4  with respect to 2 :2  rhythms is probably  connected with the fact that period-4 
rhythms are seen over a much smaller range of  the bifurcation parameter  [Fig. 5(a)]. 
The simulations presented above show that the sequence { 1 : 1 -* 2 : 2-~ 2 : 1 ~ 4: 2 
chaos} occurs in a model of  the propagated ventricular action potential. We therefore 
suggest that there might be a causal link between a finite number  of  period-doubling 
bifurcations and the arrhythmias seen following ischaemia and other interventions. 
The number  of  such bifurcations might be as small as one or two; indeed, if the 
right-hand branch in Fig. 4(c) could come in more steeply, there would be a direct 
transition from a 2 : 2 rhythm to chaos. A direct transition from 2 : 2 rhythm to chaos 
as ts is decreased has been described recently in experimental  work on Purkinje 
fibre (Chialvo et  al., 1990: fig. 2), where it has been ascribed to a non-monotonici ty 
of  the n = 1 branch of  the map.  In fact, should supernormal  conduction be present, 
one can obtain a single-branched non-monotonic  map  in which there can be one 
or more period-doubling bifurcations, leading to 2:2, 4:4,  8 : 8 , . . .  rhythms 
(Guevara ,  1990: fig. 12(c)]. In the class of  such maps,  it is possible to obtain chaotic 
dynamics following a single period-doubling bifurcation (Tresser et  al., 1980). 

To model  ventricular arrhythmias caused by ischaemia, hypothermia,  etc, some 
parameter(s)  other than ts should be changed in the simulations, which should also 
be extended to three spatial dimensions. Nevertheless, we have shown above that 
one can only appreciate  the rhythms, periodic and aperiodic, seen in numerical 
simulations of  the one-dimensional  cable equation by applying concepts drawn 
from non-linear mathematics.  Remarkably,  much of  that dynamics can be accounted 
for by the bifurcation structure of  a simple non- l inear  one-dimensional  map. It 
remains to be seen how these concepts can be extended to the case of  propagat ion 
of  the action potential in the three-dimensional  structure of  the heart, where reentrant 
circuits can form. 
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