A minimal single-channel model for the regularity of beating
in the sinoatrial node
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It has been suggested that the normal irregular beating of the heart is a manifestation of
deterministically chaotic dynamics. Evidence proffered in support of this hypothesis includes a
1/f-like power spectrum, a small noninteger correlation dimension, and self-similarity of the time
series. The major cause of the normal fluctvations in heart rate is the impingement of several nenral
and hormonal control systems upon the sincatrial node, the natural pacemaker of the heart.
However, intrinsic fluctuations of beat rate can be seen in the isolated node, devoid of all neural and
hormonal inputs, and even in a single cell isolated from the node. The electrical activity in such a
single cell is generated by ions flowing through discrete channels in the cell membrane. We decided
to test the hypothesis that the fluctuations in beat rate in a single cell might be due to the fluctuations
in the activity of this population of single channels. We thus assemble a model consisting of 6000
channels and probe jts dynamics. Each channel has one or more gates, all of which must be open to
allow current to flow through the channel. Since these gates are thought to open and close in a
random manner, we model each gate by a Markov process, assigning a pseuderandom number o
each gate every time that it changes state from open to closed or vice versa. This number, in

conjunction with the classical voltage-dependent Hodgkin—Huxley-like rate constants that control
the sneed with which a
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state. We also employ a second method that is much more efficient computationally, in which one
computes the lifetime of the ensemble of 6000 channels. We show that the Monte Carlo model has
behavior consistent with the hypothesis that the irregular beating seen experimentally in single nodal
cells is due to the (psendo)random opening and closing of single channels. However, since the
pseudorandom number generator used in the simulations is deterministic, one cannot state that the
activity in the model is random (or stochastic). Thus, it would be premature to claim that the
irregularity of beating in a single nodal cell is accounted for by the stochastic behavior of a
population of a few thousand single channels lying in the membrane of the cell. Finally, we consider
some implications of our work for the naturally occurring in sity fluctuations in heart rate (“heart
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gate will open or close, then determines when that gate will next change

tion, We therefore decided to formulate a mode! of a single
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We are all well aware of the fact that our own hearts do
not beat with a perfectly regular rhythm, Three lines of evi-
dence exist that might lead one to speculate that this irregular
beating is a manifestation of chaotic dynamics: (i} the corre-
lation dimension of the electrocardiogram is not an
integer,’~ suggesting the existence of a strange attractor; (ii)
there is self-similarity,*~® reminiscent of many chaotic sys-
tems; and (iii) there is a 1/f-like power spectrum,*’ which it
is known can occur in intermittency.®® Kobayashi and
Musha’ raised two possibilities for the origin of the 1/f spec-
trum: it is either intrinsic to electrical activity in the mem-
brane of the sinoatrial node (SAN), the natural pacemaker of
the heart, or it is generated by the neural feedback systems
that control heart rate. It is at present difficult to realistically
model the entire cardiovascular system with its myriad of
feedback control loops. It is even difficult to model the iso-
lated SAN, since it is an extended, inhomogeneous
structure,'®~'2 the details of which are still under investiga-
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SAN cell, in which fluctuations in beat rate are produced by
the opening and closing of single channels in the cell mem-
brane, in order to ascertain the extent to which these pro-
cesses, which are presently thought to be random, might ac-
count for the irregular beating seen experimentally in single
SAN cells,”!> We then go on to discuss the relevance of our
work for the regularity of beating in the intact heart {*‘heart
rate variability™).

il. METHODS

There are several ionic models of spontaneous activity in
the SAN.!® We have chosen to use the model of Irisawa and
Noma,"” simplifying it by removing the fast inward sodivm
current Iy, and the pacemaker current I, (more cornmonly
termed If). This reduced “minimal” model thus has only
three currents: 7 {the slow inward caicium current), I (the
delayed rectifier potassium current), and I; (the time-
independent background or “leak™ current). We did not take
the further simplifying step of making activation of I, time
independent.'®

We use two methods to simulate single-channel dynam-
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ics. In both methods, one assumes that gates behave indepen-
dently of one another, i.e., there is no “cocperativity.” In the
first method,®~2! each gate of each channel is treated indi-
vidually: one can thus refer to it as the “simple” method.?
We illustrate this approach using the I current, which in the
Irisawa~Noma description has but one activation variable
(raised to the first power}, and no inactivation variable. There
is thus only one gate controlling each 7y channel: when that
gate is open, the channel conducts; when it is closed, the
channel does not conduct. The activation gate of each Iy
channel has a pseudorandom number {drawn from a uniform
distribution on (0,1]) assigned to it when it changes state
from open to closed or vice versa. The Hodgkin-Huxley-like
rate constants @, and 8, for the macroscopic Iy current,
which are nonlinear functions of the transmembrane voltage,
control the duration that that particular gate will remain in its
present configuration (i.e., open or closed). The Hodgkin—
Huxley-like equation governing the activation variable p is

dp
E=ap(l_-p)_6pp' (1)

In the traditional interpretation, p gives the fraction of Iy
activation or “p™ gates open at any given time f. In the
simple method, when one is following an individual /i chan-
nel that opens at time f45.,, One assigns a pseudorandom
number r to the gate at that time. One then numerically in-
tegrates until the time ¢, such that
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At time 1, the channel flips from the open state to the
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closed state. A new pseudorandom nuimber is then assigned
to the gate, and Eq. (2) is then used once again to compute
the time to the next opening of the gate, but with 3, being
replaced by @, and £, and t;, switched in the limits of
the integral. The transmembrane potential V is computed us-
ing forward Euler integration of the equation

av

—=—(I+Ixt+I)/C, 3
ds

where C is the cell capacitance, i.e., V(¢+ 8)=V(£)+(dV/
dr) §t, where & is the integration step size, which is fixed at
0.1 ms in the computations presented below involving the
simple method. The smallest activation or inactivation time
constant in the range of potentials considered here is the
activation time constant of 7,, which approaches 1 ms at
depolarized potentials, and so is an order of magnitude larger
than .

In the second method (adopted with modification from
method 2a of Ref. 19), which we term the “complex”
method, one keeps track of the ensemble of
channels.'*'51%22 We illustrate this method for the case
where one has both I, and /x channels present, and no oth-
ers. At each step of the numerical procedure, one keeps track
of the number of I gates (or equivalently, channels) in each
of the two possible states: open (Ng,) and closed (Ny,).
Since it follows from the Irisawa—Noma description of I,

that there is one activation and one inactivation gate for each -

channel, there are four possible states for each 7, channel.
One therefore notes at each step of the procedure the number
of I, channels in each of these four states: N . (activation
and inactivation gate both closed), N, (activation gate
closed, inactivation gate open), N,,. (activation gate open,
inactivation gate closed), and N, (both activation and inac-
tivation gates open). At time ¢, one then calculates a realiza-
tion of the lifetime Az of that state of the ensemble from

Ar=~—(In r)/[apNKc"_ﬂpNKa"— ad(Nscc'f'Nsca) :
+)8d(Ns0c+Nsao)+af(Nscc+Nsoc)

+
e
-
<
@
hx)
-]
[~
2
<
Q
p—
et
—~
I
-

where » is a pseudorandom number drawn from a uniform
distribution on (0,1] at time ¢, a; and B, are the rate con-
stants for the activation variable () of I, and ayand By are
the rate constants for the inactivation variable (f) of
I,. Once Ar is known, one must then decide which of the six
possible transitions actwally occurs at time ¢+ Az, This is
obtained by calculating the probability of occurrence of each
of these transitions [e.g., the probability of the transition be-
ing the one in which a closed p gate opens is given by
a, Ny, divided by the overall rate constant appearing in the
denominator of Eq. (4)]. One then places six intervals next to
one another, with lengths corresponding to each of the six
probabilities calculated above. By construction, the sum of
the lengths of these intervals is one, since one of the six
transitions must occur. To decide which transition occurs,
one then determines into which of these six intervals a sec-
ond pseudorandom number drawn from a uniform distribu-
tion on [0,1] falls. Simple forward Euler integration of Eq.
(3) is then used to determine V(r+Af): ie., V(¢+Ar)
=V()— (I, +Ig+tI)ALC.

The error in the complex method is associated with the
fact that the voltage is actually changing during the time At,
and so the rate constants and the assorted probabilities are
also changing. One can keep this error within bounds by not
allowing the change in voltage during Ar to exceed a certain
maximum limit."® In our algorithm, when V(z+ Ar) exceeds
V(#) by more than 0.4 mV in absolute value, Ar is halved
(successively if need be) and the calculations of the currents
and V(z+ Ar) redone until the desired accuracy is achieved.
For continuous Hodgkin—Huxley-like equations (i.e., not for
the single-channel model), it can be proven that this time-
step-halving algorithm converges.”> Since the probability of
an event occurring in a time At is independent of the prior
history of the system, one can simply carry out the drawing
procedure described above at time r+Af to continue the
stmufation, without affecting the validity of the process.'

Computations were run in single precision (approxi-
mately seven significant decimal digits) on a DECsystem
2100. Programs were written in FORTRAN77 and the system-
supplied double precision library subroutine RAND was used
to produce pseudorandom numnbers to determine open- and
closed-times of gates as outlined above.
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I3, RESULTS

The Irisawa—Noma model follows the Hodgkin—Huxley
formalism, and is thus formally a deterministic system of
continuous noniinear ordinary differential equations. We
shall refer to this model as the “continuous™ model. From
the physiological viewpoint, this type of model corresponds
to a situation in which each ionic current flows through an
infinite number of channels, each of infinitely small conduc-
tance. However, it is now established that there are a finite
number of individual channels in the cell membrane, each
with a discrete conductance, In what follows, the model con-
structed as a population of finite-conductance single chan-
neis, each opening and closing as time progresses, will be
referred to as the “‘single-channel” model.

The first step in producing the single-channel model
from the continuous model is to estimate the number of
channels in a single SAN cell. Since I has a linear open-
channel current—voltage relationship,?* one has

Ix= P, Nyyx(V—Eg), (5)

where V is the transmembrane voltage, P, is the probability
that the activation gate (and therefore the channel itself) will
be open at that voltage, Ny is the number of I channels, 4
is the single-channel conductance, and Ey is the reversal
potential for Iy . An estimate of y of 1.6 pS at physiological
external [K™] has been made from extrapolation of the re-
sults of single-channel voltage-clamp experiments carried
out at unphysiologically high values of external [K*].* Us-
ing Eq. (5)—suitably modified to include a fast inactivation
process not included in the Irisawa—Noma model—an esti-
mare of Ny of 1054=254 (2=13} has been made from ex-
periments carried out in cells with an average capacitance of
about 35 pF.>* We use N =1000 and C=35 pF in the model
below. )

The value of 7, has been estimated to be about 4 pS
from noise analysis carried out in small strips cut out of the
SAN.? We are not aware of any experimentally derived es-
timates of the number of I channels (N,) in isolated SAN
cells. We therefore calculated a value of N, that would be
appropriate for the Irisawa—Noma model. Since [, rectifies
in this model, we computed the slope conductance of the
fully activated, noninactivated current at its reversal potential
of 40 mV, which is positive to where rectification sets in.
This leads to a value of 0.6 mS cm™2 For a single cell
capacitance of 35 pF, this results in a single-cell conductance
of 21 nS. Given the single-channel conductance of 4 pS, one
duivca at & =5250. This resulis in a channei density of 1.5
Mum (assummcr the usual specific capacitance of 13
#F cm™2), which is within the range of 0.1-5.0 gum ™~ re-
ported for neonatal and adult ventricular cells (see Refs. 26
and 27 and references therein). In the model below we use
N,=5000.

Figure 1(a) shows a voltage-clamp simulation, in which
the activation variable p of I in the continuous model is
plotted as a function of time. At =0 ms, p is set to zero,
correspondine to nlnmnmo the transmembrane nnl’flnhn] toa
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very negative value. The voltage is then stepped up to a
potential of +50 mV at r=0 ms, producing almost compiete
activation (i.e., p=1.0} of the current, and then down to —50

mV at t=2000 ms. The variable in the single-channel model
corresponding to p is the fraction of I channels open. Fig-
ure 1(b) shows this fraction for the case when the cell has
1000 fy channeis, which is the number used in our single-
cell model. Figures 1{c) and 1(d) show the results when the
number of Iy channels (N} is reduced to 100 and then fur-
ther to 10. Note the increase in the “noise,” especially vis-
ible upon clamping down to V=-50 mV.

Figure 2 shows a voltage-clamp protocol carried out in

the Slﬂg!& channel model {.N'KHIOOO) in which the s vuuagc is

first stepped to a clamp potential of 0, —20, or ~40 mV at
t=0 ms to activate I, followed by a step down to —50 mV
at £==2500 ms to deactivate the current. As expected, one
sees effects due to the voltage dependence of steady-state
activation and the time constant of activation. The trace at
the bottom of the figure shows a record of the activity in one
of the thousand Ik channels upon clamping to 0 mV. It is
clear that the mean open time is larger at the more depolar-
ized clamp potential than at the more hyperpolarized holding
potential,

Figure 3(a) shows the transmembrane potential as a
function of time in the deterministic three-current minimal
Irisawa—Noma model. The trace is smooth, since, as already
mentioned, it is produced by a continuous system of differ-
ential equations. Figure 3(f) shows the corresponding trace
produced by the single-channel model, with channel num-
bers as estimated above {5000 for [, 1000 for I;). Note the
more irregular look of the trace, especially during the pace-
maker potential. Figures 3(b) and 3(g} show the total current
{Iop) in the two models, while Figs. 3(c) and 3(h) give the
individual currents, In the single-channel model, the back-
ground current () is left in its continuous Hodgkin—Huxley
form (see Sec. IV). Note that the fluctuations visible in f; in
Fig. 3(h} are considerably smaller in amplitude than those in
I, . Figure 3(i) shows the fraction of I and /, channels open
in the single-channel model, while Fig. 3{d) gives the analo-
gous traces {p and df, respectively) in the deterministic
model. Figure 3(j) shows the fraction of the d (I, activation)
and f (I; inactivation) gates open. (The fraction of Iy chan-
nels open [Fig. 3(i)] also gives the fraction of p gates open.)
These three traces of the fractions of d, f, and p gates open
[Figs. 3(i) and 3(j)] show time courses similar to those of the
activation and inactivation variables (d,f,p) in the determin-
istic model [Figs. 3(d) and 3(e)]. While the amplitudes of the
fluctuations in the numbers of 7, and I channels open [Fig.
3(i)] are roughly comparable, there seem to be larger fluc-
tuations in the number of d gates open than in the number of
f gates open [Fig. 3(j)]. In this 750 ms run, the d, £, and p
gates open and close about 10%, 2x10% and 10° times, re-
spectively. Thus the mean value of the lifetime At of the
ensemble of channels [Eq. (4)] is about 6 us.

Figure 4(a) shows 10 s of spontaneous activity in the
single-channel model. The first cycle of this activity was
shown earlier in Fig. 3(f) on an expanded time scale. Figure
4(b) is a tachogram, giving the ith interbeat interval (IBI ) as
a function of interval number (;), valvulal.cu fromas0s 1U115

simulation. A joint interval distribution®® or scattergram of

. this data, in which each IBI—apart from the first—is plotted

versus the preceding 1BI is presented in Fig. 4(c). The inter-

Copyright ©2001. All Rights Reserved.
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made. (a) Continuous Hodgkm-Huxley—]1ke model (b)-(d) Single- channel model with 1000 (b), 100 {c), and 10 () !K channels. In {(2)—{d), integration step

size is 0.1 ms, and data points are plotted every I ms. In (b)—(d),

val histogram® is shown in Fig. 4(d), while the serial cotre-
lation coefficients (R} are shown in Fig. 4(e). 133031 Note the
rapid decline in the R;. The persistence of positive small
nonzero values for j >1 is due to the slow drifts in IBI evi-
dent in Fig. 4(b).% Scramblmg the IBIs with a pseudoran-
dom number generator results in the R oscillating equally
positive and negative about the zero basehne (see also Fig.
2-2 of Ref. 31). This rapid decline to-zero for j=1 shows the
lack of dependence of any given IBI on the preceding IBIs.
Figure 4 showed results for one simulation ruan, starting
out with a partjcular seed value for the pseudorandom num-
ber generator. Figure 5 shows IBIs for four other runs, each
starting out with a different seed value. While it is apparent
that the details of each run are quite different, the mean IBI
of the five-run ensemble is 398 ms and the mean coefficient
of variation (standard deviation divided by mean) of 1BI for
the ensemble is 3.8%. This ensemble mean IBI is extremely
close to the value of 395 ms obtained in ‘the continuous
model [Fig. 3(a)], using a variable time-step algorithm with
an identical upper limit (0.4 mV) on the change in voltage
allowed during one integration time step.*
 When N, and Ny are decreased by a factor of 10 (to S00

“simple” simulation method is used.
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FIG. 2. Top: Simulation of voltage clamp step in single-channel model of
1000 Iy channels. All Iy channels are closed at £=0, at which time V is
stepped to 0, —20, or —40 mV, and thea down to — 350 mV at t=2500 ms.
Bottom: Time series from one of the 1000 channels during the simulation
involving the step to 0 mV. The “simple” simulation method was used, with
0.1 ms integration step size, and data points plotted every 1 ms,
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and 100, respectively), with tenfold increase in single-
channel conductance so as to leave the total conductance
unchanged, there is a marked increase in the irregularity of
beating, with the coefficient of variation of the IBI increasing
to about 12%. ‘
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FIG. 4. 50 s run of spontaneous activity in the single-channel model. (a)
First 10 s of transmembrane potential. (b) Tachogram. {c) IBI scattergram.
{d) IBI histogram. (e) IBI serial correlation coefficients. Mean IBI==400 ms,
coefficient of variation of IBI=3.7%. Same initial conditions as in Fig. 3. In
{a}, not all computed data points are plotted. Computation time for 50 s run
is about 20 min, “Complex” simulation method is used.

IV. DISCUSSION
A. Comparison with experimental data

In healthy human subjects the coefficient of variation for
a run of between 25 and a few hundred heart beats is on the
order of 10%-15%.** In 36 h recordings from isolated rat
hearts, the coefficient of variation also seems to bé of about
the same magnitude.? In the isolated rabbit SAN, the coef-
ficient of variation for one 300-beat run was much smalier,
being about 0.4%.%® Since the isolated SAN is a population
oscillator consisting of many coupled cells, one would ex-
pect it to be considerably more regular than a single SAN
cell.**" This is indeed the case: in runs ranging from 34 to
136 beats in 14 single SAN cells, the coefficient of variation
ranged between 1.4% and 2.8%, averaging 2.0%." The value
obtained in our model of 3.8% [Figs. 4(b} and 3] is thus
about double this experimental value. The most obvious can-
didate to account for this discrepancy is an underestimation
of one or more of the numbers of single channels andfor
overestimation of the single-channel conductance(s). A

HAOS. Val 5 Na 1 1908
Copynght ©2001. All Rights Reserved.



M. R. Guevara and T. J. Lewis: A minimal model for regularity

450 S \ .
(@) ‘

430 !
A .

410 H

oo 111 i

370 F ' ‘ -

350 L L] L I
0 25 50 75 100
INTERVAL NUMBER [i}

125

450 T T T T
(c) :

430 1

410 |

390

370 + . ' ‘ .

25 50 75 100
INTERVAL NUMBER [i]

[
n
«Q

o 125

179

450 T — T .
(o)

el nnlh

410 § i

390 |} |

370

1 1 l

125

350 L 1
25 50 75 100
INTERVAL NUMBER [i}-

450

o -

430 o -

410

e T ——
—

BI; [ms]

390

370 .

350 1 1 1 'l
75 100

25 50 125
INTERVAL NUMBER [i] _

FIG. 5. Tachograms resulting from four simulation runs in the single-channel model, starting with different seeds for the pseudorandom number generator.
Mean [BI and coefficient of variation of IBL (a) 400 ms, 3.9%; (b} 399 ms, 3.8%; (c) 397 ms; 4.1%; (d) 396 ms, 3.6%. “Complex” simulation method is used.

vrandam_ous
QON=wW

Simple ran " alk_{0=ﬂ—n—achn]d mndal af the nacamalker

RLLLWASIIVIL aanliuld il L rvuuvu'lun\.u

potential predicts that the coefficient of variation of IBI
should be inversely proportional to the square-root of the
number of channels present in the membrane.”” Coupling
together several “stochastic” SAN cells produces a result
consistent with this estimate.* Thus one would expect that
increasing the number of 7 channels from our standard value
of 5000 to 10 000 should lead to a coefficient of variation of
about 2.7%. While this is indeed exactly what one finds in
the model, this value lies at the upper end of the range of
reported experimental values. In a recent report involving a
more detailed SAN model,'® in which the estimated number
of I, channels is 10 000, the mean coefficient of variation for
three 100-beat runs was found to be 2.2%."> Our conclusion
from the above results is that the single-channel fluctuations
in the two currents [, and I suffice to account for the major
part of the fluctuations in 1BI experimemélly observed in
single SAN cells. '

MHANG Vsl

[

B. Prohlems with the single-channel model

In the Jrisawa—Noma model, both [y and [, rectify. In
the simulations presented above, we have treated the rectifi-
cation as residing in the single-channel conductance: ie, we
have made the conductance of the open channel (ie., the
single-channel conductance) a function of voltage. However,
the Iy channel is linear in nodat cells,?* and it is a relatively
fast voltage-dépendent inactivation process that lies at the
root of the rectification.® Since this inactivation process is
not included in the Irisawa—Noma description of Iy, we did
not inciude it in our model. In addition, the Irisawa—Noma
equations for I were derived from voltage-clamp experi-
ments carried out on the rabbit SAN. In the guinea-pig SAN,
the major component of Ik present is not [y ., but rather
IK,s ‘38

While I, rectifies in the SAN¥ I, channels have a linear
current—voltage relationship in ventricular cel]s.zf" To make

hMa 1 10QQR
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FIG. 6. Superimposed cycles from 50 s run, the first 10 s of which was
shown in Fig. 4(a). Cycles all start off at =0 when V -crosses —40 mV on
the action potential upstroke.

matters far worse, the simple four-state kinetic scheme for [
used here is probably an oversimplification in the SAN, since
I, channels have much more esoteric kinetics in ventricular
cells, including bursting due to the presence of multiple
closed states. 2. Thus, future work will be needed to explore
how the rectification, multiple closed-state properties, and
species differences change the results presented above,

‘We have not formulated the background current [, of the
Irisawa—Noma meodel as a population of single channels
since we do not feel that it is realistic to do so at the present
time. First of all, the ionic nature of the background current
in the SAN is still undetermined A chloride-sensitive current
has been described,*’ and more recent work describes a cur-
rent carried by both Na™ and K* ions.*! In neither case has
the single-channel conductance been reported. Second, the 1,
current in the Irisawa—Noma model is presumably a sum of
these (and perhaps other yet to be determined) background
currents, as well as other currents, such as the Na®-K*
pump current. Thus we feel that it is premature to include
these currents in a single-channel model. ‘

C. Implications for the intact SAN

There are two major problems in extrapolating the above
results to the intact SAN. First, SAN cells form an inhomo-
geneous population (see Ref. 42 for a recent review of the
ionie currents in SAN cells), with, for example, some cells
possessing much more I, " 1% or I, 7 (Ref. 45) than
others. This inhomogeneity is reflected in the fact that even
simple visual inspection of the records of spontaneous activ-
ity in single cells shows differences in the origin of the 1BI
fluctuations: e.g., fluctuation in action potential duration can
account for anywhere between 20% and 50% of the IBI fluc-
tuation in different cells {see Fig. 1 of Ref. 13, Figs. 4.1 and
4.5 of Ref. 14). In our model, only a small part (roughly
20%) of the IBI fluctuation is traceable to fluctuations in
action potential duration (Fig. 6). While our minimal model
might be a reasonably good caricature of cells from the cen-
tral part of the SAN, cells from the more peripheral parts of
the node can possess significant amounts of Iy, and I,. It

remains to be seen what happens to the regularity of beating
in stngle-channel models of cells that depend on [y, and/or I,
for generation of spontaneous activity. The unusually small
single-channel conductance of 7, (Ref. 46) might result in
more regular beating in cells that depend upon I, for pace-
making.

A second problem is that the couplmg ‘between cells in
the SAN is anisotropic and highly inhomogeneous,*” with
much better coupling in the periphery than in the center.'®
The implications for this in terms of the regularity of beating
in a population oscillator remain unexplored. In addition, the
gap-junctional channels that provide this cell-to-cell cou-
pling themselves gate in a stochastic manner."

D. Random or chaotic?

“Anyone who considers arithmetical methods of produc-
ing random digits is, of course, in a state of sin” [J. von
Neumann (1951}, quoted in Ref. 48].

The above computations show that the fluctuations in
IBI in a model formulated as a population of single channels
is consistent with the experimental data. Thus, it is unlikely
that chaos would have any role in generating the irregular
beating of isolated cells, unless one could replace the sto-
chastic interpretation of the kinetics of single channels with a
chaotic one. ¥ Unfortunately, there is at the present time no
foolproof way of demdmg whether the opening and closing
of a single channel (i.e., an expenmental record correspond-
ing to the simulation shown in the lower part of Fig. 2} is
deterministically chaotic or stochastic.

In addition, there i§ another consideration. A system-
supplred pseudorandom number generator subroutine is used
in the simulations presented above. This algorithm is deter-
ministic, not random or stochastic, since one always obtains
the same sequence if one starts with the same seed value.
This routine belongs to the class of linear congruential gen-
érators which have at their heart a piecewise-linear one-
dimensional finite-difference equation of the form

,+1 =MI;+N (mod m}, " (&)

where /; is the i{th random integer generated, and M, N, and
m are weli-chosen integer constants, with M,N>1,
m=0 485152 o N=0, cne speaks {pure)

ne speaxs ofa \pure) Auuluyuvauvv

congruentral generator For judicious choices of the constants
in Eq. (6), the deterministic sequence of integers produced
has a very long repetition period, low serial correlation, and
passes many of the statistical tests of randomness,*>*5
However, for M > 1, the real (in contrast (o mteger) counter-
part of Eq. (6) generates chaotic- behavror Thus one can
make the argument—even in the case of exact integer arith- .
metic implementation on a computer, with no roundoff or
truncation errors—that the output of Eq. {6) has more in
common with a chaotic process than with a stochastic one.
A single-channel model of squid axon membrane repli-
cates much of the irregular appearance of experimental traces
that are claimed to be chaotic.’ However, since that single-
channel model presumably used a deterministic pseudoran-
dom number generator, the conclusion that a stochastic
single-channel population mechanism can account for the ir-
regularity seen in the experimental traces is premature. Simi-
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lar remarks hold for single-channel models of bursting pan-
creatic 8 cells (see Sec. IV F). Nevertheless, it is unlikely
that the interpretation of the results of these simulations
would be changed, in terms of their characterization using
simple phenomenological measures, should the pseudoran-
dom sequence be replaced with a sequence of numbers that
would be universally accepted as being truly random (e.g.,
one obtained from radioactive decay or a noise diode™). In-
deed, it is unlikely that any presently available technique

“rnnlﬂ ha fﬂ'\]n tay diceriminata hatwaan tha twn cate Af aimon-
QUId De abie to aiscriminale tetween he two sets of simu

lations, given the output voltage tracing from the model as
input data.

The opening or closing of a channel, which is a protein,
is usually taken as being caused by a conformational change
in that molecule, which is governed by the laws of guantum
mechanics. Thus, as previously stated,! deterministically
nonpericdic dynamics can only occur in single channels
should the Copenhagen (statistical) interpretation of guantam
mechanics be replaced by a deterministic mechanism. While
Einstein’s opposition to the Copenhagen interpretation is oft
cited (“God does not play dice with the universe™),> one
can also adopt the view—formulated in a recent study of
whether the toss of a die is chaotic—that “even if a process
in principle is deterministic, we may consider it as random if
the complexity involved is so high that we cannot relate
cause and effect in detail.”>® Or perhaps, more poetically
stated: “In a sense, randomness, like beauty, is in the eye of
the beholder.”>?

E. Heart rate variability: Chaos in the intact heart?

Our study does not rule out the possibility that chaotic

activity might occur in the beating of an isolated SAN cell
over the long term (e.g., due to the presence of intracellular
biochemical feedback mechanisms with time delays). Chaos
might equally well oceur, even in the short term, when many
individually oscillating pacemaker cells are coupled together

~ fry lotad TAN Th, nfr
to form an intact isolated SAN. There are many infracardiac

feedback mechanisms (e.g., stretch of the SAN caused by
pulsation of the sinoatrial nodal artery) that operate to con-
trol nodal rate,” as well as numerous neural and hormonal
regulatory systems. These systems all depend on ion-channel
gating and neurotransmitter release for their action, and
hence have stochastic components. Their characteristic re-
sponse times range from less than a second {(e.g., the barore-
ceptors) to days (e.g., control of blood volume by the kid-
and their feedback gains span many orders of
magmtude.ss It is thus not surprising that IBI47 and blood
pressure> have broadband power spectra. In addition, ultra-
dian frequency components have been described in heart rate
and blood pressure of intact animals,%° and in the beat rate of
isolated hearts.®> In respiration, where self-similar phenom-
enology has also been described,®! there are several discrete
components in the power spectrum with frequencies ranging
over more than two orders of magnitude.

A decrease in heart rate variability (HRV) has been re-
ported in several discase states, mcludmg diabetes,% injury
to the central nervous system,* and congestive heart
failure.5® Decreased HRV predicts a greater mortality after
myocardial infarction®® as well as an increased chance of

nev),
[

sudden cardiac death in patients with coronary heart
disease.3* In obstetrics, loss of HRV in the fetal tachogram is
a dire prognostic sign,67 and, at the other end of life, HRV
decreases with age.m"ﬁ&‘“9 In essential hypertension, several
studies report a decrease in HRV (see Ref. 33 and references
given in Ref. 70), while at least one study reports unchanged
HRV.”! Assuming that fluctuations in heart rate are due to
some underlying chaotic mechanism, it is thus tempting to
raise the question: “Is it healthy to be chaotic?”"? However,

whila IRV micht ha radnecad in hynartancinn hland
WIS MY Mignt o€ reduced in ayperiension, tiood

pPivooulbe
(BP) wvariability is increased (see referemces in Ref., 70).
Thus, while one could take the decreased HRV variability as
a sign of disease in the hypertensive individual, one could
equally well conclude from the increased BP variability that
the hypertensive individual is in fact “healthier” than the
normotensive individual. A similar remark holds for the con-
comitant decrease in HRV and increase in BP variability with
age S68,6971

When qtudvmg ﬂny control system, one should alwavq
keep in the back of one’s mind conmderaﬂon of which vari-
able is the controlled variable. The major system for short
term regulation of the arterial BP is the carotid baroreceptor
reflex. Removal of this “buffer” reflex leads to a great in-
crease in BP variability, but a fall in HRV.**” Individuals
(normal or hypertensive} who have a higher baroreceptor re-
flex gain (slope of line relating IBI to systolic BP) have a
lower BP variability, but a higher HRV.”*™ The conclusion
must be that one is observing the response of a controller that
is attempting to reduce variability in blood pressure (the con-
trolled variable), at the unavoidable expense of increasing
variability in heart rate (an effector branch of the feedback
loop). In fact, reverting to a perhaps old-fashioned interpre-
tation of the concept of homeostasis, one could make the
case that the body is in fact trying to produce a steady state
in the blood pressure.

The baroreceptor feedback loop could conceivably be
the origin of the 1/f spectrum in IBL,*’ since there is a 1/f
falloff in the spectrum of the blood pressure waveform.>
Indeed, in an isolated heart preparation—in which there are
perforce no extra-cardiac regulating systems present—the
IBY spectrum could not be “‘reasonably” fit to a power law
during normal conditions.”

F. Other applications of the single-channel model

There are several other situations in cardiac electro-
physiology in which the single-channel form of the model
might be useful in investigating . effects to which membrane
noise might contribute:*® e.g., the beat-to-beat fluctuations in
action potential duration during 1:1 rhythm in paced isolated
ventricular cells, irregular Wenckebach rhythms in isolated
ventricular cells,* irregular “chaotic” dynamics in periodi-
cally stimulated cefls,”®”” Shil’nikov chaos occurring in the
Trisawa—Noma model,*? and annihilation of activity in spon-
taneously beating prep::trations.78 Finally, there are many
other noncardiac sitnations in which chaotic activity has
been claimed to exist and in which we believe approaches
similar to single-channel modeling will be useful: e.g., burst-
ing activity in pancreatic B-cells,”™® rhythmic activity in
smooth muscle (e.g., in gut, arterioles, and uterus), intracel-
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lular calcium oscillations, neurotransmitter release at nerve
terminals (e.g., resulting in the EEG), and pulsatile release of
hormones by neurons.
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