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INTRODUCTION 

There have been many experiments carried out in which a variety of spontaneously 
beating cardiac preparations have been subjected to periodic stimulation with a train of 
current pulses. There have also been many numerical studies on the response of 
limit-cycle oscillators to periodic forcing. Theoretically, there are basically three 
classes of rhythms that can be observed when a limit-cycle oscillator is driven with a 
periodic input: (1 )  periodic rhythms, in which there is a phase locking of the oscillator 
to its input, with the input stimuli falling at  well-defined phases of the oscillation; (2) 
quasi-periodic rhythms, which are nonperiodic rhythms in which there is a gradual 
progressive shift in the phase of the oscillation a t  which the stimulus falls; and (3) 
aperiodic rhythms, which are associated with chaotic dynamics. 

In several instances, the response of a cardiac preparation to premature stimulation 
has been used to predict its response to periodic stimulation.'-* The effect of injecting a 
premature stimulus into a spontaneously beating preparation is to phase-reset the 
rhythm of oscillation. Winfree has stated that there are essentially two qualitatively 
different kinds of phase resetting in biological oscillators: type 1, which is seen at  low 
amplitudes of stimulation, and type 0, which is seen at  high amplitudes of stimulation.' 
We have previously shown in experiments on embryonic chick ventricular cellslO~" and 
in numerical work on ionic models of Purkinje fiber12 and the sinoatrial nodei3 that, 
when type 1 resetting occurs, the new phase is a monotonically increasing function of 
the old phase, provided that the stimulus amplitude is sufficiently low. For higher 
stimulus amplitudes, the function becomes nonmonotonic, but the phase resetting 
remains type I .  For a sufficiently high amplitude of stimulation, type- 1 phase resetting 
is no longer seen: it is replaced by type-0 phase r e ~ e t t i n g . ' ~ ' ~  We describe below the 
behaviors seen in a simple model, and in experiments on heart cell aggregates, when 
periodic stimulation a t  such high amplitudes is applied. Both the modelingI5 and the 
experimental" work have been previously described. 

"This work was supported by grants from the Canadian Heart Foundation. 
bTo whom correspondence should be addressed. 
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METHODS 

Aggregates of ventricular cells are formed from a suspension of single cells 
dissociated from 7-day-old embryonic chick hearts, using methods earlier described.” 
At an external potassium concentration of 1.3 mM, these aggregates beat spontane- 
ously at  a relatively constant rate (see fig. 1 of reference 11). A microelectrode is 
introduced into one cell of the aggregate to record the transmembrane potential. The 
cells within an aggregate are very well coupled, so that the aggregate as a whole may be 
viewed as isopotential (see fig. 2 of reference 11). Periodic stimulation is applied by 
injecting a train of constant-current pulses through the same microelectrode used for 
recording the transmembrane potential. 

MODELING RESULTS 

FIGURE 1 shows a simple two-dimensional limit-cycle oscillator studied by several 
investigators over the  year^.^^"^*^ The state point of the system traverses the limit cycle 
(the circular path) a t  a constant velocity such that a complete cycle takes one time unit. 
One can paramaterize the limit cycle in terms of “phase,” denoted by 4, with # = 0 
being arbitrarily taken a t  the crossing of the positive x-axis by the limit-cycle 
trajectory. We perturb the oscillator with stimuli that are impulses of amplitude b. The 
effect of delivery of one such stimulus is to translate the state point a t  arbitrary phase 4 
by a distance b in a direction parallel to the positive x-axis (FIG. 1). We then assume 
that the state point instantaneously relaxes back to the limit cycle along a radial 
direction. Thus, the effect of delivering an isolated stimulus is to instantaneously 
“phase reset” the oscillator, producing a “new phase” of 0 from the “old phase” of 4. 
One can write an equation 

0 = g(4. b ) ,  (1) 

using elementary trigonometry (eqs. (4) and (5) of reference 15). Thus, the new phase 
is a function only of the old phase and the amplitude of stimulation. 

Let us now subject the oscillator to a periodic train of impulses, with 7 being the 
time between delivery of individual impulses. One can then write 

4i+ I = g(& b )  + 7 (modulo 1 ), ( 2 )  

where q$ is the phase of the oscillator immediately before the delivery of the ith impulse 
of the periodic stimulation train.” Equation 2 is a one-dimensional finite-difference 
equation, and is often called the PoincarC map. It can be iterated as follows: for any b 
and T, given any starting value q5,, compute d2 from equation 2; then, use equation 2 
again with G2 inserted in its right-hand side to compute &; and so on. 

FIGURE 2 shows the results of iterating equation 2 for b 2 1.6 in the range 0.0 5 T 5 
1 .O. This range of b is a t  a rather high stimulus amplitude, being within the upper end 
of the type-0 region. For b < 1, type-1 phase resetting occurs. There are five different 
“phase-locking zones” present in FIGURE 2: 1:0, 2:0, 2.1, 2:2, and 1:l zones. At any 
(7,b) combination lying in the interior of a given N M  phase-locking zone ( N , M  
integers, N 2 1, M > 0), an N M  phase-locked rhythm will be seen. An N.M phase- 
locked rhythm occurs when there is a repeating pattern of identical cycles, each 
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FIGURE 1. The circle with the arrow has unit radius and the trajectory proceeds in the direction 
indicated by the arrow. The effect of an isolated stimulus of amplitude b is to instantaneously reset 
the phase of the oscillator from an old phase 4 to a new phase 0. (After fig. 1 of Guevara and 
Glass. I s  Reproduced by permission.) 

consisting of N stimuli and M “events.” The definition of an event is arbitrary:1°3’23’3,2’ 
we take a crossing of the positive x-axis by the limit-cycle trajectory (i.e., through 
4 = 0) as our event marker. If one associates the x-axis in FIGURE 1 with transmem- 
brane potential, this event would be associated with the peak or overshoot of the action 
potential, and the stimulus would be associated with an instantaneous depolarization of 
the membrane by a voltage independent of the phase of the cycle a t  which the stimulus 
is delivered. At all values of b in FIGURE 2 ,  the 1:l  zone is encountered provided that T 

is chosen sufficiently large, while the 1:O zone is encountered for T sufficiently small. As 
stimulation frequency is increased (Le., 7 decreased) for b < 2.0, the 1:l zone is 
replaced by a 2:2 zone, in which 2:2 phase-locked rhythms can be seen. In a 2:2 rhythm, 

2.5 
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T 

FIGURE 2. Phase-locking zones for 1.6 5 b c 2.5,  0.0 5 T 5 1.0. Only five zones exist: 1:0, 2:0, 
2:1,2:2, and 1:l. (After fig. 2A of Guevara and Glass.” Reproduced by permission.) 
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while there is still an event produced by each stimulus, the phase in the cycle a t  which 
the stimulus falls alternates from stimulus to stimulus, with one phase occurring on 
even-numbered stimuli, and the other phase occurring on odd-numbered stimuli. As 7 
is decreased further, a 2:l zone is encountered in which 2:l phase-locked rhythms are 
found. In a 2:l rhythm, the positive x-axis is crossed only once for every two stimuli 
delivered. Further decrease in 7 leads to entry into a 2:O zone. In the 2:O rhythms met 
therein, the positive x-axis is never crossed by the trajectory, but alternate stimuli find 
the oscillator a t  the same phase. Eventually, for 7 sufficiently small, a 1:O zone 
containing 1:0 rhythms is produced. In a 1:0 rhythm, the trajectory never crosses the 
positive x-axis, but instead repeatedly traverses the same limited arc of the unper- 
turbed limit cycle. Each stimulus, however, finds the oscillator a t  the same phase of its 
cycle. 

For b > 2.0, the preceding situation is changed. As 7 is decreased, there is a direct 
transition from a 1 :1 to a 1 :O rhythm: the 2:2, 2: 1, and 2:O zones are no longer present 
(FIG. 2). For b < 1.25 (not shown), the behavior becomes increasingly complex, with 
chaotic and quasi-periodic dynamics being 

FIGURE 2 was obtained by iterating equation 2 at  many ( 7 ,  b) values in the (7. b)  
parameter plane of FIGURE 2. One obtains little insight into FIGURE 2, however, from 
such purely arithmetical computations. The global organization of FIGURE 2 can be 
better appreciated if one graphically iterates equation 2 at  a fixed (7, b )  point in 
FIGURE 2. We now do this a t  six different values of 7, keeping b fixed at  1.6. 

FIGURE 3a shows the PoincarC map (i.e., equation 2) for 7 = 0.75. Note that the 
average slope of this map is zero, and that it has two extrema: this is a direct 
consequence of the fact that, for b > 1.0 in the model of FIGURE 1, type-0 phase 
resetting is oc~urr ing. '~* ' '  The result of iterating equation 2 graphically from an initial 
condition of 4,  = 0.3 is shown by the line with the arrow. Successive iterates converge 
to a period-] orbit a t  a phase of about 0.64, corresponding to a 1 : 1 phase-locked rhythm 
with each stimulus coming in a t  a time about two-thirds of the way through the cycle. 
Note that the iterations shown in this example produce a transient due to the particular 
initial condition (4' = 0.3) chosen. If one were to choose a value of exactly equal to 
the position of the period-1 point (i.e., 4, = 0.64), no transient would be seen. 

We now investigate the effect on the map of increasing the stimulation frequency 
(i.e., decreasing 7). From equation 2, it is obvious that decreasing 7 has the effect of 
simply moving the map down by a fixed amount. FIGURE 3b shows the map for r = 

0.61. If the map is iterated, and one examines the steady-state pattern after the 
transient due to initial conditions has dissipated, one sees that the stable period-1 orbit 
is no longer present, but is replaced by a period-2 orbit that alternates between two 
phases a t  about 0.51 and 0.59, producing a 2:2 phase-locked rhythm. This period-2 
orbit comes about as a result of a period-doubling bifurcation, which occurs when the 
slope of the map at  the period-1 point becomes more negative than - 1.'' The period is 
doubled, since two iterations are now required instead of one, to return back to the 
same state. While further decrease in 7 to 0.60 preserves the period 2-orbit (FIG. 3c), 
this orbit now corresponds to a 2:l rhythm, since one of the two phases on the orbit is 
now lying at  0.497, a value just less than 0.5. Injection of a stimulus at  this phase takes 
the state point of the system to a phase on the limit cycle somewhere between 0 and 
0.25, since b > 1 (see FIG. 1). Thus, a crossing of the positive x-axis is missed, and a 2:l 
cycle results. Mathematically, this (2:2 - 2:l) transition is associated with a change in 

(see Discussion). 
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the rotation number and is not due  to a bifurcation, since the same period-2 orbit exists 
in both cases.I5 When N : M  phase locking exists, the rotation number is given by the 
ratio M / N .  The 2:l rhythm is preserved as T is decreased (FIG. 3d) until a second 
change in rotation number occurs, leading to a 2:O rhythm (FIG. 3e). The period-2 orbit 
in this case alternates between two values, both of which are less than 0.5; the positive 
x-axis is never crossed. 

Finally, as T is decreased further a t  this stimulus amplitude, the slope of the map a t  
the period- 1 point becomes less negative than - 1, a period-halving or reverse period- 

I 

+ i+l 

0 

FIGURE 3. PoincarC maps resulting from the circle model of FIG. 1 with b = 1.6. The initial 
condition is q5, = 0.3 in all cases. (a) T = 0.75: period-1 orbit: 1:l phase locking. (b) T = 0.61: 
period-2 orbit: 2:2 phase locking. (c) T = 0.60: period-2 orbit: 2:l phase locking. (d) T = 0.59: 
period-2 orbit: 2:l phase locking. (e) T = 0.39: period-2 orbit: 2:O phase locking. (f) T = 0.25: 
period-I orbit: 1:0 phase locking. Transients are suppressed in (b)-(e). (After fig. 7-2 of 
Guevara." Reproduced by permission.) 

doubling bifurcation results, and the period-2 orbit disappears, being replaced by a 
stable period-1 orbit, corresponding to 1:0 phase locking (FIG. 30. 

The existence of the period-doubled phase-locking zones in FIGURE 2 (2:0,2:1, 2:2) 
is a direct result of the period-doubling and period-halving bifurcations and changes in 
rotation number shown in FIGURE 3. These bifurcations in turn hinge upon the 
existence in the map of a region of negative slope where that slope is more negative than 
- 1. For a stimulus amplitude b > 2.0, such a region does not exist in the map, and 
period-doubled orbits do not occur. There is thus a direct transition from a 1:1 to a 1:0 
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rhythm as 7 is decreased for b > 2.0 (FIG. 2). This (1:l - 1:O) transition is again not a 
bifurcation, being the result of a change in rotation number, in a manner similar to that 
producing the (2:2 - 2:1] and (2:l - 2:0] transitions for b < 2.0. 

EXPERIMENTAL RESULTS 

The analysis of the simple-perhaps even simplistic-model of FIGURE 1 in terms 
of the PoincarC map (FIG. 3) suggests that similar behaviors should be found in a 
cardiac oscillator when the stimulus amplitude is high enough so as to produce type-0 
phase resetting. We now demonstrate that this is in fact the case. 

FIGURE 4 shows the effect of increasing the frequency of stimulation of an 
embryonic chick ventricular heart-cell aggregate with a train of 20-ms-duration 
depolarizing current pulses. At t ,  = 140 ms ( t ,  is the time between stimuli), a 1:l 
rhythm is seen, with each stimulus producing an action potential (FIG. 4a). As t ,  is 
reduced to 130 ms, a 1:l rhythm is eventually established, following a transient episode 
of marked alternans (FIG. 4b). At  t, = 120 ms, a maintained 2:2 or alternans rhythm is 
seen (FIG. 4c), in which there is a beat-to-beat alternation in action potential 
morphology. At t ,  = 110 ms, a 2:l rhythm occurs (FIG. 4d). Thus, the sequence of 
transitions seen as t,r is decreased is {1:1 - 2:2 - 2:1}, exactly as in the simple model 
(FIGS. 2 and 3a-c). 

With further decrease in t,, one might expect to see the sequence of transitions 
{2: 1 - 2:O - 1 :0} as in the simple model of FIGURE 1. We have, however, only rarely 
seen this sequence in our experiments. We attribute this seeming rarity to technical 
problems. Since the cells in our aggregates are  of embryonic origin and are  therefore 
small (- 10 Fm diameter), and the aggregates beat vigorously, high-resistance micro- 
electrodes (typically, 40-60 MQ) must be used in order to obtain long-lasting impale- 
ments. When attempting to pass high-amplitude currents (>20 nA) at  high rates of 
stimulation ( t ,  < 100 ms), such electrodes often fail, in that the current delivered no 
longer remains constant from stimulus to stimulus. It is thus only on rare occasions that 
we have been able to obtain a train of constant-current pulses a t  high stimulation 
amplitude and frequency. The right part of FIGURE 5a shows a 2:O rhythm, which 
developed out of what could be described as a 2:l transient. Upon decrease oft, by 5 ms 
to 50 ms (FIG. 5b), a 1:0 rhythm was seen following a 2:O transient. The transient 
became monotonic when fs was lowered still further to 40 ms (FIG. 5c). 

Thus, the experimental work provides evidence for the transitions ( 1: 1 - 2:2 - 
2:l} and {2:1 - 2:O - l:O} seen in the simple model of FIGURE 1. Can one also then 
carry out an analysis similar to that shown in FIGURE 3, in which the phase-resetting 
response is used to construct a PoincarC map that can then be iterated? The filled 
circles in FIGURE 6a represent data points obtained from a phase-resetting experiment, 
and a curve is drawn through these points by hand. This curve is the new phase-old 
phase curve, equivalent to the function g i n  equation 1. 

FIGURE 6a shows the result of iterating the map (equation 2, with g(6,b) replaced 
by the experimentally determined new phase-Id phase curve and 7 replaced by t ,  
divided by the intrinsic beating interval of the aggregate) for 7 = 1 .O, starting with 
6 ,  = 0.5. The iterates converge to a period-1 orbit, corresponding to a 1:l phase-locked 
rhythm. In a manner strictly analogous to that previously shown in FIGURE 3 for the 
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FIGURE 4. Transmembrane potential as a function of time. The traces on the left show the start 
of stimulation, while the traces on the right (at an expanded (x2.5) time scale) show the 
steady-state rhythm. (a) 1:l phase-locking rhythm ( t ,  = 140 ms). (b) 1:1 phase-locking rhythm 
( t ,  = 130 ms). Note the transient alternans at the start of stimulation. (c) 2:2 phase-locking 
rhythm ( t ,  = 120 ms). The trace at right shows that there is an alternation of action potential 
amplitude and duration in the steady state. A period-doubling bifurcation has taken place 
somewhere between t ,  = 130 ms and t ,  = 120 ms. (d) 2:l phase-locking rhythm ( 1 ,  = 110 ms). 
Pu l se  a m p l i t u d e  = 40  nA.  Pu l se  d u r a t i o n  = 20 ms. Aggrega te  d i ame-  
ter = 114 pm. The off-scale vertical deflections are stimulus artefacts. Vertical calibration bar: 0 
to -50 mV; horizontal calibration bar: 1 s.  (After fig. 4-15 of Guevara." Reproduced by 
permission.) 

simple model, decrease of T leads successively to 2:2 (FIG. 6b), 2:l (FIG. 6c and d), 2:O 
(FIG. 6e), and 1:0 (FIG. 6f) rhythms. Again, the {1:1 - 2:2] transition is due to a 
period-doubling bifurcation, the (2:O - 1 :0] transition to a period-halving bifurcation, 
and the {2:2 - 2:1] and {2:1 - 2:0} transitions to changes in rotation number. We 
stress that the value of 1, at  which a change in rotation number occurs is arbitrary, in 
that it depends upon the particular definition of event marker chosen. A good 

FIGURE 5. (a) 2:O phase-locking rhythm ( t ,  = 55 
ms). Upon prolonged stimulation, this 2:O rhythm 
converted into a 1:0 rhythm. A 2:O or 2:l transient is 
seen initially. (b) 1:0 phase-locking rhythm ( t ,  = 50 
ms). Note transient alternation at the beginning of the 
trace. (c) 1:0 phase-locking rhythm ( t ,  = 40 ms). 
Note the monotonic (i.e., not alternating) nature of 
the transient. Calibration bars as in FIGURE 4, except 
time bar is 0.5 s. Due to saturation in the current 
measurement circuitry, the current amplitude could 
not be determined in this experiment. However, it was 
greater than 50 nA. Pulse duration = 20 ms. Aggre- 
gate diameter = 160 pm. Different aggregate from 
that used in FIGURES 4 and 6. (After fig. 4-20 of 
Guevara. lo Reproduced by permission.) 
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FIGURE 6. (a) 7 = 1 .OO: period-] orbit, 1:1 rhythm. This Poincarb map is equivalent to the new 
phase-old phase curve, since 7 = 1.00 (see equation 2). The curve through the data points is 
hand-drawn. (b) 7 = 0.27: period-2 orbit, 2:2 rhythm. (c) 7 SG 0.22: period-2 orbit, 2:l rhythm. (d) 
7 = 0.17: period-2 orbit, 2: 1 rhythm. (e) 7 = 0.12: period-2 orbit, 2:O rhythm. (f) 7 = 0.07: period-] 
orbit, 1:O rhythm. 6, = 0.5 (a), 0.3 (b-f). Phase-resetting data in (a) are taken from same 
aggregate as  in FIGURE 4, for same pulse amplitude (40 nA) and pulse duration (20 rns). The 
second transient new phase".*' is plotted. The intrinsic interbeat interval during collection of these 
data was about 440 ms. The sequence of maps shown here also predicts the existence of the 
sequence of transitions {1:1 - 2:2 - 2:3 - 2:4 - 1:2} seen experimentally as t ,  is raised to values 
larger than the intrinsic interbeat interval.'' (After fig. 5-16 of Guevara." Reproduced by 
permission.) 

physiological example of this is the {2:2 - 2: 11 (or {2:1- 2:0}) transition, in which one 
has to have an (arbitrary) criterion of what is an action potential. For the iterations 
shown in FIGURE 6, the event marker is taken at  q5 = 0.25, since one obtains action 
potentials for stimuli delivered a t  q5 > 0.25 during a phase-resetting experiment (see 
reference 10 for further explanation of this point). The agreement between the 
predictions of FIGURE 6 and the experiment of FIGURE 4 is quantitative, with, for 
example, the range of t ,  over which the 2:2 rhythm is predicted to occur being on the 
order of 10 ms. 

FIGURE 4b showed that there was an episode of transient alternans in the experi- 
ment before a maintained 1:l rhythm was established. FIGURE 7 shows how this can be 
accounted for in terms of the PoincarC map, when the slope of the map at  the stable 
period-1 orbit is negative. Transient alternation can also be seen experimentally in the 
approach to a 1:0 (FIG. 5b) rhythm, and is also accounted for by a region of negative 
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FIGURE 7. 'T x 0.36: period-1 orbit, 1:l phase locking. 
Iteration predicts that a phase of transient alternans should 
be seen before asymptotic establishment of a 1:l rhythm. 
PoincarC map formulated from same phase-resetting data as 
in FIGURE 6. (After fig. 5-17 of Guevara." Reproduced by 
permission.) 

slope in the vicinity of the period-1 orbit on the PoincarC map. In the experimental 
work, the approach to a maintained 2:2 rhythm is often alternating, with a gradual 
progressive decrease in the degree of alternans often being seen (FIG. 4c); once again, 
this alternating approach is due to a negative-slope region of the Poincari map. Should 
7 be increased enough in FIGURE 7 so that the period-1 orbit lies a t  4 > 0.45, that orbit 
would lie on a region of positive slope in the map and a monotone, not an alternating, 
approach to the steady state, would be seen (FIG. 3a shows the equivalent case in the 
simple model). This monotonic approach fits with the experimental findings at  suffi- 
ciently high values of T. Similar reasoning (FIG. 6f) explains why a monotonic transient 
is seen experimentally in the run-up to the 1:0 rhythm at  sufficiently small t ,  (FIG. Sc). 

DISCUSSION 

Discrepancies between Simple Model and Experiment 

There are striking similarities between the response to high-amplitude periodic 
stimulation of the simple model of FIGURE 1 and the aggregate. These similarities are 
essentially traceable to the fact that the new phase-ld phase curves of the two systems 
are quite similar (FIGS. 3 and 6). We now draw attention to three discrepancies 
between the two systems: 

( I )  In the simple model of FIGURE 1, one finds only two rhythms a t  the highest 
amplitudes of stimulation, 1:l and 1:0 (FIG. 2). We have not seen this in our 
experiments in aggregates, probably because we have not been able to pass sufficiently 
high currents through the microelectrode. Such a transition can be seen in isolated 
single rabbit ventricular myocytes, however, where use of a rather large bore suction 
electrode allows relatively large currents (in terms of microamperes per square 
centimeter) to be passed (Guevara and Jeandupeux, unpublished). 

(2) The new phase-ld phase curve in the simple model is symmetric (FIG. 3), while 
it is not so in the experiments (FIG. 6). The symmetry in the former case leads to 
symmetric phase-locking zones (FIG. 2), which is not the case in experiment (fig. 9 of 
reference 22). 

(3) Due to the infinitely fast relaxation of the trajectory back to the limit cycle 
following delivery of a stimulus, the first transient new phase-old phase c ~ r v e ' ~ ~ ' * ~ ' ~ ~ ~ '  
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can be iterated in the simple model. In contrast, a t  high stimulus amplitudes in the 
experimental work, when graded action potentials are  produced, the relaxation back to 
the limit cycle takes longer than one cycle, and the second transient new phase-old 
phase curve, which is an excellent approximation to the asymptotic new phase-old 
phase curve,” must be used (as in FIG. 6). 

Rhythms Seen at Lower Stimulus Amplitudes 

In the simple model, we have presented results for b 1.6. As b is decreased to 
below about 1.25, there is a cascade of period-doubling bifurcations leading to 
period-4, 8, 16, . . . orbits, culminating in chaotic d y n a r n i ~ s . ” ~ ~ * * ~ ~  The PoincarC maps 
generating these higher order period-doubling bifurcations are similar to those shown 
in FIGURE 3, but have a steeper slope. Similar behavior has been described in other 
degree-0  map^.^'-*^ As b is decreased to below 1 .O, there is a discontinuous transition 
from a degree-0 map to a degree-1 (invertible) map. In the latter case, there is the 
usual Arnol’d-tongue structure of phase-locking zones, with a periodic-quasi-periodic 
sequence of rotation n ~ m b e r ; ~ . ’ ’ . ~ ~  chaos does not exist. In contrast, in the aggregates, 
as stimulus amplitude is reduced, there is a transition from a degree-0 map to a 
discontinuous map, then to a degree-1 (noninvertible) map, and finally to a degree-1 
(invertible) map.” The traces shown in FIGURES 4 and 5 are a t  current amplitudes 
toward the upper end of the type-0 region. We have not systematically studied the 
response of the aggregate to stimulation at  the lower amplitude end of the type-0 
region, where one might expect period-doubling cascades to chaotic dynamics, as in the 
simple model. The transition (2:l - 4:2} seen in the simple model a t  the bottom end of 
the type-0 region (1.25 < b < l.OO), however, has been seen in experiments on 
aggregates.22 This 4:2 rhythm is a period doubling of the 2:l rhythm, and thus arises 
out of the 1 : 1 rhythm via two successive period-doubling bifurcations. The transition 
from a 4:2 rhythm to chaotic dynamics seen in the model as 7 is reduced has not been 
described in the aggregate, due to our inability to maintain the current pulse amplitude 
constant a t  the high rate and amplitude of stimulation needed. Chaotic dynamics can, 
however, be seen if the stimulus amplitude is reduced further so that a degree-1 
(noninvertible) map is produced.’ This form of chaotic dynamics is encountered when 
the aggregate is stimulated at  a rate lower than its spontaneous rate. We have also not 
confirmed the existence of chaotic dynamics predicted to occur a t  stimulation rates 
higher than the intrinsic rate when the map is degree-1 (noninvertible). Finally, if the 
current amplitude is reduced to a low enough value, an Arnol’d-tongue structure 
similar to that seen in the simple model results in the experiments.’ 

In summary, in both model and experiment, a t  very low levels of stimulus 
amplitude, where type-1 (invertible) resetting is seen, there is a complex periodicAuasi- 
periodic sequence of rhythms that is well understood theoretically.’ At intermediate 
levels, chaotic dynamics and bi~tabi l i ty~.’ . ’ ’ - ’~~~~ (two different rhythms at  the same set 
of stimulation parameters) can be seen. At very high levels (i.e., a t  the top end of the 
type-0 range), a simple sequence containing relatively few rhythms is seen (FIGS. 2 and 
6). This reduction in the number of possible rhythms, and the disappearance of 
complex behaviors, such as chaotic dynamics and bistability, is seen in many simple 
limit-cycle oscillators as stimulus amplitude is i n ~ r e a s e d . ’ ~ ~ ’ ~ ~ ~ ’ - ~ ~  
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Connection with Quiescent Systems 

A glance at  the traces in FIGURES 4 and 5 clearly demonstrates that the behaviors 
shown there do not hinge upon the existence of spontaneous activity in the preparation. 
It is quite evident that the existence or nonexistence of spontaneous diastolic depolar- 
ization plays little or no role in the generation of these rhythms. In fact, the transition 
(1:l  - 2:2 - 2:1} has been described in quiescent  aggregate^,^' in isolated rabbit 
ventricular m y ~ c y t e s , ~ ~  and in the Beeler-Reuter model of quiescent ventricular 
muscle.32 In addition, the transition {I : ]  - 2:2 - 2:l - 4:2- chaos} has been seen in 
isolated rabbit ventricular cells (Guevara, Jeandupeux, and Alonso, unpublished) and 
in the corresponding ionic modeling work (Lewis and Guevara, unpublished). The 
analysis of the response of quiescent preparations involves consideration, not of phase 
as in the case of spontaneously active preparations, but of action potential duration, 
and results in discontinuous maps containing two or more monotonically decreasing 
branches. While such maps can also display period-doubling bifurcations and bistabil- 
ity, it remains to be seen how their bifurcation structure, which has not been studied in 
detail, differs from that of degree-0 circle maps such as those presented in FIGURES 3 
and 6. 

Implications for Ventricular Arrhythmias 

During coronary occlusion, the phase of induction of ventricular arrhythmias such 
as tachycardia and fibrillation is often immediately preceded by a phase of electrical or 
mechanical alternans (see reference 10 for references). There is also one recently 
published report that shows clear evidence of a period-4 rhythm during ischaemia (fig. 
2C of reference 33). For b lying between about 1.0 and 1.2 in the simple model, chaotic 
dynamics exists, associated with period-doubling bifurcations. In light of the correspon- 
dences previously drawn between the response of spontaneously active and quiescent 
systems, and between degree-0 circle maps and two-branched interval maps, it is 
tempting to speculate that, as ischaemia becomes more profound, the operating point 
of cells in the ventricle is effectively moving downwards in a parameter plane 
equivalent to the (7,b) plane of FIGURE 2, due to a decrease both in the excitability of 
the cells and in the size of the excitation current." This would eventually result in two 
successive period-doubling bifurcations corresponding to alternans and period-4 (4:2, 
4:4) rhythms, which might then progress on to chaotic dynamics,34 initiating ventricu- 
lar fibrillation. 
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