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ABSTRACT The phase-resetting response of a model of spontaneously active cardiac Purkinje fiber is investigated. The
effect on the interbeat interval of injecting a 20-ms duration depolarizing current pulse is studied as a function of the
phase in the cycle at which the pulse is delivered. At low current amplitudes, a triphasic response is recorded as the pulse
is advanced through the cycle. At intermediate current amplitudes, the response becomes quinquephasic, due to the
presence of supernormal excitability. At high current amplitudes, a triphasic response is seen once more. At low
stimulus amplitudes, type 1 phase resetting occurs; at medium amplitudes, a type could not be ascribed to the phase
resetting because of the presence of effectively all-or-none depolarization; at high amplitudes, type O phase resetting
occurs. The modeling results closely correspond with published experimental data; in particular type 1 and type O phase
resetting are seen. Implications for the induction of ventricular arrhythmias are considered.

INTRODUCTION

Injection of a current pulse into a spontaneously beating
cardiac Purkinje fiber causes a transient change in its beat
rate leading to a permanent phase-resetting of its rhythm
(Weidmann, 1951, 1955a; Jalife and Moe, 1976, 1979;
Jalife and Antzelevitch, 1980; Antzelevitch et al., 1982).
While there have been a few modeling studies of Purkinje
fiber that dealt incidentally with the effect of injecting a
current pulse (Hauswirth, 1971; McAllister et al., 1975;
DiFrancesco and Noble, 1982; Drouhard and Roberge,
1982), there appears to have been only one study in which
phase-resetting per se was systematically investigated
(Chay and Lee, 1984). However, that report modeled a
Purkinje fiber in which a constant bias current had been
injected, and focused on the annihilation of spontaneous
activity that can be produced by a single current pulse in
that circumstance. We describe below the phase-resetting
behavior of an unmodified model of Purkinje fiber. Our
main interest in doing so is to investigate the topology of
phase resetting. This is a necessary first step in deter-
mining the extent to which the phase-resetting response
(produced by injecting a single current pulse) might
account for the response to periodic stimulation with a
train of such current pulses.

METHODS

The model of Purkinje fiber investigated in this report is the MNT model
(McAllister et al., 1975). Numerical integration was carried out in single
precision (approximately seven significant decimal digits) using an
efficient variable time-step algorithm, the convergence of which can be
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analytically shown (Victorri et al., 1985). The maximum change in the
transmembrane potential AV allowed in iterating from time ¢ to time ¢ +
At was 0.4 mV. When a value of AV larger than this upper limit resulted,
the integration time step Az was successively halved and the calculations
redone until AV was <0.4 mV. When AV was <0.2 mV, At was doubled
for the following iteration. We found, with one exception mentioned
below, that allowing At to lie in the range 0.001 ms < Ar < 8.192 ms
permitted AV to remain below 0.4 mV when a current pulse was injected.
Under these conditions, the voltage waveform during spontaneous activity
is within a few percent of that obtained using a very accurate Runge—
Kutta fourth-order integration scheme using a fixed Az of 0.005 ms
(Victorri et al.,, 1985). In advancing from time ¢ to time ¢ + At, the
contribution of the membrane current to AV was calculated using the
fomula appearing in footnote 2 of Victorri et al. (1985). The time step Az
was adjusted when a current pulse was delivered so that the current
started and stopped at exactly the right times. Initial conditions, unless
otherwise stated, were as follows: ¥ = —80.00 mV, m = 0.01946, h -
0.8591, d = 0.002089, f = 0.7725, x, = 0.02694, x, = 0.01986, ¢ =
2.156 x 107, r = 0.1190, and s = 0.7791. The initial value of At was
0.512 ms. These initial conditions closely approximate a point on the limit
cycle. L’Hépital’s rule was applied when necessary in calculating the rate
constants oy, ag, ag, and a, as well as the current I,. We have used Eqgs.
25 and 26 rather than Eqgs. 27 and 28 of McAllister et al. (1975) to
describe a. Finally, there is an inconsistency in the paper of McAllister et
al. (1975), which was earlier pointed out by Chay and Lee (1984),
between the formula for oy given first in Table 1A and then repeated later
in the text in Eq. 16. We have used the latter formula, since using the one
in Table 1A leads to such a large window current for I; that spontaneous
activity does not occur. In addition, the current-voltage characteristics
are then very close to those shown in Figs. 1-3 of McAllister et al.
(1975).

RESULTS

Fig. 1 shows the effect of injecting a 20-ms duration
depolarizing current pulse of magnitude 4 uA /cm? either
a prolongation or abbreviation of the interbeat interval
results, depending upon whether the stimulus is delivered
relatively early (Fig. 1, middle) or late (Fig. 1, bottom) in
the cycle. We define the interbeat interval to be the time
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FIGURE 1 The phase-resetting effect of injecting a depolarizing current

pulse of duration 20 ms and amplitude 4 uA /cm’ at a coupling interval of

. = 900 ms (middle) and t, = 950 ms (bottom). Unperturbed activity is
seen at top. In this and subsequent figures, the number appearing to the
side of the trace is the coupling interval 7 in milliseconds.

between successive crossings of —10 mV on the action
potential upstroke. This “event marker” point approxi-
mates the location of the maximal upstroke velocity in the
MNT model (McAllister et al., 1975). We denote the
spontaneous interbeat interval by 7, (which we take to be
1306.668 ms), the perturbed interbeat interval (the dura-
tion of the cycle in which the stimulus occurs) by T, and
the post-stimulus interbeat interval (the duration of the
cycle immediately after the perturbed cycle) by T, (Fig. 1,
middle). The coupling interval of the stimulus pulse is
defined to be the time from the crossing of —10 mV on the
upstroke of the action potential immediately before the
pulse to the time of onset of the pulse, and is denoted by ¢..
All intervals are given in milliseconds. The phase ¢
(0 = ¢ < 1) in the cycle at which the stimulus falls is
defined by ¢ = t./ T,,. The stimulus amplitude in pA /cm? is
denoted by A, with a positive value of 4 corresponding to a
depolarizing stimulus.
One can also define the temporal shifts (Fig. 1)

AT, =T, - T, (1)
and
AT, = 2T, — (T, + T»). )

Similarly, for i > 2, AT; =i - T, — Zj_, T;. Note that the
sign of AT, is positive if T; < T, (“advance”) and negative
if T, > T, (“delay”). Note also that at the amplitude of
stimulation used in Fig. 1, T, =~ Ty, and so AT, ~ AT),. This
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is not the case at higher stimulus amplitudes considered
below, when T, can differ significantly from T, and AT,
can therefore be quite different from AT).

We have systematically investigated the effect of inject-
ing a 20-ms duration depolarizing current pulse at ampli-
tudes from 1 to 15 uA/cm? in steps of 1 uA/cm?. At each
of these amplitudes, the coupling interval ¢z, was changed
with an increment of 10 ms (a “phase-resetting run”). Fig.
2 shows voltage tracings selected out of such runs carried
out at three different current amplitudes lying at the lower
end of the amplitude range investigated. Fig. 3 summarizes
the findings, plotting the normalized perturbed interbeat
interval T,/T, as a function of the normalized coupling
interval ¢ = ./ T,, with an increment in ¢, of 10 ms.

In Fig. 3, for t, = 150 ms at 4 = 4 uA/cm?* and for ¢, =
150, 160, and 170 ms at A4 = 6 uA /cm?, the voltage crosses
—10 mV during the time that current is being injected.
However, since the membrane resumes repolarizing once
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FIGURE 2 Phase-resetting effect of injecting a single 20-ms duration
depolarizing current pulse of amplitude 2 uA/cm? (left), 4 pA/cm’
(middle), and 6 pA /cm? (right). The uppermost trace in all three panels
shows a cycle of unperturbed activity; the dashed line running through
each panel indicates the unperturbed cycle length. The coupling interval ¢,
increases from 100 to 1,100 ms in 200-ms steps from the second to the last
row.
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FIGURE 3 The normalized perturbed interbeat interval T,/T, plotted
against the normalized coupling interval t./T, at each of the three
different pulse amplitudes shown in Fig. 2. The coupling interval is
changed in 10-ms steps from O to 1,600 ms inclusive. Pulse amplitude: 2
uA/cm? (top), 4 pA/cm?® (middle), 6 pA/cm? (bottom). The arrows
(middle) indicate the two well-separated ranges of coupling interval over
which prolongation occurs. There is also a very slight abbreviation of cycle
length for stimuli falling very early in the cycle, which is not too evident on
the scale of this diagram.

the pulse is turned off (producing a waveform resembling
that shown in Fig. 2, right, ¢, = 300 ms), an action potential
upstroke has not occurred and we have not accepted the
crossing of —10 mV as the second event marker for
establishing the value of T',. Instead, we have waited until
the next crossing of —10 mV, which occurs on the first
action potential upstroke after the current pulse is turned
off.

Fig. 3 indicates that the transition from prolongation to
abbreviation of interbeat interval takes place with a very
small change inz, (10 ms) at 4 = 4 uA/cm*and at 4 = 6
pA/cm? Fig. 4 investigates this transition at these two
levels using finer increments in 7. At A = 4 A /cm?® (Fig.
4, top), an increment in ¢, of 1.0 ms is sufficient to reveal
the existence of intermediate responses spanning the entire
range from maximal prolongation to maximal abbreviation
of interbeat interval; at 4 = 6 uA/cm? (Fig. 4, bottom), an
increment one-tenth as large (i.e., 0.1 ms) is not sufficient
to reveal whether or not these intermediate responses exist.
As the stimulus amplitude is increased beyond 6 uA /cm?,
the transition occurs at a smaller coupling interval and is
even more abrupt.

Over a range from 4 ~ 7 uA/cm?to A ~ 11 A /cm?, the
gap phenomena is observed (Agha et al., 1973). Graded
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FIGURE 4 Effect of changing the coupling interval ¢, in 1.0-ms steps
from ¢, = 908 ms to t, = 916 ms at a pulse amplitude of 4 uA /cm’ (top)
and in a 0.1-ms step from 7, = 779.4 ms to ¢, = 779.5 ms at a pulse
amplitude of 6 uA /cm? (bottom).

action potentials are seen as ¢, is incremented during the
repolarization phase (e.g., Fig. 5, left; A = 10 uA /cm?; £, =
400 ms); at larger values of ¢, action potentials are not
elicited (e.g., Fig. 5, left; t. = 450 and 500 ms); for ¢,
sufficiently large, action potentials are once again seen
(e.g., Fig. 5, left; t. = 550 and 600 ms). This gap
phenomena results in supernormal excitability (see Discus-
sion).

As the pulse amplitude is increased in the range where
the gap phenomenon occurs, the size of the gap, i.e., the
range of ¢, over which it exists, first increases but then
decreases. In fact, at 4 = 12 uA /cm?, the gap phenomenon
is not seen when ¢, is changed in steps of 10 ms; instead, the
graded action potential produced by premature stimulation
early in the cycle simply tends to grow in amplitude and
duration as ¢, is increased (Fig. 5, right). In fact, there is a
range of . over which the overshoot potential becomes
more positive than during unperturbed activity (e.g., Fig.
5, right; t. = 450-600 ms). The voltage waveforms seen
during phase resetting do not change qualitatively from
those shown in the right panel of Fig. 5 as the pulse
amplitude is further increased (at least up to 4 = 50
pA/cm?).

Fig. 6 shows, using a finer increment in ¢. than that used
in the right panel of Fig. S5, responses seen at 4 = 12
pA/cm? for values of z in a neighborhood of that at which
graded action potentials first appear as ¢, is increased. Note
that the waveforms change in a smoothly continuous
manner, with no sign of an abrupt transition as the graded
action potential makes its appearance. Note also that the
membrane potential at the end of the current pulse lies in
the plateau range of potentials when graded action poten-
tials begin to appear.
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FIGURE 5 Effect of changing the coupling interval ¢, in 50-ms steps
from ¢, = 300 ms (row 2) to ¢, = 600 ms (row 8) at each of two pulse
amplitudes: 10 uA/cm? (left) and 12 pA/cm’® (right). Row 1 shows
unperturbed activity.

Fig. 6 also illustrates that there can be severe method-
ological problems when applying the definition of the
interbeat interval 7. For example, using our definition of
the event marker, the upstroke phase of the waveform
appearing at f, = 380 ms would not be classified as an
event, since its overshoot potential is more negative than
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FIGURE 6 Part of phase-resetting run earlier shown in the right panel of
Fig. 5 (pulse amplitude, 12 pA /cm?). The increment in ¢, is now 20 ms,
with 7, between 340 and 400 ms.
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—10 mV and thus the upstroke phase does not cross —10
mV. Yet, there is some form of “active” response, in that
the membrane continues to depolarize after turnoff of the
current pulse; indeed, there is considerably more depolar-
ization during this current pulse than at 7, < 360 ms. At
t. = 400 ms, the upstroke crosses —10 mV and so, by our
definition, an event occurs. We have explored the conse-
quences of several alternative definitions of the event
marker (e.g., a local maximum in the membrane poten-
tial); however, all have one form or another of methodolog-
ical shortcoming.

Fig. 7 is a graphical summary of our phase-resetting
results over the entire range of qualitatively different
behaviors encountered. In Fig. 7, left, the normalized
perturbed interbeat interval T,/ T, is plotted as a function
of the normalized coupling interval ¢ = ¢,/ T, with ¢, being
changed in steps of 10 ms. Unlike the case in Fig. 3, we
have adhered strictly to our definition of T, taking any
positive-going crossing of —10 mV as an event. This
produces artifacts, such as the shortenings of T seen at
small values of ¢ in all rows (except the first) of Fig. 7; for
example, the arrow labeled a in the third row (4 = 6 A/
cm?) indicates a segment of data where this effect is
present.

We now turn to consideration of topological aspects of
phase resetting (see Appendix for background). Using the
definition

¢, = ¢ + AT/ T, (modulo 1), (3

where AT, is as defined in Eq. 1 and Fig. 1 above, the
“first transient phase” ¢ can be plotted against the “old
phase” ¢ (Fig. 7, middle). A curve drawn through the data
points is called the first transient phase transition curve
(Pavlidis, 1973; Winfree, 1980; Kawato, 1981), abbre-
viated PTC,. Similarly, the “second transient phase” ¢,
(Fig. 7, right) can be calculated from the definition

¢, = ¢ + AT,/ T, (modulo 1), 4)

where AT, is as defined in Eq. 2 and Fig. 1 above.
Calculation of the third transient phase ¢} results in data
points that superimpose with those of ¢ shown in the right
panel of Fig. 7. The state-point of the system has thus
effectively returned to the limit cycle by that time: PTC,
can therefore be taken as a very good approximation to
PTC..

For a current amplitude smaller than ~4 uA /cm? PTC,
is a continuous curve with an average slope of one (e.g.,
Fig. 7, rows I and 2): its topological degree is one, and type
1 phase resetting is said to occur (Winfree, 1980). For 4 =
12 uA/cm?, PTC, also appears to be a continuous curve
when ¢, is changes in 10-ms steps (e.g., Fig. 7, rows 5 and
6); however, its average slope is zero, its topological degree
is zero, and type O phase resetting exists (Winfree, 1980).
Note also that for 4 < 3 uA/cm? PTC, is of degree one
and monotonically increasing (e.g., Fig. 7, row I), but that
for 4 above this value, PTC, is no longer monotonically
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FIGURE 7 The normalized perturbed interbeat interval T,/ T, (left), the
first transient phase ¢; (middle), and the second transient phase ¢
(right) plotted against the old phase ¢ at, from top to bottom, pulse
amplitudes of 2, 4, 6, 10, 12, and 20 uA /cm”. The increment in z, is 10 ms.
At A = 20 uA/cm’, it was necessary to decrease the minimum value of
the integration time step At from its usual value of 1.0 us to 0.5 us to
permit the maximum value of the change in voltage AV to remain below
0.4 mV (see Methods). The arrows labeled a—f indicate features of the
curves discussed in the text.

increasing even though it remains of degree 1 (e.g., Fig. 7,
row 2). There is a very slight downturning in the curve not
very evident on the scale of this figure (indicated by the
arrow labeled b) just before the abrupt rise in the curve due
to the rapid but continuous transition from prolongation to
abbreviation of interbeat interval occurring at this current
amplitude (Fig. 4, top). For 5 pA/cm? < 4 < 11 pA/cm?,
we cannot ascribe a type to PTC, for reasons described in
the Discussion.
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FIGURE 8 Effect of changing the coupling interval ¢, at a pulse ampli-
tude (7 wA/cm?) near where graded action potentials are first seen. Note
the long-drawn-out response at . = 374 ms. The top trace at left shows
unperturbed activity.

Note that in all but the first row of Fig. 7, PTC, shows
discontinuities that are not visible on PTC, (e.g., Fig. 7,
row 5;at ¢ ~ 0.11 [arrow labeled e] and at ¢ ~ 0.18 [arrow
labeled f]). These discontinuities are artifacts because one
must adhere to an arbitrary, but precise, definition of an
event marker in determining the AT; used in calculating
the ¢;. These discontinuities appear to be a compulsory
feature of phase-resetting, but are expected to disappear in
the limit i — o« (Kawato, 1981; Barbi et al., 1984). Indeed,
in the case of the MNT model, relaxation back to the limit
cycle after a perturbation is so rapid that these discontinui-
ties appearing on PTC, are not apparent on PTC, when ¢ is
changed in steps of 10 ms (Fig. 7).
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FIGURE 9 Steady-state current-voltage characteristic of MNT equa-
tions (top). Note the existence of one and only one zero-current crossing
at ¥V~ —37.664 mV. Evolution of membrane voltage starting with initial
conditions appropriate to the steady state at V' = —37.664 mV (bottom).
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When graded action potentials elicited by stimulation
during the latter part of repolarization begin to appear (at
A ~ 7 pA/cm?), one sees that the membrane potential at
the end of the current pulse lies in the plateau range of
potentials (Fig. 8). Rather strange-looking, slowly chang-
ing membrane responses can then be seen (e.g., Fig. 8; ¢, =
374 ms). The existence of such responses reinforces the
point made earlier about the arbitrariness of the event
marker; it also indicates that the definition of an action
potential is quite arbitrary.

Fig. 9, top, shows the steady-state current—voltage (IV)
characteristic of the MNT model. Note that there is one
and only one zero-current crossing of the IV curve: this
zero-crossing occurs in the plateau range of potentials. Fig.
9, bottom, shows that starting the numerical integration
with all activation and inactivation variables set to the
asymptotic values appropriate to the voltage of this steady-
state or equilibrium point results in a resumption of
spontaneous activity. The steady state is thus unstable, at
least to within the numerical resolution of this simulation.
Note finally that the slowly changing response of Fig. 8
(t. = 374 ms) is taking place in a voltage range very close
to that at which the zero-crossing of the IV curve occurs.

DISCUSSION

The simulations with the MNT model presented above are
consistent with experimental reports on the phase resetting
of Purkinje fiber with respect to the following main
features.

The response is essentially triphasic at low and high
pulse amplitudes: a depolarizing stimulus produces a very
slight abbreviation in the interbeat interval T, if it is
applied very early in the cycle (Kass and Tsien, 1976), a
prolongation if the same stimulus is applied slightly later in
the cycle, and an abbreviation if it is applied sufficiently
late (Weidmann, 1951; Jalife and Moe, 1976; Antzelevitch
et al, 1982). At low pulse amplitudes, there are two
different well-separated ranges of ¢, over which prolonga-
tion can be seen, with the first (Fig. 3, middle; arrow
labeled a) being due to prolongation of action potential
duration (Klein et al., 1972; Jalife and Moe, 1976) and the
second (Fig. 3, middle; arrow labeled b) being due to
prolongation of the duration of diastole (Weidmann, 1951;
Jalife and Moe, 1976). This second range occurs just
before shortening of the cycle length takes place. At a
sufficiently high pulse amplitude, this second range of
prolongation is not seen, since the stimulus is then supra-
threshold throughout diastole (Weidmann, 1951; Kao and
Hoffman, 1958; Klein et al, 1972). Phase-dependent
prolongation and shortening of cycle length can also be
seen in clinical cases of modulated junctional (Moe et al.,
1977) and ventricular (Castellanos et al., 1984) parasys-
tole.

At lower stimulus amplitudes, the maximal degree of
prolongation and abbreviation of cycle length attainable
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increases with increasing stimulus amplitude (Jalife and
Moe, 1976). Longer prolongations might be seen if the
MNT model were to be modified by a change that results
in a slight outward shift in the IV curve of Fig. 9 in the
pacemaker range of potentials. Addition of a net outward
current of <1 uA/cm® would convert the system, via a
saddle-node bifurcation, into one containing three equilib-
rium points. In that circumstance, very long prolongations
of cycle length showing oscillatory activity in the pace-
maker range of potentials similar to those experimentally
seen in Purkinje fiber (Klein et al, 1972; Antzelevitch and
Moe, 1983) and in heart cell aggregates (Guevara et al.,
1986) would then result if the new equilibrium point in the
pacemaker range of potentials were to be unstable and
have at least one pair of complex conjugate eigenvalues
(see also Clay et al., 1984; Reiner and Antzelevitch,
1985).

The transition from prolongation to abbreviation of
cycle length occurs at a shorter coupling interval and over
an increasingly narrow range of the coupling interval as the
stimulus amplitude is increased (Jalife and Moe, 1976;
Antzelevitch et al., 1982). In fact, the transition eventually
becomes effectively discontinuous (in the presence of mem-
brane noise) at a point midway in the cycle (Jalife and
Moe, 1976). We have not investigated at 4 = 6 pA/cm’
(Fig. 4, bottom), using increments of ¢, smaller than 0.1
ms, whether or not intermediate responses (similar to those
shown in Fig. 4, fop) exist at such intermediate pulse
amplitudes since it is unlikely that the precision and
accuracy of our standard integration scheme suffice under
such extreme conditions. However, because of the absence
of any equilibrium points (and probably also the stable
manifold of the equilibrium point lying in the plateau
range of potentials) in the phase space of the MNT system
in the pacemaker range of potentials (Fig. 9, top), one
might expect that such intermediate responses would be
found. The situation is probably similar to that occurring in
the Hodgkin—Huxley model of the giant axon of the squid,
where increments in the take-off potential of 10~'2 mV
must be used to establish the absence of a true all-or-none
depolarization threshold (Clay, 1977). However, such a
small change in potential lies well within the membrane
voltage noise level of Purkinje fiber. To correctly investi-
gate the existence of all-or-none depolarization would
necessitate abandoning the macroscopic Hodgkin—Huxley
type of model and instead formulating an inherently
stochastic model representing a population of single chan-
nels. Note that if the MNT model is modified as outlined
above so as to produce three equilibrium points, the
presence of an equilibrium point of the saddle type in the
phase space of the system would confer upon the mem-
brane the properties of true all-or-none depolarization and
repolarization (FitzHugh, 1955, 1960; Clay et al., 1984).

Graded action potentials can be produced by a prema-
ture stimulus of sufficiently large amplitude delivered
relatively early in the cycle (Weidmann, 1955a; Kao and
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Hoffman, 1958; Klein et al., 1972; Jalife and Moe, 1979).
Such action potentials will propagate if large enough in
amplitude (Kao and Hoffman, 1958). The amplitude, rate
of rise of the upstroke, and the overshoot potential of the
action potential tend to gradually increase as ¢ is increased
in both model and experiment. Indeed, for z, not too small,
the overshoot potential and the maximum rate of rise of the
upstroke phase are increased beyond their normal values
(Weidmann, 1955a; Jalife and Moe, 1976); this effect is
not found at lower amplitudes of stimulation (e.g., Fig. 4,
bottom; t, = 779.5 ms). Note that while the action
potential duration generally tends to increase as f,
increases, there are exceptions (e.g., Fig. 6, ¢, = 360 and
380 ms; Fig. 8, 1. = 374 and 384 ms).

Supernormal excitability can be seen in the MNT model
(Figs. 5 and 7; see also Fig. 3 of Hauswirth [1971] where a
precursor of the MNT model was studied). The behavior
shown in Fig. 5 corresponds to supernormal exictability
(Weidmann, 1955b; Spear and Moore, 1974; Antzelevitch
et al., 1982), since a higher pulse amplitude must be used
to elicit an action potential at ¢, = 450 or 500 ms (right)
than to elicit one at a more premature coupling interval of
400 ms (left). Supernormality is essentially due to a
quicker recovery of threshold potential than of membrane
potential (Weidmann, 1951; Spear and Moore, 1974). The
existence of supernormal excitability in the MNT model is
probably not fortuitous. The quantitative description of
many of the currents in that model was formulated from
data obtained at an external potassium concentration of
2.6 mM, which is precisely within the range at which
supernormal excitability is commonly encountered (Spear
and Moore, 1974). When the gap phenomenon occurs, the
phase-resetting response becomes quinquephasic, with
abbreviation, prolongation, abbreviation, prolongation,
and finally abbreviation of cycle length successively being
seen as the coupling interval is increased.

The effect on the interbeat interval T, of the post-
stimulus cycle is generally small, except when graded
action potentials are produced in response to a stimulus
pulse of very high amplitude. When the duration of the
graded action potential is much reduced, the duration T, of
the post-stimulus or “return” cycle will be very much
abbreviated if the duration of diastole is not very much
prolonged (Klein et al., 1972). However, the length of the
return cycle is variable: for example, the duration of the
return cycle can be either shortened or lengthened by a
stimulus falling relatively early in the cycle (Klein et al.,
1972). Similar findings have been reported in clinical cases
of idioventricular rhythm (Kennelly and Lane, 1978).
After a graded action potential, the duration of the
diastolic period can on occasion be very much prolonged in
Purkinje fiber when the stimulus is a propagated wave-
front. This leads to a significant increase in the duration of
the return cycle, even though the action potential duration
is reduced (e.g., Klein et al., 1972). We have not seen such
“depression of automaticity” in the MNT model.
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Annihilation with a single current pulse is not possible
unless some intervention, such as injection of a constant
bias current, is carried out (Jalife and Antzelevitch, 1980;
Rosenthal and Ferrier, 1983; Chay and Lee, 1984). Also,
the equilibrium point at ¥~ —38 mV in the MNT model is
not stable, in contrast to the statement made in McAllister
et al. (1975).

The sign of AT, is reversed if a hyperpolarizing stimulus
is applied instead of a depolarizing stimulus in both the
model (Fig. 5 of Hauswirth [1971], reproduced as Fig. 14
of McAllister et al. [1975]) and experiment (Weidmann,
1951; Jalife and Moe, 1976).

Thus, insofar as the transmembrane potential is con-
cerned, the original MNT model does a remarkably good
job of accounting for the main features of the phase-
resetting experimentally observed. There is only one nota-
ble exception to this statement. A maximum prolongation
of ~30% (i.e., T,/ T, = 1.3) can be seen in experiments on
Purkinje fiber when a subthreshold pulse is delivered
during diastole (Jalife and Moe, 1976, 1979; Antzelevitch
et al., 1982). In contrast, a much smaller effect is seen in
the MNT model (Fig. 3); in fact, maximal prolongation is
then the result of a prolongation of action potential dura-
tion and not of diastole. A similar discrepancy between
model and experiment has been found in a study of
ventricular heart cell aggregates (Clay et al., 1984; Fig. 3).
This is perhaps not surprising, since the formulation of the
ionic currents active in the pacemaker range of potentials is
similar in the two models. It has been recently claimed that
modification of the description of the time-dependent
pacemaker current can resolve similar discrepancies
between model and experiment in the case of the sinoatrial
node (Reiner and Antzelevitch, 1985). However, recent
work using a model of aggregates of embryonic chick atrial
cells (Shrier and Clay, 1986) indicates that the repolariza-
tion current kinetics can have a dramatic effect on phase
resetting and can generate prolongations in the range of
40% (Shrier and Clay, unpublished observations).

During the decade between the publication of the MNT
model and the present time, there has been an accumula-
tion of experimental evidence that has naturally led to the
production of revised ionic models of Purkinje fiber (e.g.,
Drouhard and Roberge, 1982; DiFrancesco and Noble,
1985; Jaeger and Gibbons, 1985). Despite this recent work,
the current densities and kinetics of several currents are
still uncertain in Purkinje fiber. For example, the sodium
current has not been adequately clamped at 37°C, and the
details of calcium handling within the cell are largely
undetermined. However, it is already known that the
reinterpretation of Iy, in terms of I; makes little or no
difference to the phase-resetting effect of a small ampli-
tude pulse delivered during diastole (DiFrancesco and
Noble, 1982; Fig. 9). The effect of a reinterpretation of this
and other currents (e.g., I, I;;) on the ionic mechanisms of
phase resetting are yet to be completely worked out. In a
similar vein, as more accurate descriptions of various
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currents become available, the phase-resetting response of
newer models will have to be re-investigated.

In some of the studies cited above, phase resetting was
carried out in a segment of Purkinje fiber small enough to
minimize electrotonic effects (e.g., Jalife and Moe, 1976).
However, in other studies, the fiber was long enough so
that the influence of the stimulus, a propagating wave-
front, would depend in detail upon the cable properties of
the Purkinje fiber. Moreover, such long fibers would
probably have a pacemaker region somewhere along their
length (Weidmann, 1951). The phase-resetting response of
a Purkinje fiber of length large in comparison to its space
constant is thus very complex; a thorough analysis would
involve a study in which the sites of both the recording
electrode and the stimulating electrode with respect to the
pacemaker region would have to be systematically varied.
For example, for stimuli sufficiently premature, one might
expect entrance block into the pacemaker region (as
commonly occurs in the sinoatrial node). We know of no
reports of such systematic studies, and so it is difficult to
speculate about phase-resetting in a distributed system
where cable properties play an important role.

At a sufficiently low stimulus amplitude, type 1 phase
resetting occurs in the MNT model (e.g., Fig. 7, rows I and
2); at a sufficiently high stimulus amplitude, type O phase
resetting occurs (e.g., Fig. 7, rows 5 and 6). Over the
intermediate range of stimulus amplitudes (5 pA/cm? <
A < 11 pA/cm?), the situation is not clear. Over the lower
part of this intermediate range (5 pA/cm*> < A < 7
uA /cm?), an abrupt transition from prolongation to abbre-
viation of interbeat interval occurs (e.g., Fig. 4, bottom,
Fig. 7, row 3). For reasons gone into just above, this
transition is probably continuous, though very steep.
Should that be the case, type 1 phase resetting would exist.
Over the upper part of this intermediate range of stimulus
amplitudes (7 uA/cm? < 4 < 11 pA/cm?) a gap phenome-
non occurs as the result of a second additional effectively
all-or-none abrupt transition (Fig. 5, left). Two corre-
spondingly abrupt jumps can thus be seen in all three plots
in row 4 of Fig. 7 at ¢ ~ 0.34 (arrows labeled ¢) and ¢ ~
0.41 (arrows labeled d).

Over the upper part of the intermediate range of stimu-
lus amplitudes (7 pA/cm® < 4 < 11 pA/cm?), there is, in
addition, a third range of ¢, over which indeterminate
behavior occurs. This is seen when graded action potentials
first appear (e.g., Fig. 8). At the smallest amplitude where
graded action potentials are seen (A4 =7 uA/cm?), the
membrane potential at the end of the current pulse lies at
~—40 mV at the shortest coupling interval that produces
an “active” response (. ~ 370 ms). This potential is very
close to that associated with the equilibrium point (Fig. 9),
and a few of the waveforms shown in Fig. 8 resemble the
part of the waveform in the lower panel of Fig. 9at ¢ ~ 2.
In addition, a wide scatter of responses is found, similar to
that shown in row 4 of Fig. 7 (4 = 10 uA/cm?) at ¢ ~ 0.3.
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This is exactly the type of behavior that one would expect
close to the border between type 1 and type O phase
resetting (Winfree, 1980).

Thus, the results of our work on the MNT equations
(Fig. 7, right) indicate that, as the pulse amplitude is
increased, one might expect to first see a transition from
type 1 phase resetting (rows / and 2) to a form of phase
resetting to which a type could not be assigned, due to the
presence of effectively all-or-none depolarization (row 3).
A similar transition has recently been described in sponta-
neously beating ventricular heart-cell aggregates (Guevara
et al., 1986). Further increase of pulse amplitude would
result in the appearance of a gap phenomenon (row 4).
Again a topological type could not be assigned, due to the
presence of two regions of effectively discontinuous behav-
ior. Finally, as pulse amplitude is increased still further,
type O phase resetting would be encountered (rows 5 and
6).

Two other circumstances have previously been described
in cardiac oscillators in which there is not a direct transi-
tion from type 1 to type O phase resetting. In the first case,
as the stimulus amplitude is increased, there is a transition
from type 1 phase resetting to a form of resetting to which
a type cannot be assigned, because at least one equilibrium
point in the system is stable. This results in the possibility
of annihilation and triggering of spontaneous activity in
Purkinje fiber with a single current pulse (Cranefield and
Aronson, 1974; Jalife and Antzelevitch, 1980; Rosenthal
and Ferrier, 1983). Note that the standard MNT equa-
tions do not support such a response (Fig. 9), unless they
are modified in some way (e.g., Chay and Lee, 1984).
Annihilation was also not found in two systematic experi-
mental studies on heart cell aggregates (van Meerwijk et
al., 1984; Guevara et al., 1986). In the second case, there
are three steady states in the system, one of which is a
saddle point. As previously mentioned, a very slight out-
ward shift in the total current in the pacemaker range of
potentials would suffice to produce such a situation in the
MNT model (see Fig. 9, top). In that case, one would again
expect a transition from type 1 phase resetting to a form of
resetting to which a type could not be ascribed (Clay et al.,
1984; Glass and Winfree, 1984). In both of the above
cases, one would still however expect to see type 0 phase
resetting for a stimulus of sufficiently large amplitude.

While type 1 phase resetting has been clearly demon-
strated (e.g., Fig. 5 of Jalife and Moe, 1976), we know of
no systematic experimental study in Purkinje fiber investi-
gating the transition from type 1 to type O phase resetting.
The data shown in Fig. 9 (triangular symbols) of Jalife and
Moe (1976) have been interpreted as evidence for type 0
phase resetting (Winfree, 1980). However, the correspond-
ing voltage tracings (Fig. 8 B of Jalife and Moe, 1976)
closely resemble those shown in the lower panel of Fig. 4 of
this paper, to which we have not been able to ascribe a
topological type. A sequence of graded waveforms similar
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to that shown in Fig. 5 (right) has been described in many
studies investigating recovery of action potential duration
in Purkinje fiber (e.g., Kao and Hoffman, 1958; Klein et
al., 1972). By analogy to the MNT model results (Fig. 7,
row ), the experimental behavior corresponds to type 0
phase-resetting.

Since type O phase resetting does indeed occur in
Purkinje fiber as outlined above, the type 1/type 0 border
is attainable when stimuli of lower amplitude are delivered.
It is precisely stimuli of this order of magnitude that are
theoretically needed to produce a rotor, the generative
focus of a circulating wave of excitation in one theory for
the initiation of ventricular tachycardia (Winfree, 1983).
In addition, if a stimulus of effectively the same timing and
amplitude as any of those shown in Fig. 4 were to be
delivered to a network of Purkinje fibers, a great deal of
spatiotemporal inhomogeneity would be produced that
could set up optimal conditions for local reentry to occur. It
is interesting to note in this respect that the abrupt
transition can occur quite late in the cycle for stimuli of not
very large amplitude (e.g., Fig. 5, bottom) and that there is
increasing evidence that episodes of ventricular tachycar-
dia and fibrillation are often provoked in a certain class of
patients by premature ventricular contractions falling rela-
tively late in diastole (e.g., Qi et al., 1984). Note that as the
stimulus amplitude increases, the region of abrupt transi-
tion encroaches on the repolarizing limb of the action
potential (Fig. 5, left,; Fig. 7); this period of time coincides
with the so-called “vulnerable phase” where the R-on-T
phenomenon occurs (Wiggers and Wegria, 1940; Smirk,
1949). Supernormal excitability would predispose, to an
even greater extent than in the above case, to enhanced
spatiotemporal inhomogeneity due to the presence of not
just one, but rather two, abrupt transitions. It is therefore
interesting to note that the incidence of malignant arrhyth-
mias provoked by a train of rapid stimuli was much higher
in one study when supernormal excitability existed than
when it did not (Harumi et al., 1974). In fact, the close
proximity of the phase of supernormality to the vulnerable
phase was remarked upon in the original report concerning
the R-on-T phenomenon (Smirk, 1949).

A large variety of coupling patterns arises in the MNT
model when a periodic train of current pulses, rather than
an isolated pulse, is delivered (Guevara, M. R., and A.
Shrier, unpublished observations). It has been previously
demonstrated in several studies that the phase-resetting
response produced by injecting a single stimulus pulse
accounts, in large measure, for the various patterns seen
during periodic stimulation (Moe et al., 1977; Scott, 1979;
Guevara et al., 1981; Glass et al., 1984). In particular, the
topological characteristics of the phase-resetting response
influence the classes of patterns that can be seen under
periodic stimulation in heart cell aggregates (Glass et al.,
1984). It remains to be seen whether, in a similar fashion,
the topological features of the phase-resetting response of
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the MNT model explain the otherwise bewildering array of
patterns seen during periodic stimulation.

APPENDIX

In this Appendix, we provide a brief introduction to the mathematical
theory of phase resetting (for further background, see Winfree, 1980;
Kawato, 1981). The theory developed here is applicable to a system of
continuous ordinary differential equations such as the MNT equations. In
the MNT equations, the state of the system at any point in time is
completely specified by the values of the transmembrane potential ¥ and
the nine activation and inactivation variables m, h, d, f, x,, x,, q, r, and s.
These ten variables can be thought of as defining a ten-dimensional
state-point (V, m, h, d, f, x,, x3, q, r, s) in the ten-dimensional state-space
of the system. Activity then corresponds to movement of the state-point;
this motion generates a trajectory. Starting out at time ¢ = 0 from almost
every set of initial conditions (i.e., values assigned to the ten variables at
t = 0), the trajectory approaches asymptotically (i.e., for very large
times) a closed curve in the ten-dimensional phase space. This closed
curve is called a limit cycle, which is said to be stable, since nearby
trajectories are attracted to it. Thus, the usual spontaneous action
potential generation in the MNT model (Fig. 1, top) corresponds to the
projection onto the V-axis of the movement of the state-point along the
limit cycle.

We can parameterize motion along the limit cycle as follows: choose an
arbitrary point on the limit cycle and assign to that point an (old) phase
(@) of zero. In our work, we have chosen the point corresponding to — 10
mYV on the upstroke of the action potential as our ¢ = 0 reference point.
By integrating forward in time for a time ¢, we can assign an (old) phase
of t/Ty (modulo 1) to any point on the limit cycle, where T, is the
spontaneous period of oscillation.

Consider now two identical oscillators, whose spontaneous activity is
initially synchronous. Injection of a brief stimulus into one of the
oscillators will cause, in general, a shift in the relative timing of the two
oscillators (e.g., compare top and middle panels of Fig. 1); the perturbed
oscillator is said to be phase reset. The magnitude of the phase resetting is
quantified by measuring the shift in the time of occurrence of a marker
event (in our case the crossing of —10 mV on the action potential
upstroke) with respect to an unperturbed control (Fig. 1). As the
trajectory asymptotically (i.e., at # — o) returns to the limit cycle after a
perturbation, these AT; (Fig. 1) approach an asymptotic value. One can
define an ith transient phase shift

A¢; = AT;/Ty (modulo 1) (A1)
and an ith transient new phase
¢i=¢ + AT;/T, (modulo 1), (A2)

where i is a positive integer. A plot of A¢; vs. ¢ is referred to as the ith
transient phase response curve (PRC;), whereas a plot of ¢; vs. ¢ is called
the ith transient phase transition curve (PTC;). Both A¢; and ¢ approach
asympotic values as i — oo. The limiting value of ¢ is called the new or
eventual phase, denoted ¢, whereas a plot of ¢., vs. ¢ is called the new
phase—old phase curve. The rate of convergence of the AT;, A¢;, and ¢; to
their asymptotic values depends on how quickly the trajectory returns to
the limit cycle after a perturbation. This rate is very fast in the MNT
oscillator, since there are only slight differences between ¢3 and ¢;. Thus,
one can take ¢ as a good approximation to the eventual phase ¢..

When the stimulus amplitude is very small and so the perturbation
minimal, one expects that the AT; will be very small, and so from Eq. A2,
¢i = ¢. Thus, a plot of ¢} vs. ¢ will be very close to the diagonal line ¢; = ¢
(e.g., Fig. 7, row 1). Its average slope will be one, and so type 1 phase
resetting is said to occur. When the stimulus amplitude is very high, one
would not expect the AT; to depend on ¢. Thus, a graph of ¢} vs. ¢ would
be expected to yield a curve close to a horizontal straight line. Fig. 7 would
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suggest that such an asymptotic curve is being approached in the MNT
model as the stimulus amplitude increases. In that case the average slope
of the curve is zero, and type 0 phase resetting is said to occur. Note that,
by continuity arguments, any limit cycle oscillator is expected to show
type 1 phase resetting at a sufficiently low stimulus amplitude, and type 0
phase resetting at a sufficiently high amplitude.

As stimulus amplitude is increased, there is a transition from type 1 to
type O phase resetting. Since it is impossible to continuously distort a type
1 curve into a type O curve, there must be at least one amplitude where
there is some sort of discontinuous behavior. This occurs when the
state-point of the system at the end of the current pulse lies in the stable
manifold of an equilibrium point (of which there is only one in the MNT
system; see Fig. 9, top). The stable manifold of an equilibrium point is the
set of initial conditions from which a trajectory asymptotically
approaches the equilibrium point itself. Thus, for a fixed pulse duration,
there will be (at least) one combination of stimulus amplitude and timing
for which spontaneous activity will cease as the state-point, lying in the
stable manifold, asymptotically approaches the equilibrium point. In that
case the eventual phase will be undefined, since the oscillation becomes
extinguished. Note that this behavior only occurs in the absence of
“noise” in the system, since the equilibrium point is unstable (Fig. 9,
bottom). In the presence of noise, the oscillation will restart, but will be
reset randomly to some new phase.
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