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Guevara, Michael R., and Habo J. Jongsma. Three ways 
of abolishing automaticity in sinoatrial node: ionic modeling 
and nonlinear dynamics. Am. J. Physiol. 262 (Heart Circ. 
Physiol. 31): H1268-H1286,1992.-A review of the experimen- 
tal literature reveals that there are essentially three qualita- 
tively different ways in which spontaneous activity in the 
sinoatrial node can be abolished. We show that these three 
ways also occur in an ionic model of space-clamped nodal 
membrane. In one of these three ways, injection of a current 
pulse abolishes (“annihilates”) spontaneous action potential 
generation. In the other two ways, as some parameter is 
changed, one sees a sequence of qualitative changes in the 
behavior of the membrane as it is brought to quiescence. In one 
of these two ways there are incrementing prepotentials inter- 
mixed with action potentials, with a maintained small-ampli- 
tude subthreshold oscillation being the limiting case of such 
behavior. Thus both experimental and modeling work indicate 
that the number of ways in which spontaneous activity can be 
abolished, or initiated, in the sinoatrial node is limited. The 
classification into three ways is based on ideas drawn from the 
qualitative theory of differential equations, which are intro- 
duced. The classification scheme can be extended to encompass 
behaviors seen in other cardiac oscillators. 
annihilation; single-pulse triggering; afterpotentials; delayed 
afterdepolarizations; subthreshold oscillations; oscillatory pre- 
potentials; bifurcations; chaos 

ONE CAUSE of the potentially life-threatening cardiac 
arrhythmia called sinoatrial arrest is the cessation of 
spontaneous action potential generation in the sinoatrial 
node (SAN), the principal natural pacemaker of the 
mammalian heart. In a search of the literature we have 
turned up many traces of the transmembrane potential 
showing cessation of spontaneous activity in the SAN as 
the result of some experimental intervention. Perusal of 
these recordings has led us to classify these tracings into 
three groups, showing that there are essentially three 
qualitatively different ways in which the normal spon- 
taneous activity of the node can be abolished. In the first 
way, there is a gradual progressive decline in the ampli- 
tude of the action potential until quiescence occurs. In 
the second way, injection of a brief stimulus pulse anni- 
hilates spontaneous activity, which can then be restarted 
or triggered by injecting a second stimulus pulse. In the 
third way, before the membrane becomes quiescent as 
the result of some intervention that gradually takes hold, 
one sees skipped-beat runs in which spontaneously oc- 
curring action potentials are preceded by one or more 
small-amplitude subthreshold oscillatory prepotentials. 

Because all the traces mentioned come from experi- 

ments carried out on isolated right atria1 preparations or 
on small pieces of tissue isolated from the SAN, the 
extent to which the behaviors seen might be accounted 
for solely by membrane properties of SAN cells is uncer- 
tain. For example, subthreshold deflections resembling 
pre- or afterpotentials recorded in one cell might actually 
be electrotonic potentials reflecting occurrence of block 
of propagation into that area of the SAN (10, 44). To 
avoid this complication in the interpretation of the re- 
sults, we carried out simulations using an ionic model of 
an isopotential patch of membrane, where spatial factors 
of this sort cannot occur. In addition, numerical inves- 
tigation of an ionic model allows one to probe the ionic 
basis underlying the particular behavior observed. 

The model of isopotential SAN membrane studied here 
is that of Irisawa and Noma (36). Because it is a Hodgkin- 
Huxley-type model, it is formulated as a system of non- 
linear ordinary differential equations. A major point of 
this paper is that a branch of nonlinear mathematics, 
bifurcation theory, can be used to obtain significant 
insights into qualitative aspects of the various behaviors 
displayed by this class of model. Indeed, it is our claim 
that one cannot fully appreciate the results of the nu- 
merical simulations presented below and the correspond- 
ing experimental findings without also at least a passing 
acquaintance with concepts stemming from the qualita- 
tive theory of differential equations. We therefore inter- 
weave presentation of the results of numerical simulation 
of the model with interpretations of those simulations in 
terms of the qualitative dynamics of the system. For 
readers wishing to obtain further details about bifurca- 
tion theory, the qualitative theory of differential equa- 
tions, and related aspects of nonlinear mathematics, 
several textbooks that are readable by someone with a 
biological sciences background are now available (1, 25, 
71, 74, 84). 

METHODS 

We investigated the effect of changing, one at a time, many 
different parameters in the Irisawa-Noma (36) ionic model of 
isopotential SAN membrane. In several instances, when a 
parameter was altered sufficiently from its normal value, ter- 
mination of spontaneous activity resulted. The Irisawa-Noma 
model is based on voltage-clamp data recorded from small 
pieces of tissue taken from the rabbit SAN and provides a 
quantitative description of five currents: the fast inward sodium 
current (&), the slow inward calcium current (Is), the delayed 
rectifier potassium current (IK), the hyperpolarization-acti- 
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vated pacemaker current (Ih; commonly termed If), and a time- 
independent leakage current (11). We used two different meth- 
ods of investigation, direct numerical integration of the equa- 
tions and bifurcation analysis. 

Numerical integration. We numerically integrated the Iri- 
sawa-Noma equations in a manner identical to that employed 
in a recent study that showed that this model accounts very 
well for experimentally observed phase-resetting phenomenol- 
ogy (30). We use a variable time-step algorithm that is much 
more efficient than fixed time-step algorithms, yielding equiv- 
alent accuracy with much less computation (79). In addition, 
the convergence of the algorithm for equations of the Hodgkin- 
Huxley type used in this model can be mathematically proven 
(79). By adjusting the integration time step At at any time t to 
be 1 of the 10 values 2N(0.016) ms with 0 5 N 5 9, the change 
in the transmembrane potential AV in iterating from time t to 
time t + At can be kept ~0.4 mV in the simulations shown 
below (with one exception, see Fig. 15). When AV is >0.4 mV, 
the time step is successively halved and the calculation redone 
until a value of A V of <0.4 mV is achieved. When AV is ~0.2 
mV, the time step is doubled for the following iteration. In 
advancing from time t to time t + At, the current is calculated 
using the formula appearing in footnote 2 of Ref. 79. The time 
step is adjusted to a nonstandard value [i.e., #2N(0.016 ms)] 
when a current pulse is injected so that the pulse is turned on 
and off at exactly the right times. L’Hopital’s rule is applied 
when necessary in calculating the rate constants cym, 01f, Pp, all, 
and & as well as the leakage current 11. Initial conditions on V 
and the activation and inactivation variables are V = -60.000 
mV, m = 0.064260, h = 0.92720, d = 0.030477, f = 0.86991, p = 
0.20890, and Q = 0.012767; the initial value of At is 4.096 ms. 
These initial conditions approximate, to five significant decimal 
places, a point on the cycle corresponding to spontaneous 
beating so as to minimize transients due to initial conditions. 
Calculations were carried out using programs written in FOR- 
TRAN on DEC VAX 750 and Hewlett-Packard lOOOF mini- 
computers. 

‘tot 

I No 

‘S 

‘K 

‘h 

‘I 

B 

0’ 2 - 
1 

-1' 

0 t (set) 1 

a 

Bifurcation analysis. We used the computer program AUTO 
(21) to find equilibrium points and periodic orbits in the Iri- -_ 
sawa-Noma equations and to evaluate their stability by calcu- 
lation of eigenvalues and Floquet multipliers, respectively. This 
program generates bifurcation diagrams in which a solution 
branch corresponding to a particular equilibrium point or 
periodic orbit is followed (“continued”) as a parameter is 
changed. A good introduction to eigenvalues, Floquet multi- 
pliers, and continuation techniques can be found in a recent 
textbook (71). We also briefly introduce each of these concepts 
as they make their appearance in RESULTS. 

The double-precision version of AUTO (-16 significant dec- 
imal figures) was used throughout, with all calculations being 
carried out on a VAXstation 3100 or a DECstation 2100. The 
adaptable mesh option was used (IAD = l), and derivatives 
were obtained numerically by differencing rather than being 
supplied analytically (JAC = 0). On the advice of Dr. A. Vinet, 
the number of mesh intervals (NTST) was increased from the 
default value of 10 to 250 and was of course doubled when 
period-doubled orbits were continued. The majority of other 
parameters in AUTO were left at their default values, including 
EPSL = 10-4, EPSS = 10-4, EPSU = 10-4, ITMX = 8, ITNW 
= 5, MXBF = 5, NCOL = 4, NWTN = 3, THETAU = 0.0, 
THETAL (1) = 1. Other parameters (e.g., IRS, DSMIN, 
DSMAX, NMX) were altered depending on the characteristics 
of the particular solution branch being traced. 

Fig. 1. Spontaneous activity in Irisawa-Noma model. A: transmem- 
brane potential ( V) and total transmembrane current (&), fast inward 
sodium current (I&, slow inward calcium current (I,), delayed rectifier 
potassium current (1k), hyperpolarization-activated pacemaker current 
(1h), and time-independent leakage current (11) as functions of time (t). 
Currents are all drawn to same scale and are expressed in units of PA/ 
cm2; V is in mV. Inward currents are negative in sign, outward currents 
are positive. B: simple 2-dimensional limit-cycle oscillator. Circle, 
(stable) limit cycle; x, (unstable) equilibrium point. Trajectories start- 
ing from 3 different initial conditions (a, b, c) are shown. Arrows 
indicate direction of movement along any particular trajectory as time 
progresses. 

RESULTS 

Spontaneous actiuity. Figure lA shows spontaneous 
activity in the Irisawa-Noma model: V, the total trans- 
membrane current (&J, and the individual ionic cur- 

rents mentioned earlier are shown. The interbeat interval 
is 329.2 ms, the maximum diastolic potential is -65.8 
mV, and the overshoot potential is 18.3 mV. These values 
are close to those appearing in the original description 
of the model (36). When double-precision arithmetic is 
used instead of single precision (16 vs. 7 significant 
decimal digits), we obtain traces that superimpose with 
those shown in Fig. lA. In addition, decreasing the limits 
of the ranges of AV and At allowed by a factor of 10 
using single-precision arithmetic produces very little 
change in the waveform, with, for example, the sponta- 
neous interbeat interval increasing by 4%. In what 
follows, we have therefore used single-precision compu- 
tation, the AV limits of 0.2 and 0.4 mV, and the At range 
0.016 ms 5 At 5 8.192 ms. 

During diastolic depolarization the changes in IS and 
11 in Fig. 1 are of comparable magnitude but are oppo- 
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sitely directed. The changes in 1k, 1Na, and 1h are much 
smaller, with 1k changing considerably more than either 
lNa or 1h. In fact, lNa and 1h contribute little to the overall 
activity: removing them both from the model causes 
small changes in the waveform of the action potential 
and increases the spontaneous interbeat interval by 
N20%. 

In the Irisawa-Noma model, the state of the membrane 
at any given point in time is specified completely by the 
values of V, the activation variables m/, d, p, and Q (of 
1Na, &, 1k, and 1h, respectively), and the inactivation 
variables h and f (of 1Na and I,, respectively) at that point 
in time. These seven variables define a seven-dimen- 
sional state point (V, m, h, d, f, p, q) in the seven- 
dimensional state space of the system. Activity then 
corresponds to the movement of this state point in the 
state space, generating a curve called a trajectory. Start- 
ing out at time t = 0 from almost any initial condition 
(i.e., particular combination of V, m, h, d, f, p, q), the 
trajectory asymptotically (i.e., as t --) 00) approaches a 
closed curve in the seven-dimensional state space. This 
closed curve is called a limit cycle or periodic orbit; the 
spontaneous periodic generation of action potentials 
shown in Fig. lA (top trace) corresponds to the projection 
onto the V-axis of the periodic movement of the state 
point along this limit cycle. The limit cycle is said to be 
stable, since any trajectory starting out from an initial 
condition sufficiently close to the limit cycle is asymp- 
totically attracted onto it. For example, injection of a 
current pulse produces a phase-resetting response in 
which recovery from the perturbation occurs as the tra- 
jectory .asymptotically regains the limit cycle (30). In 
contrast, trajectories originating from initial conditions 
in the neighborhood of an unstable limit cycle would be 
repelled from the limit cycle. 

The steady-state current-voltage (I-V) curve of the 
Irisawa-Noma model crosses the current axis at only one 
point, at V = -34.1266 mV. Clamping the membrane to 
this potential therefore asymptotically results in zero 
current flow through the membrane. The other variables 
(i.e., m, h, d, f, p, Q) approach the asymptotic values 
appropriate to that potential [e.g., p + pm = ol&, + 
P) -l, where aP and & are the rate constants for p, the 
a&ivation variable for 1k, evaluated at V = -34.1266 
mV]. The set of initial conditions ( V, moo, hco, d,, fW, pm, 
qm) for V = -34.1266 mV corresponds to an equilibrium 
point or steady state in the phase space of the system, 
since releasing the clamp should theoretically result in 
zero current flow and so quiescence. The fact that com- 
putationally the membrane does not rest at this equilib- 
rium point when computations are started from initial 
conditions very close to it (see below) shows that this 
equilibrium point is unstable. Thus only if one were to 
start off at the exact set of initial conditions (specified 
to an infinite number of decimal places) and use infi- 
nitely precise computation would the membrane poten- 
tial remain at V = -34.1266 mV. There is also a set of 
initial conditions, apart from the equilibrium point, 
starting from any member of which the trajectory will 
asymptotically approach the equilibrium point. This set 
of points forms the stable manifold of the equilibrium 
point. When the equilibrium point is stable, the dimen- 
sionality of this set will be equal to the dimensionality 

of the system (7 in the case of the Irisawa-Noma model) 
so that starting out from any initial condition in a 
(perhaps relatively small) seven-dimensional neighbor- 
hood of the equilibrium point will result in a trajectory 
that is asymptotically attracted onto the equilibrium 
point. When the equilibrium point is unstable, the di- 
mensionality of the stable manifold will be less than 
seven. 

Because it is difficult to visualize dynamics occurring 
in a seven-dimensional state space, let us consider the 
simple schematic two-variable or two-dimensional limit- 
cycle oscillator shown in Fig. 1B to illustrate the above 
concepts. The closed curve is the limit cycle, with the 
arrow indicating the direction in which the state point 
moves along the cycle as time progresses. The limit cycle 
is stable, since starting from initial conditions, such as 
the points labeled a, b, or c, results in an asymptotic 
approach of the corresponding trajectory to the limit 
cycle. The equilibrium point is indicated by the symbol 
x and is unstable, since starting from an initial condition 
very close to the equilibrium point (e.g., point c) results 
in a repulsion of the trajectory away from the equilibrium 
point. Thus there are two structures of interest in the 
phase space of the two-variable system shown in Fig. 1B 
(and in the 7-dimensional phase space of the Irisawa- 
Noma model), an unstable equilibrium point and a stable 
limit cycle. Figure 1B (and other 2-dimensional sketches 
in Figs. 3, 4, 7, 8, 10, 12, and 15) is not to be regarded as 
a formal reduction of the full seven-dimensional state 
space of the Irisawa-Noma equations to a two-dimen- 
sional state space; instead it represents an intrinsically 
two-dimensional system used to illustrate concepts we 
introduce from nonlinear dynamics. 

First way: gradual decline in action potential amplitude. 
In the first way of abolishing activity as some interven- 
tion takes hold, the action potential gradually and con- 
tinuously decreases in amplitude until quiescence occurs. 
Figure 2 shows an example where the maximal conduct- 
ance of I, is decreased gradually in the model. Activity 
very similar in appearance can be seen in experiments 
in which 1s is progressively diminished using one of a 
variety of calcium-channel blocking agents (10, 40). In 
Fig. 2, the frequency of beating slowly decreases to about 
one-half of the initial frequency, and the amplitude of 
the action potential falls in a gradual smooth manner 
until spontaneous activity is extinguished, which agrees 
with the experimental result (e.g., see Refs. 10, 40). The 
first way is also seen experimentally in the SAN when 
many interventions other than blockade of IS are carried 
out, e.g., application of Ba2+ (63) or injection of a con- 
stant depolarizing bias current (53, 55). In these two 
cases, analogous tracings can also be seen in the Irisawa- 
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Fig. 2. V as a function of t as maximal conductance of I, is gradually 
reduced to 0 in a linear fashion over 40 s. 
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Noma model when parameters appropriate to the partic- 
ular experimental intervention are changed. 

Figure 3 shows the behavior when the maximal con- 
ductance of & is reduced to increasingly smaller fixed 
levels and allowed to stay at each of those levels. At any 
given level of block in Fig. 3, B-E, spontaneous activity 
is seen, with the amplitude of the action potential as well 
as the frequency of beating declining as 1s is increasingly 
blocked. Finally, for the maximal conductance set to one- 
fifth of its normal value, spontaneous activity ceases 
(Fig. 3F). 

During the normal spontaneous activity shown in Fig. 
3A, an unstable equilibrium point and a stable limit cycle 
are present. As Is is increasingly blocked (Fig. 3, A-F), 
the limit cycle contracts in size until it collapses onto 
the equilibrium point and disappears. Again, because it 
is difficult to visualize this in a seven-dimensional state 
space, Fig. 3, G-I, shows the analogous case in our simple 
two-dimensional limit-cycle oscillator. As a parameter is 
changed, the original limit cycle (Fig. 3G) shrinks in size 
(Fig. 3H), maintaining the same topology, i.e., a stable 
limit cycle and an unstable equilibrium point. Eventu- 
ally, the limit cycle contracts down onto the equilibrium 

5 
~-80+ 

‘5 20D 

-80. 
2o E 

-8O- 
2o F 

. 
-80, 

0 t(sec) 2 

H I 

$ G 
X X X 

Fig, 3, A-F: Hopf bifurcation in ionic model. V as a function of t. 
Maximal conductance of I, is reduced from its normal value (A) to 0.8 
(B), 0.6 (C), 0.4 (D), 0.3 (E), and 0.2 (F) of that value. G-I: Hopf 
bifurcation in simple 2-dimensional system. As some parameter is 
changed, limit cycle (G) shrinks in size (H), eventually disappearing 
and reversing stability of equilibrium point (I). See text for further 
description. 

point and disappears (Fig. 31)) simultaneously converting 
the unstable equilibrium point in Fig. 3H into a stable 
equilibrium point in Fig. 31. Thus at a value of the 
parameter somewhere between those used in Fig. 3, H 
and I, a bifurcation, a qualitative change in the dynamics, 
has occurred. The exact value of the bifurcation param- 
eter (maximal conductance of 1s in the case of Fig. 3, A- 
F) at which the bifurcation occurs is termed the bifur- 
cation value. The particular type of bifurcation occurring 
here in which the stability of an equilibrium point is 
reversed with the concurrent appearance or disappear- 
ance of a limit cycle is a Hopf bifurcation (1, 25, 71, 74). 

Second way: annihilation. To the best of our knowl- 
edge, the second way of abolishing spontaneous activity 
in the SAN has been described only once, in experiments 
carried out on strips of kitten atrium containing nodal 
tissue placed in a sucrose gap apparatus (37). Injection 
of a subthreshold current pulse of the correct duration, 
amplitude, and timing could then abolish (“annihilate”) 
spontaneous activity. Once activity was so annihilated, 
it could be restarted by injecting a second, suprathreshold 
current pulse. Although we know of only one report of 
annihilation in the SAN, the phenomenon has been 
described in several other cardiac preparations (20, 24, 
38, 68, 72) and in other biological oscillators (35; see 
other refs. in Ref. 84). 

These findings indicate the coexistence of two stable 
structures in the phase space of the system, a stable limit 
cycle and a stable equilibrium point, with the former 
corresponding to spontaneous activity and the latter to 
quiescence. In Hodgkin-Huxley-like systems, such as 
that studied here, it is relatively easy to locate equilib- 
rium points. One simply plots the steady-state I-V curve 
and looks for zero-current crossings as described above. 
The voltage at which such a crossing occurs gives the V- 
coordinate of the equilibrium point, and the other coor- 
dinates (m, h, etc.) are obtained from the asymptotic 
values of those variables (i.e., mco, h,, etc.) appropriate 
to that potential. This procedure yields all equilibrium 
points present in the system, since dV/dt = 0 when the 
total current is zero for a space-clamped system, and the 
rates of change of all activation and inactivation vari- 
ables are zero, since they are set to their asymptotic or 
steady-state values. The Irisawa-Noma model admits 
only one equilibrium point, since, as previously men- 
tioned, there is only one zero-current crossing of its 
steady-state I-V curve (see Fig. 6 of Ref. 36). This 
equilibrium point is unstable, since starting computation 
from initial conditions very near to it results in a re- 
sumption of spontaneous activity (Fig. 4A). Thus anni- 
hilation cannot occur in the standard Irisawa-Noma 
model, since the only equilibrium point present is unsta- 
ble. This prediction of the model agrees with the corre- 
sponding experimental finding in the rabbit SAN where 
clamping the membrane potential of a small, effectively 
isopotential piece of nodal tissue to the voltage corre- 
sponding to the zero-current point for some time and 
then releasing the clamp results not in quiescence but in 
the resumption of spontaneous beating (56). 

However, the standard Irisawa-Noma model can be 
modified to allow annihilation. The first step in this 
process is to remove 1h. Removing 1h has only a small 
effect on the spontaneous frequency, as might be ex- 
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Fig. 4. A-C: saddle-node bifurcation in ionic model. A: integration is 
started from initial conditions appropriate to equilibrium point at V = 
-34.1266 mV in unmodified (i.e., Ih # 0) model. This simulation 
corresponds to clamping membrane potential for infinitely long time 
and then releasing clamp at t = 0. B: steady-state current-voltage (I- 
V) characteristic curve of model with Ih removed and bias current (Ibias) 
= 0.0 (curve a) or 0.392 PA/cm2 (curve b). C: expanded view of curve b 
in B near equilibrium point at VI = -57.85 mV with Ibias = 0.392 PA/ 
cm2. D-F: saddle-node bifurcation in 2-dimensional system. As some 
parameter is changed, a saddle-node equilibrium point (indicated by x) 
suddenly appears (E) in a region of phase space previously containing 
no equilibrium points (D). As parameter is changed further, saddle- 
node breaks up into 2 equilibrium points (F): an unstable node (left) 
and a saddle point (right). 

petted from its smal l contribution to the total cu .rrent 
during the phase of diastolic depolarization (Fig. 14 . 
This small contribution of Ih to generation of the pace- 
maker potential is seen in certa .in regions of the SAN, 
since blocking &, pharmacologically sometimes produces 
only slight changes in the beat rate (12, 41, 57) and 
performing voltage-clamp experiments reveals that 1h is 
often present only in relatively small amounts (11, 12, 
59). The I-V curve with 1h thus removed is shown in 
curue a of Fig. 4B. Note that because total current (I) is 
not a variable of the system, the I-V plane of Fig. 4B is 
not the state space, nor is it some projection of that 
space onto two dimensions. As in the unmodified model, 
there is only one zero-current crossing in curue a of Fig. 
4B, showing that there is still only one equilibrium point 
in the model. Numerical simulation reveals that this 
equilibrium point is unstable, with a trace similar to that 
shown in Fig. 4A, which is from the unmodified model, 
being produced if one starts computation with initial 
conditions close to the equilibrium point. Injection of a 
constant hyperpolarizing bias current (Ibias) to slow fur- 
ther the spontaneous rate causes 
of Fig. 4B to move upward. Eve 

the I-V 
ntually, 

curve (curue a) 
because of the 

N-shape of the I- V curve, two new zero-current crossings 
of the I-V curve are created as the peak of the I- V curve 
moves through the voltage axis (curve b of Fig. 4B; 
expanded view in Fig. 4C), producing two new equilib- 
rium points in the phase space of the system. There is 
thus, once again, a qualitative change in the dynamics, 
since two new equilibrium points (at potentials Vl and 

Vz in Fig. 4C) are created. This de novo creation of two 
new equilibrium points is called a saddle-node bifurca- 
tion of equilibrium points, with one of the points being 
a node and the other a saddle (1, 25, 74). 

Figure 4, D-F, illustrates a saddle-node bifurcation in 
a two-dimensional system. Before the bifurcation takes 
place, there are no equilibrium points present in the part 
of the phase space shown in Fig. 40, which also shows 
five representative trajectories. At the bifurcation point 
(Fig. 4E), there is the creation of a saddle-node, a special 
kind of equilibrium point. Note that this point exists at 
one and only one value of the bifurcation parameter, 
which is again called the bifurcation value. In Fig. 4B, 
the bifurcation parameter is Zbias, and the bifurcation 
value is the value of 1bias at which the peak of the N- 
shaped I- V curve just touches the V-axis at one point as 
1bias is increased. At that exact value, a saddle-node 
equilibrium point is born via a saddle-node bifurcation. 
As the bifurcation parameter is pushed just beyond the 
bifurcation value (Fig. 4F), the saddle-node breaks up 
into two equilibrium points, one a saddle point (equilib- 
rium point to the right in Fig. 4F) and the other a node 
(the equilibrium point to the left in Fig. 48’). The node 
is unstable in this case, since trajectories starting from 
anywhere very close to it leave its immediate vicinity. 
The saddle point is also unstable, since trajectories start- 
ing out from initial conditions almost anywhere in a 
small neighborhood around it leave its vicinity. However, 
there exist two sets of initial conditions that are attracted 
to the saddle asymptotically: starting off with an initial 
condition anywhere on the trajectories labeled a and b 
results in an asymptotic (i.e., as t + 00) approach to the 
saddle point. These two trajectories thus form the stable 
manifold of the equilibrium point, whereas the pair la- 
beled c and d form the unstable manifold of the equilib- 
rium point, since they asymptotically approach the equi- 
librium point should the direction of time be reversed. 
Each of these four trajectories (a-d) is termed a separa- 
trix, since they separate the phase space in the neigh- 
borhood of the saddle point into four distinct regions. A 
trajectory cannot cross over from any one of these four 
regions into another. Thus a saddle point can confer on 
the membrane true all-or-none threshold behavior (17). 

The equilibrium point created in Fig. 4B for the I-V 
curve labeled b and associated with the more depolarized 
potential, labeled V2 in the exploded view of Fig. 4C, is a 
saddle; the other newly created equilibrium point, a node, 
is associated with the more hyperpolarized potential, 
labeled Vl in Fig. 4C. A saddle point, as mentioned above, 
is always unstable. However, a node can be stable or 
unstable. Indeed, on being born at the bifurcation point, 
the equilibrium point associated with the potential Vl is 
unstable. Thus annihilation is once again impossible. 
However, as I bias is increased, there COmeS a point (at Ibias 
= 0.391 pA/cm2) where this equilibrium point reverses 
its stability: for example, by the point where the higher 
value of Ibias employed in Fig. 4c is reached, this equilib- 
rium point has indeed become stable. Thus starting 
integration from an initial condition appropriate to that 
point results in quiescence (Fig. 5A, trace a); in contrast, 
if one starts from, for example, our standard initial 
condition (see METHODS), one obtains spontaneous ac- 
tivity (Fig. 5A, trace b). In this situation, activity can 
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therefore be triggered (Fig. 5B) or annihilated (Fig. 5C) 
by injecting a single current pulse. To trigger activity, 
the pulse must be large enough in amplitude; otherwise, 
only a damped subthreshold response, similar to that 
seen following annihilation in Fig. 5C, occurs. To anni- 
hilate activity, the current pulse amplitude, duration, 
and timing must all lie within certain critical ranges for 
a given polarity of the pulse. For the pulse polarity, 
amplitude, and duration used in Fig. 5C, annihilation is 
seen over a range of coupling intervals that is -60 ms 
wide. 

We have not been able to find annihilation in the 
standard unmodified (i.e., 1h not set to zero) model when 
1biae is applied and changed in increments of 0.001 PA/ 
cm2, despite the fact that there is also in that case a 
range Of Ibias over which three equilibrium points exist. 

The equilibrium point with V = Vl in Fig. 4C is stable, 
since starting out with an initial condition appropriate 
to that point results in quiescence (Fig. 5A, trace a). In 
this case, the system is six-dimensional, since 1h and its 
associated activation variable 4 have been removed. 
There is thus a full six-dimensional null space (6) sur- 
rounding the equilibrium point such that trajectories 
starting at an initial condition anywhere within this six- 
dimensional volume, which forms part of the stable man- 
ifold of the equilibrium point (the set of all initial con- 
ditions from which trajectories asymptotically approach 
the equilibrium point), are asymptotically attracted to 
the stable equilibrium point. Because periodic action 
potential generation can also be seen (Fig. 5A, trace b), 
a stable limit cycle producing t lhat activity must also be 
present in the phase space of the system. Thus in the 
phase space of the system of Fig. 5A there are present at 
least four 0 bjects of topological interest: three equili .b- 
rium points, only one of which is stable, and one stable 
limit cycle. Because there is a full six-dimensional null 
space, there must be a five-dimensional surface (the 
separatrix surface) that divides the phase space into two 
regions. The presence of such a repelling hypersurface is 
necessary to produce a separation of trajectories, with 
trajectories starting from the set of initial conditions to 
the “inside” of the separatrix hypersurface, within the 
null space (which forms part of the basin of attrac tion 
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Fig. 5. Annihilation and single-pulse triggering in ionic model. A: Ih = 
0 and Ibias = 0.392 pA/cm2: integration is started from initial conditions 
appropriate to equilibrium point associated with potential Vl in Fig. 
4C in truce a and from our standard initial conditions (see METHODS) 
in trace b. B: injection of depolarizing current pulse (duration = 20 ms, 
amplitude = -2.0 pA/cm2) at t = 5.85 s triggers activity (initial 
conditions corresponding to point VI). C: injection of depolarizing 
current pulse (duration = 20 ms, amplitude = -0.2 pA/cm2) at t = 5.85 
s annihilates spontaneous activity (standard initial conditions). 

of the equilibrium point) ending up at the equilibrium 
point, whereas those originating from most initial con- 
ditions outside the separatrix surface enclosing the null 
space (the basin of attraction of the limit cycle) asymp- 
totically approach the stable limit cycle. Lying within 
this surface is an unstable limit cycle. How did this 
unstable limit cycle originate? We mentioned that the 
node created at the saddle-node bifurcation was unstable 
when born (at 1’ias H 0.390 pA/cm2), but yet this equilib- 
rium point was stable at the slightly higher value of 1bias 
(0.392 pA/cm2) used in Fig. 5. Thus somewhere between 
I bias = 0.390 and 0.392 pA/cm2, there is a qualitative 
change in the dynamics that came about via a bifurca- 
tion, with the unstable equilibrium point reversing its 
stability, thereby becoming stable, and simultaneously 
spawning an unstable limit cycle in its immediate vicin- 
ity. The bifurcation is thus again a Hopf bifurcation. 
However, unlike the Hopf bifurcation shown earlier in 
Fig. 3, G-I, which is termed supercritical, since stable 
objects exist on both sides of the bifurcation, an unstable 
limit cycle is born rather than a stable limit cycle dying, 
which is termed a subcritical Hopf bifurcation, since 
unstable objects exist on both sides of the bifurcation. 
However, in both cases, the unstable equilibrium point 
becomes stable as the bifurcation parameter is changed. 

The saddle-node and Hopf bifurcations described 
above are summarized nicely in a bifurcation diagram in 
which the value of one of the variables in a system is 
plotted as a function of the bifurcation parameter. In 
this case (Fig. 6A) we plot transmembrane potential vs. 
I bias. The branch abcde of the bifurcation diagram of Fig. 
6A is a plot of the voltage of the equilibrium point(s) as 
Ibias is changed. A solid curve indicates that the equilib- 
rium point is stable, whereas a dashed curve indicates 
that it is unstable. As the hyperpolarizing bias current is 
increased, at point d in Fig. 6A, one has the saddle-node 
bifurcation depicted in Fig. 4B (curue b), when the peak 
of the N-shaped I- V curve intersects the voltage axis. At 
point c in Fig. 6A one has a reverse saddle-node bifurca- 
tion that results when the valley in the I-V curve of Fig. 
4B is pushed up with further increase in Ibias, eventually 
intersecting the voltage axis and resulting in the coales- 
cence and disappearance of two equilibrium points. Thus 
between the values of I bias corresponding to the points d 
and c in Fig. 6A, the system has three equilibrium points, 
with the point lying along the branch cd being the saddle 
point with transmembrane potential V2 in Fig. 4C. 

Also shown on Fig. 6A are two curves bf and bg, which 
form the branch of the bifurcation diagram representing 
the stable periodic orbit responsible for the usual spon- 
taneous generation of action potentials shown in Fig. 5, 
with curue bf giving the overshoot potential and curue bg 
giving the maximum diastolic potential at a particular 
value Of Ibias. As with the gradual decrease of the con- 
ductance of Is shown in Figs. 2 and 3, application of an 
increasingly large depolarizing bias current (i.e., moving 
from right to left in Fig. 6A from Ibias = 0) results in a 
gradual fall in the amplitude of this orbit, with both 
overshoot potential and maximum diastolic potential 
declining. Although we know of no corresponding sys- 
tematic experiment with respect to injection of a depo- 
larizing bias current, the partial experimental results 
now available (55) are consistent with this modeling 
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Fig. 6. Bifurcation diagrams generated with AUTO for ionic model 
with Ih = 0 (see text for further description). Exact values of 1bias at 
which phenomena (e.g., unstable limit cycle in B) occur are slightly 
shifted with respect to computations of Figs. 4 and 5, since double 
precision arithmetic and a- different method of integration are used. C: 
period of stable limit cycle (7’) is given as a function of the bifurcation 
parameter (Ibias)* D: periods of both stable (curve a) and unstable (curve 
b) limit cycles are given; the 2 orbits approach homoclinicity within 
0.0005 PA/cm2 of each other (see also Refs. 16, 80). 

result. At point b, a supercritical Hopf bifurcation occurs, 
with a stable limit cycle and unstable equilibrium point 
coalescing, being replaced by a stable equilibrium point 
(branch ab). 

Figure 6B is an expanded view of Fig. 6A in a neigh- 
borhood of the saddle-node bifurcation (also termed 
knee, turning point, limit point, or fold) labeled d in Fig. 
6A. The equilibrium point at the most negative potential 
in Fig. 6, A and B ( VI in Fig. 4C), is unstable for Ibias 
sufficiently low (i.e., along curue dh in Fig. 6B) but is 
stable for higher Ibias (i.e., to the right of point h). This 
reversal of stability is caused by a subcritical Hopf bifur- 
cation at point h, which produces a low-amplitude unsta- 
ble limit cycle (curues hi and hj give the “overshoot” and 
maximum diastolic potentials of this orbit, respectively). 
There is thus only an extremely narrow range of Ibias 
(CO.001 pA/cm2) over which the stable equilibrium point 
(branch to right of h in Fig. 6B) coexists with the small- 
amplitude unstable limit cycle of Fig. 6B (branch hi-hj) 
and the large-amplitude stable limit cycle of Fig. 6A 
(branch bf-bg), thereby allowing single-pulse triggering 
and annihilation to occur. 

Once again, because it is difficult to exercise one’s 
imagination in six dimensions, to illustrate the topolog- 
ical concepts underlying annihilation and single-pulse 
triggering we consider the simpler two-dimensional case 
shown in Fig. 7A. This is the simplest possible configu- 
ration in which it is possible to obtain annihilation and 
single-pulse triggering. Note that there is only one equi- 
librium point present (indicated by the x) that is stable, 
since starting from initial conditions sufficiently close to 

Fig. 7. Single-pulse triggering (B) and annihilation (C) in 2-dimen- 
sional system (A) possessing stable limit cycle (outer solid curve), 
unstable limit cycle (inner dashed curve), and stable equilibrium point 
(x). See text for further description. 

that point (e.g., point c ) results in an attraction of the 
trajectory asymptotical .ly onto the equilibrium point. 
This point is analogous to the stable equilibrium point 
existing just to the right of point h in Fig. 6B. There are 
two limit cycles present, one lying inside the other. The 
outer limit cycle, the solid curve, is stable, since starting 
out at initial conditions at points a or b sufficiently close 
to it 
that 

results in trajectories 
limit cycle (Fig. 7A ). 

that asymptotically approach 
Movement of the state point 

along this limit-cycle trajectory corresponds to sponta- 
neous generation of action potentials in the Irisawa- 
Noma model (branch bf-bg in Fig. 6A). The inner closed 
dashed curve in Fig. 7A is an unstable limit cycle analo- 
gous to that existing in the Irisawa-Noma model (branch 
hi-hj in Fig. 6B). It is unstable, since trajectories starting 
out from initial conditions quite close to it (e.g., points b 
and c) are repelled away ’ from i .t, ev ,entually en .ding up at 
either one or the other of the two attracting structures 
in the phase space, 
stable limit cycle. 

the stable equilibrium point or the 

Figure 7B illustrates the process of “single-pulse trig- 
gering” (Fig. 5B) in this configuration. Because the sys- 
tem is initially quiescent, this corresponds to the state 
point of the system sitting at the stable equilibrium point 
indicated by the x. In the absence of external perturba- 
tions, the state point will sit there indefinitely. Injection 
of a stimulus pulse can carry the state point away from 
the equilibrium point along the trajectory illustrated in 
Fig. 7B, with the state point ending up at point d at the 
end of the stimul .us pu lse. The trajectory will then wind 
out to the stable limit cycle as indicated. Thus sponta- 
neous activity can be triggered by injecting a single 
stimulus pulse. It is apparent that the stimulus must be 
sufficiently large so that point d lies in the region exterior 
to the orbit of the unstable limit cycle; otherwise, the 
state point will return to the stable equilibrium point, 
following a trajectory similar to that shown in Fig. 7A 
starting from point c, giving a damped oscillatory sub- 
threshold response, and triggering will not occur. In the 
case of Fig. 5B, the stimulus transports the state point 
through the five-dimensional separatrix hypersurface 
and thus out of the six-dimensional null space surround- 
ing the equilibrium point. 

Figure 7C illustrates an example of annihilation in the 
two-variable model. Starting during spontaneous activ- 
ity, i.e., while the state point is moving along the outer 
limit cycle, which is stable, a stimulus is injected when 
the state point lies at point e on the stable limit cycle. 
The stimulus causes the state point to move along the 
trajectory indicated to point f, at which time the stimulus 
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pulse is turned off. The trajectory will then asymptoti- 
cally approach the stable equilibrium point, which is 
attracting. Thus spontaneous activity is annihilated by 
injecting a single stimulus. In the case of annihilation 
shown in Fig. 5C, the stimulus again takes the state point 
to a point lying within the interior of the six-dimensional 
null space surrounding the equilibrium point, after pierc- 
ing the separatrix hypersurface. It is apparent from the 
construction shown in Fig. 7C that only stimuli with 
certain combinations of strength and timing will leave 
the state point within the two-dimensional null space 
forming the interior of the unstable limit cycle. For 
example, a stimulus with the same timing as shown in 
Fig. 7C, but too small or too large in amplitude, might 
put the state point into the annular region lying between 
the two limit cycles (e.g., too large a stimulus delivered 
at point e might take the state point to point b in Fig. 
7A) or even into the region outside the stable limit cycle. 
In both cases, one would have an eventual restoration of 
spontaneous activity due to asymptotic return of the 
state point to the outer, stable limit cycle. The region in 
the (stimulus strength) - (stimulus timing) parameter 
space at which annihilation will be seen has been termed 
the “black hole” by Winfree (84). In general, as the size 
of the unstable cycle grows (e.g., with increasing 1bias in 
Fig. 6B), one expects the size of this black hole to also 
grow. 

The area within the interior of the unstable limit cycle 
in Fig. 7 is thus the stable manifold of the equilibrium 
point, since any initial condition within this area is 
attracted asymptotically onto the equilibrium point. In 
this simple two-dimensional system, the unstable limit 
cycle itself, which is a one-dimensional object, forms the 
separatrix in the system, since trajectories starting at 
initial conditions just to one side (inside) of this cycle 
asymptotically approach the equilibrium point, whereas 
those starting from initial conditions just to the other 
side (i.e., outside) go to the stable limit cycle. In contrast, 
in systems of dimension greater than two, the unstable 
cycle, being a one-dimensional object, cannot itself func- 
tion as a separatrix but is embedded in the higher di- 
mensional separatrix hypersurface. 

The stable and unstable limit cycles shown in Fig. 6, 
A and B, are both born in Hopf bifurcations (at points b 
and h, respectively). They both gradually increase in 
amplitude (branch bf-bg in Fig. 6A, branch hi-hj in Fig. 
6B) and then abruptly disappear. Just before disappear- 
ing, there is a very steep growth in the period of both 
oscillations (Fig. 6, C and 0). The bifurcation producing 
destruction of both of these cycles is thus a homoclinic 
bifurcation (74) in which a periodic orbit collides with a 
saddle point and 

Once again, it 
disappears. 
is easier to visualize this bifurcation in 

a simple schematic two-dimensional system (Fig. 8). We 
illustrate the homoclinic bifurcation analogous to that 
involved in abolishing the small-amplitude unstable orbit 
of Fig. 6B (branch hi-hj). One starts off with the situation 
in Fig. 8A where there is an unstable small-amplitude 
limit cycle (dashed curve) around a stable equilibrium 
point (point a), analogous to the point associated with 
VI in Fig. 4C (and located on the branch to the right of 
point h in Fig. 6B). There is also a saddle point (point 
b) analogous to the saddle point associated with V2 in 

Fig. 8. Homoclinic bifurcation in simple 2-dimensional model. As bi- 
furcation parameter is changed, unstable limit cycle initially present 
(dashed curve in A) grows in amplitude until it collides with saddle 
point (point b in A), producing a homoclinic orbit (dashed curve in B). 
As parameter is changed further, homoclinic orbit disappears, leaving 
a heteroclinic connection (trajectory labeled g) between saddle point 
and stable focus (point u in A). Reversing direction of all arrows on 
trajectories produces a homoclinic bifurcation in which a stable limit 
cycle is destroyed. 

Fig. 4C (and branch cd in Fig. 6A ). As the bifurcation 
parameter is changed, the unstable limit cycle of Fig. 8A 
grows in amplitude, with the state point increasingly 
slowing its rate of progress along the part of the orbit in 
the immediate vicinity of the saddle point. In fact, the 
period of the orbit becomes arbitrarily large as the saddle 
point, where by definition rates of change of all variables 
in the system are zero, is increasingly encroached on by 
the orbit. Eventually, at one exact value of the bifurca- 
tion parameter (the bifurcation value), the orbit collides 
with the saddle point and becomes of infinite period (Fig. 
8B). At this point, one has an intersection of the stable 
and unstable manifolds of the saddle point, with the 
separatrix bc (Fig. 8A), which forms part of the unstable 
manifold of the saddle point, uniting with the separatrix 
bf, which forms part of the stable manifold of that point, 
to produce a single trajectory that is biasymptotic (i.e., 
as t + km) to the saddle point. This trajectory of infinite 
period is called a homoclinic orbit. Pushing the bifurca- 
tion parameter further (Fig. 8C) results in the disap- 
pearance of the homoclinic orbit into the blue, hence one 
alternative name for this bifurcation, the blue-sky catas- 
trophe (74). The trajectory labeled g connecting the 
saddle point to the stable equilibrium point in Fig. 8C is 
termed a heteroclinic connection or orbit. 

Even though we have chosen to illustrate the disap- 
pearance of a small-amplitude unstable limit cycle in Fig. 
8, a similar scenario holds for the disappearance of the 
large-amplitude stable limit cycle at point f-g in Fig. 6A. 
In fact, the approach to homoclinicity of this orbit is 
heralded by the slowing in beat rate caused by the dra- 
matic fall in the rate of diastolic depolarization seen in 
Fig. 5. This decrease is generated by the slow movement 
of the trajectory into a neighborhood of the saddle point, 
with subsequent rapid escape generating the upstroke of 
the action potential. The large-amplitude orbit charac- 
teristic of periodic action potential generation (branch 
bf-bg) thus disappears at large amplitude when hyper- 
polarizing 1bias is applied (at point f-g); in contrast, injec- 
tion of depolarizing 1bias produces a gradual smooth de- 
cline in the amplitude of the action potential to zero (at 
point b). 

Third way: skipped-beat runs. Figure 9 shows an ex- 
ample of the third way of abolishing spontaneous activ- 
ity. A hyperpolarizing current is again injected to slow 
the rate of spontaneous activity but this time in the 
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Fig. 9. Skipped-beat runs and subthreshold oscillation in ionic model. 
Spontaneous activity at 6 different values of 1bies in unmodified (i.e., 1h 
# 0) model: 1biaa = 0.78 (A), 0.79 (B), 0.80 (C), 0.81 (D), 0.814 (E), and 
0.818 (F) pA/cm2. Right: range of potentials from -60 to -50 mV on 
expanded scale. Note appearance of prepotentials in B-D, a maintained 
small-amplitude oscillation in E, and a damped oscillation followed by 
quiescence in F. Standard initial conditions except for F where initial 
conditions corresponding to asymptotic values appropriate to V = -55 
mV are chosen so as to make damped oscillation more evident. 

unmodified (i.e., 1h # 0) model. At first, one sees a gradual 
slowing in the frequency of action potential generation 
until the interbeat interval grows to -2 s (Fig. 9A). As 
1biaa is increased beyond this point, periodic patterns 
containing both action potentials and subthreshold in- 
crementing oscillatory prepotentials (“skipped-beat 
runs”) are observed. These prepotentials are more clearly 
seen in Fig. 9, right, which shows the pacemaker range 
of potential on an expanded scale. As 1bias increases, the 
frequency of occurrence of prepotentials relative to ac- 
tion potentials also increases (Fig. 9, B-D). Eventually 
a maintained subthreshold small-amplitude oscillation is 
seen (Fig. 9E). If 1bias is increased sufficiently, quiescence 
finally occurs (Fig. 98’). Patterns of activity very similar 
to various members of the sequence illustrated in Fig. 9 
have been described in the SAN in response to a variety 
of interventions (e.g., see Refs. 9, 20, 39, 54, 55, 58, 62, 
69, 76,81). In the one instance of these reports in which 
it is straightforward to carry out the analogous simula- 
tion in the Irisawa-Noma model (adding acetylcholine), 
activity similar to that shown in Fig. 9 occurs in the 
model. Indeed, the entire sequence of patterns shown in 
Fig. 9 has been found in small pieces cut out of the SAN 
in which the external potassium concentration is gradu- 
ally elevated and in the corresponding simulations on a 
modified version of the Noble-Noble (52) SAN model 
(M. R. Guevara, T. Opthof, and H. J. Jongsma, unpub- 
lished data). In that case, although excess K+ causes a 
depolarization of maximum diastolic potential and not 
the slight hyperpolarization seen in Fig. 9, there is a 
progressive slowing in the rate of spontaneous diastolic 
depolarization similar to that shown in Fig. 9. This 
decrease in the rate of rise of the pacemaker potential is 
a common feature in many of the reports cited above in 
which skipped-beat runs have been described in the SAN; 
it is also seen in the Irisawa-Noma model and other SAN 
models when skipped-beat runs are produced bv a varietv 

of interventions (Guevara, unpublished data). 
We now explore the bifurcation structure of the var- 

ious rhythms of Fig. 9. We stress that these rhythms are 
only a sampling of those seen with 1bias between 0.780 
and 0.818 PA/cm? For theoretical reasons outlined be- 
low, one expects an infinity of different rhythms, both 
periodic and aperiodic, to exist within this range. The 
rhythm shown in Fig. 9D, which is periodic with a very 
long period (10 s), suggests that the system is close to 
possessing a homoclinic orbit. This particular homoclinic 
orbit is not the same as that described earlier in Fig. 8 
in that it is associated not with a saddle point but with 
a saddle focus. Once again, it is difficult to visualize 
trajectories in a seven-dimensional system: we therefore 
schematically illustrate in Fig. 10 a saddle-focus equilib- 
rium point (indicated by the x) and its associated homo- 
clinic orbit, which is the projection of an orbit in an 
inherently three-dimensional system down onto the two 
dimensions of a sheet of paper. Starting from an initial 
condition at a, which is a point on the homoclinic orbit 
close to the saddle focus, the trajectory first spirals 
outwards roughly in the plane of the paper and then 
makes an excursion out of that plane into the third 
dimension perpendicular to the plane of the paper (part 
of the trajectory labeled b). The orbit then reverses 
direction at c, returning toward the plane of the paper 
(part of trajectory labeled d). The speed of movement of 
the state point then slows, with the trajectory asymptot- 
ically (i.e., as t + 00) approaching the equilibrium point. 
Unlike the homoclinic orbit earlier illustrated in Fig. 8B, 
which involved a saddle point, the type of homoclinic 
orbit occurring in Figs. 9 and 10 cannot occur in a two- 
variable system. It requires a system of dimensionality 
of at least three, since, should the trace shown in Fig. 10 
be regarded as being produced by a two-dimensional 
system, the trajectory would cross itself, thus violating 
uniqueness of solution. 

Starting with an initial condition closer to the equilib- 
rium point than the point a illustrated in Fig. 10 would 
result in the trajectory making a larger number of spiral 
turns in the plane before being ejected out into the third 
dimension. Starting with an initial condition infinitesi- 
mally close to the equilibrium point, an arbitrarily large 

C 

Fig. 10. Homoclinic orbit in 3-dimensional system. x, Equilibrium 
noint, which is a saddle focus. See text for further description. 
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numbe r of spiral turns of the trajectory would be pro- 
duced, whi ch would take an arbitrarily long time. A 
homoclinic orbit is thus a closed trajectory of infinitely 
long period, with the equi librium point bei w both the 
starting and ending point of that orbit. Thus one would 
see, in terms of membrane potential, an infinite number 
of continually incrementing prepotentials (correspond- 
ing to the spiraling out in Fig. 10) that would take an 
infinitely long time to produce a single action potential, 
following which the membrane would asymptotically and 
monotonically return to its resting potential (corre- 
sponding to the approach to the saddle-focus point by 
the part of the trajectory labeled d in Fig. 10). Thus the 
simulations of Fig. 9 suggest that a homoclinic orbit 
involving a saddle-focus likely exists at one precise value 
of 1biaa somewhere between 1bias = 0.810 PA/cm2 (Fig. 9D) 
and 1bias = 0.814 PA/cm2 (Fig. 9E). 

As 1bias is decreased away from the one exact value at 
which the homoclinic orbit involving the saddle focus 
exists, the homoclinic orbit disappears and one of two 
scenarios generally then occurs (23, 26, 82). In the sim- 
pler alternative, which unfortunately does not occur here, 
as the homoclinic orbit is broken one sees a single 
periodic orbit of finite period, with the period of that 
orbit smoothly decreasing as one moves the bifurcation 
parameter away from the bifurcation val ue at which the 
homoclinic orbit existed (e.g., see Fig. 3.1(i) in Ref. 26). 
The homoclinic orbit can then be regarded as the limiting 
case of this unique orbit as the bifurcation parameter is 
changed in the other direction back to the value produc- 
ing homoclinicity. In the alternative, more complex, case 
that occurs here, more than one periodic orbit is born as 
the bifurcation parameter is moved through a range of 
values close to the value producing the homoclinic orbit 
of Fig. 10. The number of such orbits can be finite (e.g., 
see Figs. 3.8, 4.7 of Ref. 26) or infinite (e.g., see Fig. 3 of 
Ref. 23, Fig. 3.4 of Ref. 26, Fig. 3.2.41 of Ref. 82). In the 
simulations of Fig. 9, a large number of stable periodic 
rhythms are produced over a rather small range of 1bias 
(-0.03 pA/cm2) adjacent to the value of 1bias at which the 
homoclinic orbit exists. In Fig. 9, we show only a few of 
these traces; however, many other more complex periodic 
rhythms (not shown) are seen when 1bias is changed more 
finely within the range 0.780 PA/cm2 c 1bias c 0.814 PA/ c) 
cm”. 

How are 
die? Some 
bifurcation 

these periodic orbits born, and how do they 
of these orbits are born through saddle- node 
s of periodic orbits, whereas others are born 

via period-doubling bifurcations (23, 26, 82). Figure 11, 
a partial bifurcation diagram computed using AUTO for 
the simulations of Fig. 9, gives examples of both of these 
bifurcations. As is the case when 1h is removed from the 
model (Fig. 6A), injection of a depolarizing bias current 
produces a supercritical Hopf bifurcation at point b (Fig. 
1 lA ), and there is again a region of coexistence of three 
equilibrium points in response to a hyperpolarizing bias 
current (Fig. 11B). However, there is not a subcritical 
Hopf bifurcation producing a small-amplitude unstable 
limit cycle in this region of coexistence, as in Fig. 6B, 
but rather a supercritical Hopf bifurcation at point c (Fig. 
llB), which lies outside of this region, producing the 
small-amplitude stable oscillation of Fig. 9E. Thus, as 
direct numerical integration has already shown (Fig. 4A ), 
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Fig. 11. A and B: bifurcation diagrams generated by AUTO in unmod- 
ified (i.e., 1h # 0) ionic model. C: stable small-amplitude subthreshold 
oscillation at value of Ibias (-0.81102 pA/cm2) close to maximum am- 
plitude of orbit (point g-h in B). Slight decrease in 1bias results in a 
period-doubling bifurcation. D: stable period-doubled subthreshold os- 
cillation at value of Ibias (-0.81085 pA/cm2) close to maximum ampli- 
tude. Further slight decrease in 1bias produces a second period-doubling 
bifurcation. 

the annihilation and single-pulse triggering of Fig. 5 (&, 
removed) cannot occur in the unmodified Irisawa-Noma 
model. Unlike the case in Fig. 6B, the small-amplitude 
orbit of Fig. 11B (branch cg-ch) does not terminate and 
vanish in a homoclinic orbit involving the saddle point, 
which is relatively far removed. Rather a period-doubling 
bifurcation occurs in which the small-amplitude limit 
cycle, stable along branch cg-ch, grows in amplitude as 
1bias is decreased from its birth at point c until it becomes 
unstable at point g-h, spawning a stable limit cycle of 
about twice the period, but about the same amplitude, of 
the original but now destabilized limit cycle. This stable 
period-doubled orbit exists only over a very narrow range 
of Ibias, too small to be shown in Fig. 11B. It grows in 
amplitude as I bias is reduced and itself undergoes another 
period-doubling bifurcation. Figure 11C shows one cycle 
of the small-amplitude oscillation at a value of Ibias just 
before it undergoes the first period doubling at point g- 
h, whereas Fig. 11D shows one cycle of the period- 
doubled oscillation just before it period doubles the sec- 
ond time. We return to discussion of period-doubled 
orbits at a later stage. 

How does the large-amplitude limit cycle represented 
by branch be@ in Fig. llA, corresponding to the spon- 
taneous action potential generation of Fig. 9A, disappear 
at point e-f? Again, the situation is different from that 
shown in Fig. 6C (&, = 0): the limit cycle does not 
disappear abruptly in a homoclinic bifurcation as in Fig. 
6C; rather, it collides with an unstable limit cycle and 
both orbits disappear at point e-f via a saddle-node 
bifurcation of periodic orbits. Although, for reasons pre- 
viously mentioned, the traces shown in Fig. 9 can only 
be generated in a system having dimensionality of at 
least three, a saddle-node bifurcation of periodic orbits 
can occur in systems of dimensionality as low as two: 
Fig. 12 illustrates such a bifurcation in a simple two- 
dimensional system. In Fig. 12A, there are no periodic 
orbits present, only a stable equil ibrium point. As the 
bifurcation parameter is than d, a large-a .mplitude limit 
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Fig. 12. Saddle-node bifurcation of periodic orbits in &dimensional 
system. As a parameter is changed to its bifurcation value, a large- 
amplitude semistable limit cycle (B) suddenly appears in a region of 
phase space previously containing no periodic orbits (A). As parameter 
is changed further, semistable cycle splits up into 2 limit cycles (C): 
one stable (outer solid curve) and other unstable (inner dashed curve). 
See text for further description. 

cycle suddenly appears (Fig. 12B) via a saddle-node 
bifurcation of periodic orbits. The limit cycle is semi- 
stable, being attracting from one side (trajectory with 
initial condition a in Fig. l2B) but repelling from the 
other side (trajectory with initial condition b). Like the 
homoclinic orbits of Figs. 8B and 10, this semistable 
orbit exists only at one precise value of the bifurcation 
parameter, the bifurcation value (the value of 1bias cor- 
responding to the points e and f in Fig. 1lA). As the 
bifurcation parameter is pushed just beyond this point, 
the semistable limit cycle breaks up into two limit cycles, 
one stable and the other unstable (Fig. 12C). Note that 
the configuration shown in Fig. 12C is exactly that shown 
earlier in Fig. 7, which is the topology allowing annihi- 
lation and single-pulse triggering. Indeed, it is a saddle- 
node bifurcation generating stable and unstable limit 
cycles that allows these phenomena to occur in the 
Hodgkin-Huxley equations in response to injection of a 
steady bias current (see Fig. 9 of Ref. 35) instead of the 
homoclinic bifurcation of Fig. 6B. 

Skipped-beat runs similar to some of those shown in 
Fig. 9 can be seen in the response of the model to 1bias if 
lNa or both lNa and 1h are removed. However, in the latter 
case these rhythms take place over a range of 1bias where 
there are three equilibrium points in the system. Because 
more than one equilibrium point is present, it is possible 
that heteroclinic connections, cycles, or orbits can occur, 
with trajectories connecting different equilibrium points 
(1, 71, 74, 82). In addition, because one of the three 
equilibrium points present is a saddle, it is possible that 
homoclinic orbits of the type illustrated in Fig. 8 exist 
about that point. The existence of hetero- and homoclinic 
trajectories can result in various bifurcations that pro- 
duce or destroy limit cycles, e.g., the previously men- 
tioned homoclinic bifurcation, as well as the omega ex- 
plosion (74). This situation of coexistence of multiple 
equilibria when both lNa and 1h are removed is in contrast 
to the unmodified model (Fig. 11, A and B), or when 
only lNa is removed, or when 11 is increased in a reduced 
three-dimensional model (33) where skipped-beat 
rhythms occur when there is only one equilibrium point 
(a saddle focus) present in the phase space of the system. 
In addition, the basic rhythm of Fig. 9A, as well as at 
least some of the skipped-beat rhythms, can be annihi- 
lated and single-pulse triggered when both lNa and 1h are 
removed, since the equilibrium point lying at the most 

hyperpolarized potential is stable in that circumstance 
(as in Fig. 4C). 

Ionic mechanisms of skipped-beat runs. We now turn 
to investigate briefly the ionic mechanisms underlying 
the generation of the traces shown in Fig. 9. Figure 13 
displays the various ionic currents during the rhythms 
shown in Fig. 9, B and E. Note that, as is the case during 
spontaneous activity (Fig. l), the three currents 1Na, 1k, 
and 1h contribute but little to the evolution of the voltage 
waveform during diastole, and once again the changes in 
Is and 11 are much larger, being almost exactly equal in 
magnitude but opposite in sign. The three indispensible 
currents involved in producing the skipped-beat rhythms 
shown in Fig. 9 can be said to be IS, 1k, and 11, since, if 
lNa and 1h are both removed from the model, skipped 
beat runs can be seen at 1bias = 0.348 pA/cm2. In addition, 
with lNa and 1h both so removed from the model, which 
then becomes four-dimensional (variables: V, d, f, p), 
annihilation and single-pulse triggering can also be 
found. In fact, should the activation of &, be made time 
independent (i.e., d = d, at all times), which is a reason- 
able approximation given the slow upstroke velocity of 
the action potential, the model becomes three-dimen- 
sional (variables: V, f, p) but is still capable of displaying 
annihilation and single-pulse triggering (33), as well as 
skipped-beat runs, both of which occur once again in a 
range Of Ibias where there are three equilibrium points 
present in the system. 

Afterpotentials and eigenvalues. In Fig. 9F, the mem- 
brane becomes quiescent in response to injection of a 
sufficiently large hyperpolarizing bias current. A decre- 
menting oscillation of small amplitude is seen to precede 
the eventual establishment of quiescence in the steady 
state (Fig. 9F, right). If an action potential is provoked 
by a suprathreshold current pulse during this quiescence, 
one sees a train of decaying afterpotentials following the 
induced action potential that is similar to the damped 
oscillation shown in Fig. 9F but smaller in amplitude, 
indicating that the approach of the trajectory to the 
equilibrium point is modulated by currents activated 
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Fig. 13. Ionic basis of skipped-beat rhythm of Fig. 9B (A) and of 
subthreshold oscillation of Fig. 9E (23). Transmembrane potential and 
currents as in Fig. 1. All currents drawn to same scale. 
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during the action potentia 
as soon as Ibias is j ust large 

1 
e 

Indeed, this behavior is seen 
nough to produce quiescence. 

In that circumstance, injection of a subthreshold stimu- 
lus pulse produces a “ringing” in the membrane (Fig. 
14B). As Ibias is increased, the damped oscillation starts 
off with a lower amplitude of its first peak and damps 
out more quickly (Fig. 14, B-E). Mathematically, the 
appearance of the damped oscillation as Ibias is increased 
is due to the conversion of the equilibrium point in the 
system of Fig. 14A, when a maintained subthreshold 
oscillation is present, from an unstable focus or spiral 
point to a stable focus via a Hopf bifurcation (at point c 

, in Fig. 11B). 
One can linearize the nonlinear Irisawa-Noma equa- 

tions around the equilibrium point and calculate seven 
eigenvalues, numbers that characterize the behavior of 
the trajectories in an infinitesimally small neighborhood 
of state space about the equilibrium point (1, 2, 14, 25, 
71, 74). When the oscillation in Fig. 14A exists, two of 
these eigenvalues are a pair of complex conjugate num- 
bers with positive real part; the other five eigenvalues 
are negative real numbers. It is this positivity of the real 
part of the complex eigenvalue pair that makes the 
equilibrium point unstable and that is responsible for the 
trajectory spiraling away from it as time proceeds (Fig. 
14A). As Ibias is increased, the real part of the complex 
pair decreases, and a Hopf bifurcation occurs, by defini- 
tion, when the eigenvalues become purely imaginary, 
with zero real part (at point c in Fig. 1lB). For Ibias 
greater than this bifurcation value, the real part of the 
pair of complex conjugate eigenvalues becomes negative, 
producing a stable equilibrium point (branch to right of 
point c in Fig. 11B). The fact that there is still a nonzero 
imaginary part of the eigenvalues results in oscillatory 
behavior, which is damped since the equilibrium point is 
stable (Fig. 14, B-E). As Ibias increases further, the real 
part of the complex pair becomes increasingly negative, 
leading to the progressively increasing level of damping 
shown in Fig. 14. In contrast, there is slower change in 
the imaginary part, leading to much smaller changes in 
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Fig. 14. Subthreshold potentials during quiescence. 1bias = 0.814 (A), 
0.82 (B), 0.83 (C), 0.85 (D), and 0.90 (E) pA/cm2. A maintained 
subthreshold oscillation is present in A. Membrane is quiescent in B- 
E, with a hyperpolarizing pulse of amplitude 0.05 PA/cm2 and duration 
20 ms injected at t = 10 s. Initial conditions in each case are close to 
equilibrium point, which is unstable in A but stable in B-E. 

the frequency of the damped oscillatory response. Even- 
tually, at a sufficiently high value Of Ibias (-1.17 pA/cm2), 
the imaginary part of the complex pair of eigenvalues 
goes to zero, with the complex pair being replaced by two 
negative real eigenvalues, removing the oscillatory com- 
ponent of the dynamics but maintaining the stability of 
the equilibrium point. The stable focus is thus replaced 
by a stable node (1, 14, 25, 71, 74), with a monotonic 
(i.e., nonoscillatory) approach of the state point to the 
equilibrium point following a perturbation. A similar 
transition from a stable focus to a stable node occurs as 
an increasingly large depolarizing Ibias is injected at Ibias 
= -4.55 PA/cm2 (to the left of point a in Fig. 1lA). 

Limit cycles and Floquet multipliers. In the same way 
that one can linearize a system of nonlinear differential 
equations about an equilibrium point, one can also li- 
nearize a system about a limit cycle. Instead of obtaining 
eigenvalues, one obtains Floquet multipliers, which char- 
acterize the nature of the trajectories in an infinitesimal 
neighborhood of the limit cycle (71, 74). One of these 
multipliers i s always equal to unity, reflecting the motion 
of the state point along the direction of the limit cycle 
trajectory itself. The other multipliers, which are N - 1 
in number in an N-dimensional system, are generally 
complex numbers. The limit cycle is stable when all of 
those other N - 1 complex numbers lie within the unit 
circle. A stable limit cycle thus destabilizes through a 
bifurcation when one or two Floquet multipliers move 
away from the origin and eventually cross the unit circle 
as some parameter is changed. This can happen in one 
of three ways: a single real-valued Floquet multiplier 
crosses the unit circle by becoming more negative than 
-1, producing a period-doubling bifurcation; a single 
real-valued multiplier crosses through +l, producing a 
saddle-node bifurcation of periodic orbits; and a complex 
pair of multipliers intersects the unit circle, producing a 
torus bifurcation, after which orbits, which can be 
periodic or aperiodic, move on a toroidal hypersurface. 
In the first and third cases, the original limit cycle 
persists beyond the bifurcation point but is unstable. 
Thus it is numerical calculation of the Floquet multi- 
pliers using AUTO that allows us to determine the sta- 
bility of the limit cycles in Figs. 6 and 11. 

DISCUSSION 

The traces presented above are not the first to show 
abolition of spontaneous activity in an SAN model as 
some intervention is made: for example, cessation of 
activity has been previously demonstrated as a result of 
adding a bias current (86), decreasing 1s (12, 75), adding 
acetylcholine (75, 86), increasing the internal sodium 
concentration (52), or blocking either of the calcium 
currents IL or IT (51). However, in these previous studies, 
the parameter under consideration was changed in steps 
too coarse to allow precise determination of how spon- 
taneous activity would cease. In fact, the point of these 
other simulations was simply that spontaneous activity 
would disappear if the change made was sufficiently 
great. The present study is the first to probe finely the 
various routes leading to quiescence in an ionic model of 
SAN isopotential membrane. 

First way. The first way of abolishing activity (Figs. 2 
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and 3) has been described as a result of several different 
interventions in the SAN (10,40,50,63, 70). A common 
feature of these interventions is a gradual progressive 
primary reduction in either I, or 1k, producing a continual 
smooth fall in the size of the upstroke or repolarization 
phase of the action potential, respectively. A fall in the 
size of either of these two phases also leads to a fall in 
the other: a primary decrease in 1s leads to a fall in 
overshoot potential, decreased activation of 1k, and a 
more depolarized maximum diastolic potential; a primary 
decrease in 1k produces a more depolarized maximum 
diastolic potential, increased resting inactivation of I, 
during diastole, and a fall in the overshoot potential. 
Thus, in both cases, the action potential amplitude (the 
difference between overshoot and maximum diastolic 
potentials) declines. As in Figs. 2 and 3, where Is is 
blocked, blocking 1k in the Irisawa-Noma model also 
produces a gradual fall in action potential amplitude. 

Second way. Annihilation and single-pulse triggering 
become possible when there is coexistence of a stable 
equilibrium point and a stable limit cycle (Fig. 7). Indeed, 
it was this theoretical concept that led Appleton and van 
der Pol (4) in 1922 to search for and find single-pulse 
triggering in a simple electronic oscillator. Indeed, oscil- 
lators with the topology shown in Fig. 7A are referred to 
in the engineering literature as “hard” oscillators, since 
they must be excited in some way with a shock of finite 
amplitude to be started up (in contrast to the “soft” 
oscillator of Fig. 3G). Teorell (see Ref. 73 and references 
to earlier work contained therein) invoked the concept 
of a hard oscillator to explain the “single-pulse initiation” 
and “brief-pulse annihilation” that he had observed in 
analogue computer simulations of a physical model of a 
mechanoreceptor. It was also theoretical work, based on 
consideration of the topology of phase resetting and the 
implied existence of a “singular stimulus,” that led Win- 
free (83) some years later to independently propose the 
concept of annihilation. This pioneering work of Winfree 
directly led experimentalists to conduct the first system- 
atic searches for annihilation in several biological prep- 
arations, including cardiac tissue (35, 37, 38). Although 
several examples of a premature stimulus annihilating 
spontaneous activity had appeared in the cardiac litera- 
ture before these systematic searches were made (see 
discussion in chapt. VIII of Ref. 20), no theoretical 
interpretation of those isolated results was offered. 

Annihilation. Although there are many experimental 
studies showing at least some features of the first and 
third routes to quiescence in the SAN, we know of only 
one report in which this second route (annihilation) has 
been described in the SAN (37). As previously noted, the 
results of another experimental study indicate that an- 
nihilation should not be possible (56). The reasons for 
the diametrically opposing results in these two studies 
are unknown; they might, for example, simply involve 
species differences [cat (37) vs. rabbit (56)] or differences 
in the experimental preparation [sucrose-gap (37) vs. 
small piece (56)]. However, it must be kept in mind that 
the SAN is an inhomogeneous structure with, for exam- 
ple, action potentials of many different morphologies 
being recorded in different areas of the node (7). Thus 
the contrasting results of Jalife and Antzelevitch (37) 
and Noma and Irisawa (56) might be due to differences 

in the sites from which the SAN specimens were taken. 
Recent work has shown that many of the electrophysio- 
logical differences in small pieces of tissue taken from 
different sites are largely intrinsic, being local properties 
of the cell membrane, and are not due to electrotonic 
interactions (39,41,61). This conclusion is reinforced by 
more recent work using single SAN cells (59). 

In some pieces of tissue isolated from the SAN, volt- 
age-clamp experiments indicate that 1h is present only in 
relatively small amounts in the pacemaker range of po- 
tential, and so 1h would be expected to play a negligible 
role in generating spontaneous diastolic depolarization 
in those pieces (11,12). More recent work on single cells 
isolated from electrophysiologically unidentified areas of 
the SAN indicates that there is significant variability in 
the amount of 1h (pA/pF) present in different cells (59). 
In fact, blocking 1h with Cs2+ in some small-piece prep- 
arations produces only a slight decrease in rate (12, 41, 
57). In contast, in other pieces, a significant amount of 
1h is activated by a voltage-clamp step into the pacemaker 
range of potentials (11, 12, 48), and relatively large 
changes in beat rate can be produced when Cs2+ is applied 
(12, 41, 57). In the Irisawa-Noma model in which a 
hyperpolarizing bias current is applied, our work indi- 
cates that 1h must be absent (or sufficiently reduced) for 
annihilation to be seen. The exact degree of reduction is 
very delicate, depending on the details of the model. For 
example, in the predecessor of the Irisawa-Noma model, 
which also has a small contribution of &, it is not 
necessary to reduce 1h to see annihilation (43). In this 
respect, it is interesting to note that in both experimental 
and modeling work on two other cardiac tissues in which 
annihilation has been demonstrated [depolarized Pur- 
kinje fibre (15, 38, 68), depolarized ventricular muscle 
(1% 24, 68)1, one would also expect a negligible contri- 
bution of 1b to the generation of diastolic depolarization. 

In addition, in all three of these tissues, lNa is substan- 
tially reduced as a consequence of inactivation secondary 
to depolarization of the membrane, a feature shared with 
the Irisawa-Noma model. In a very recent report using a 
fourth preparation, the embryonic chick atria1 heart cell 
aggregate, which does not possess &, annihilation could 
not be produced unless I Nap which is relatively large in 
this preparation, was at least partially blocked with 
tetrodotoxin (72). Computer simulation using an ionic 
model of this preparation is also in agreement with this 
experimental finding (72). Once again, different areas of 
the SAN show evidence of intrinsically possessing radi- 
cally different amounts of INa (39, 41,61). Finally, in the 
one reported case of annihilation in the SAN, the inter- 
beat interval was quite long for a kitten C-390 ms in Fig. 
1 and -670 ms in Fig. 2 of Ref. 37 vs. a mean interval of 
375 t 41.4 (SD) ms in 12 isolated SAN preparations 
from cats weighing 2.5-4.5 kg in Ref. 601. This is con- 
sistent with our finding in the model (Fig. 5C) that 
annihilation is only seen when the interbeat interval is 
prolonged significantly by, for example, injecting a hy- 
perpolarizing bias current. The fact that annihilation is 
not seen in the model with 1h present in sufficiently large 
amounts might indicate that 1h is playing a protective 
role in the peripheral areas of the SAN, where it is 
present in considerable amounts, in that it prevents 
annihilation from occurring in the primary natural pace- 
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maker of the mammalian heart in response to an other- 
wise suitably timed premature atria1 contraction. The 
study with atria1 aggregates mentioned above might also 
indicate that lNa is playing a similar protective role in 
peripheral areas of the node where it is also present in 
large amounts. 

One other point that might have some bearing on the 
differences in the two studies is the fact that the equilib- 
rium point that is created anew (at voltage VI in Fig. 4C) 
as 1bias is changed can be stable, thus allowing annihila- 
tion to be seen. For this point to be created, the steady- 
state I-V characteristic curve must be N-shaped, having 
a region of negative slope. However, most published I-V 
curves from the SAN have an N-shaped region that is 
either very shallow or even entirely absent (48, 53, 57). 
Indeed, in the Irisawa-Noma model, either modified (by 
removing 1h) or unmodified, the I- Vcurve is very shallow, 
with the region of negative slope conductance disappear- 
ing if, for example, the lNa window current is removed. 
Therefore three equilibria exist over only a very small 
range of the parameter being changed (0.3897 PA/cm2 < 
1bias C 0.6085 PA/cm2 in the case of Fig. 6A), and the 
possibility of annihilation exists only over a much 
smaller part of this already small range (0.3909 PA/cm2 
< Ibias < 0.3916 PA/cm2 in Fig. 6B). In Purkinje fiber 
and ventricular muscle, the N-shaped region of negative- 
slope conductance is much more prominent. Single-pulse 
triggering and annihilation resembling that shown in 
Fig. 5, i.e., with the resting potential lying in the pace- 
maker and not the plateau range of potentials, can be 
seen in a model of Purkinje fiber with 1h removed (Gue- 
vara, unpublished data) and in models of ventricular 
muscle (16, SO), which do not possess 1h, in response to 
injection of a depolarizing bias current. In both cases, 
the I- Vcurve has three zero-current crossings when these 
phenomena occur (Guevara, unpublished data and Refs. 
16,80, respectively). Because voltage-clamp studies were 
not carried out in the one reported case of annihilation 
(37), one cannot say at this time whether the existence 
of an N-shaped I-V curve is crucial in allowing annihi- 
lation to be seen in the SAN, as Figs. 4 and 5 might 
indicate. Nevertheless, in the one reported case of anni- 
hilation in the kitten SAN (Fig. 1 of Ref. 37), the mem- 
brane potential did come to rest at about -53 mV. This 
zero-current potential is -15-20 mV hyperpolarized with 
respect to that in the rabbit SAN (56) but is consistent 
with the scenario in Fig. 4, B and C. 

In all of the above, we have used the term annihilate 
to mean the permanent cessation of spontaneous action 
potential generation following injection of a brief-dura- 
tion stimulus. By permanent, we mean that the mem- 
brane remains quiescent indefinitely in the absence of 
any subsequent externally applied stimulation. Thus we 
are not using the term to refer to a rather long, but 
temporary, arrest or pause of action potential generation, 
a sense in which the term annihilation has been used 
(65). Although such very long pauses, of the order of 
several cycle lengths, have been described in response to 
delivery of a current pulse in an ionic model of the SAN 
(65), we are not aware of any corresponding description 
in experimental work on the SAN. However, temporary 
pauses have been described experimentally in depolar- 
ized Purkinje fiber (38) and in aggregates of embryonic 

chick ventricular cells (17, 32), as well as in models of 
both of these tissues (17, 32). During such a pause, one 
often sees an incrementing small-amplitude oscillation 
(e.g., see Fig. lB2 of Ref. 38 and Fig. 5 of Ref. 32). Such 
behavior is expected if the state point of the system is 
perturbed into a neighborhood of the stable manifold of 
an unstable equilibrium point possessing a pair of com- 
plex conjugate eigenvalues with positive real parts. In 
modeling work, starting numerical integration from ini- 
tial conditions close to the equilibrium point itself pro- 
duces incrementing small-amplitude oscillatory activity 
(Fig. 4A; see also Fig. 9 of Ref. 31 for the case of Purkinje 
fiber). The corresponding experiment has been carried 
out in the SAN (see Fig. 8 of Ref. 56). 

When the system admits a stable equilibrium point, 
only certain critical combinations of amplitude, duration, 
and timing [“portal” of entry (6)] for a given polarity 
(i.e., depolarizing or hyperpolarizing) stimulus will result 
in annihilation. This property was probably first re- 
marked on in a biological context by Teorell (73), who 
noted that the pulse had to be placed “strategically,” 
with the “vulnerable” region for a depolarizing stimulus 
coinciding with the refractory period. At a given polarity 
and pulse duration, the combination of stimulus ampli- 
tude and timing defines the black hole (15,16,84) in the 
two-dimensional (amplitude, timing) stimulation param- 
eter space, with the size of the black hole depending on 
stimulus duration (73). At this point, we wish to repeat 
a cautionary note initially sounded by Teorell (73): ina- 
bility to produce annihilation by executing phase-reset- 
ting runs over a wide range of stimulus amplitude at a 
given pulse duration is not conclusive proof that the 
equilibrium point is unstable, since the possibility exists 
that annihilation could occur at some other pulse dura- 
tion. In such instances one can traverse the type l-type 
0 phase-resetting border by crossing a part of the stable 
manifold of the equilibrium point that is not a part of 
the full-dimensional null space, obtaining a direct tran- 
sition from type 1 to type 0 phase resetting without 
producing annihilation. Thus, in instances where this 
direct transition is recorded experimentally (32, 78), 
there is no guarantee that a full-dimensional null space 
is not present, which might be accessible should some 
other pulse duration be used. However, in the former 
study (32), modeling work shows the equilibrium point 
to be unstable (17). Thus inability to produce annihila- 
tion in some fraction of preparations within a given study 
(e.g., see refs. in chapt. VIII of Ref. 20 and Refs. 37, 38, 
72) might be at least partly due to inappropriate choice 
of pulse duration for a given preparation. Indeed there is 
no a priori reason to suppose that, should the equilibrium 
point be stable, there must be some physiological com- 
bination of stimulation parameters that would allow 
annihilation to be manifested. About the only unequiv- 
ocal way to determine that annihilation is impossible is 
to find all equilibrium points by constructing an I-V 
curve and then to demonstrate that all these points are 
unstable by clamping the membrane to each of these 
voltages in turn, allowing sufficient time for transients 
to pass, releasing the voltage clamp, and seeing that 
spontaneous activity resumes (e.g., see Fig. 8 of Ref. 56). 

Single-pulse triggering, triggered activity, and afterpo- 
tentiak The converse of annihilation, single-pulse trig- 
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gering (Fig. 5B), has been reported in SAN tissue made 
quiescent by reduction of the external sodium concentra- 
tion (81), by overdrive suppression following partial 
blockade of 1B (19), by application of papaverine (69), or 
by annihilation itself (37). However, in the first study, 
spontaneous activity was only transiently reestablished, 
which was also sometimes the case in the second and 
third studies. Transient single-pulse triggered activity 
can also be seen in Purkinje fiber (19, 20). We stress 
here that single-pulse triggering of the sort shown in Fig. 
5B is not identical with one form of activity commonly 
described as “triggered activity” in which it is necessary 
to apply a train of two or more stimuli during quiescence 
(18, 20), since a single suprathreshold stimulus is then 
not sufficient to trigger activity. Perhaps the simplest 
way to induce triggered activity is to apply two closely 
coupled suprathreshold stimuli and then progressively 
decrease the coupling interval. One then sees a gradual 
growth i .n the height of the delayed afterdepo la .rization 
following the second action potential as the coupling 
interval is reduced. Eventually, this afterpotential at- 
tains threshold, producing one or more nondriven action 
potentials, perhaps even a sustained rhythm. No such 
effect is seen in the Irisawa-Noma model. This is not 
surprising, given that this growth in the afterpotential 
size is attributed to the transient inward or oscillatory 
current (1ti or Ios, respectively), which is not incorporated 
in this model. We are not aware of any unambiguous 
reports of triggered activity in the SAN; in reports in 
which a train of stimuli starts up activity (e.g., see Ref. 
69), it is not clear that a single stimulus would not have 
had the same effect. We propose that the term single- 
pulse triggering be used to describe the form of triggering 
seen in Fig. 5B to discriminate this form of initiation of 
spontaneous activity from triggered activity. 

Delayed afterdepolarizations following stimulation of 
an action potential during quiescence have been de- 
scribed in the SAN when the external Na’ concentration 
is decreased (56, 81) or when papaverine is added (69) 
and in other areas of the heart in response to a wide 
variety of interventions (18, 20). These afterpotentials 
are usually attributed to the presence of 1ti, which has 
recently been described in voltage-clamp experiments on 
the SAN following exposure to a low-K+ solution (13). 
However, it is possible to see delayed afterdepolarizations 
in the Irisawa-Noma model, as well as in a model of 
ventricular muscle (Guevara, unpublished data), neither 
of whi .ch i ncludes this current. Afterdepo larizations oc- 
cur in the model when the membrane is quiescent, but 
on the verge of becom ing spontaneously active (Fig. 9F), 
wh .en the equilibrium point possesses a pair of complex 
conjugate eigenvalues wi th negative real part. The exist- 
ence of such eigenvalu .es produces a stable focus or spiral 
point, as described above, and therefore results in the 
damped oscillatory approach to the resting potential 
shown in Fig. 14, B-E (see Refs. 14, 47 for a detailed 
analysis of the analogous situation in squid giant axon). 
This finding suggests that in situations where 1ti is as- 
sumed to be implicated in generating triggered activity, 
it might very well be that afterpotentials seen before the 
onset of such activity stem, at least in part, from IIOn-lt; 
mechanisms similar to those shown in Fig. 13, left. In a 
similar vein, in the many circumstances in which one 

sees rhythms consisting of incrementing prepotentials 
intermixed with action potentials (20), the presence of 
1ti might not be needed to account for these rhythms 
(e.g., Fig. 9). 

Third way. In contrast to annihilation, there have been 
many reports in which skipped-beat runs similar in ap- 
pearance to those shown in Fig. 9, B-D, have been 
described in sinus tissue. Interventions that produce 
skipped-beat runs include increasing the external K+ 
concentration (9, 53, 56), decreasing the external Na+ 
concentration (55, 81)) decreasing catecholamine levels 
(76), adding papaverine (69) or acetylcholine (9, 39) to 
the bathing solution, blocking the Na’-K+ pump by 
reducing the extracellular K+ concentration (54), and 
increasing the osmolarity of the bathing fluid (58). A 
common feature of all of these interventions is that there 
is a dramatic slowing in the rate of rise of the pacemaker 
potential. Skipped-beat runs can also be seen in simula- 
tions when changes corresponding to several of the above 
interventions are made in 
unpublished data). Thus 
found in a variety of very 
our search of the literature 

various SAN models (Gue 
skipped-beat runs have 

different situations: 
leads us to conclude 

vara, 
been 

in fact, 
that the 

is the 
nfortu 

most 
nate, 

since it is also the most complicated of the three. 
Unlike skipped-beat runs, there are only rare experi- 

third way of abolishing spontaneous activity 
pervasive of the three, which is perhaps u 

mental reports of a maintained small-amplitude oscilla- 
tion in sinus tissue following a sequence of skipped-beat 
runs (9, 54). Figure 9E shows that a maintained sub- 
threshold oscillation, and 
regarded in some sense as 

not quiescence, can indeed be 
a limiting case of skipped-beat 

runs of arbitrarily long period. 
of the control parameter (1bias 
th 
it 

The fact that the 
in this case) over 

range 
which 

.is oscillation is seen is very narrow might explain why 
has been so rarely described in experimental work. In 

fact, in our own experimental and modeling work in 
which the external K+ concentration is gradually raised, 
one must adjust the K+ concentration exquisitely to 
obtain a maintained subthreshold oscillation (Guevara 
et al., unpublished data). A similar proviso holds in other 
experimental and modeling work in which the oscillation 
is seen in response to a variety of different interventions 
(Guevara, unpublished data). 

The isolated observation of a small-amplitude oscilla- 
tion is not enough to guarantee that the third route is 
being followed, since such an oscillation can also be seen 
in the first way (e.g., see Fig. 3E). In addition, one must 
not confuse the waveforms of Fig. 9, B-E, with those due 
to block of propagation, which produces well-separated 
electrotonic “bumps,” often showing clearly defined ris- 
ing and falling exponentially shaped phases superim- 
posed on the resting potential or the pacemaker potential 
(10, 44, 64). 

Chaotic dynamics and period-doubling bifurcations. 
Waveforms strikingly similar to those shown in Fig. 9 
have been described in other biological, chemical, and 
electronic oscillators as well as in simplified low-dimen- 
sional models of such systems (see Refs. 5, 16, 20, 23, 
26-28, 33, 46, 71,82 and references therein). In many of 
these reports the existence of deterministically irregular 
or “chaotic 
tioned, the 

” dynamics is 
trace shown 

claimed. A 
in Fig. 9D 

s previously men- 
indicates that the 
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system is close to possessing a homoclinic orbit biasym- 
potic to a saddle-focus equilibrium point. It is now well 
known that the breakup of this kind of homoclinic orbit 
can produce chaotic dynamics, the Shil’nikov phenome- 
non (23, 26, 82). The condition on the real parts of the 
eigenvalues of the saddle focus at homoclinicity that are 
sufficient (but not necessary [see Fig. 4.9(ii) of Ref. 26 
and associated description]) to guarantee the existence 
of Shil’nikov chaos, real part of complex conjugate pair 
less than absolute value of all other (real) eigenvalues, 
are indeed fulfilled in the system of Fig. 9. This chaotic 
dynamics arises via a cascade of period-doubling bifur- 
cations (e.g., see Figs. 4.2 and 4.8 of Ref. 26). However, 
we have not observed period-doubling rhythms or irreg- 
ular dynamics in our numerical integration of the Iri- 
sawa-Noma equations in single precision (Fig. 9) even 
when 1bias was changed in the sixth significant decimal 
place in regions where such behavior is to be expected 
(e.g., between the values of 1bias used in Fig. 9, B and C 
and D and E). This is not surprising, given that the 
range of the bifurcation parameter (Ibias) over which 
these behaviors are expected to occur is very narrow (e.g., 
see Fig. 4.8 of Ref. 26) and that the chaotic behavior in 
this form of chaos has a very small-scale or fine-grained 
nature, being apparent only if traces are examined at 
quite high magnification (see Fig. 6 of Ref. 5). However, 
we do have evidence in the double-precision calculations 
of Fig. 11 for two successive period-doubling bifurcations 
of the small-amplitude orbit of Fig. 9E. The first period- 
doubled orbit is stable over a range of 1bias of only 
-0.00017 pA/cm2, and one expects any higher order 
period-doubled orbits to be stable over increasingly 
smaller intervals of 1bias. From the point of view of an 
experimentalist, the argument becomes largely academic, 
since it would be exceedingly unlikely that one could 
observe such rhythms in the corresponding experimental 
work due to the presence of membrane noise, which 
would especially corrupt the low-amplitude subthreshold 
activity (see Fig. 6a of Ref. 5). Indeed, we have only 
infrequently observed a transient rhythm similar to the 
period-doubled rhythm of Fig. 11D in our experiments 
involving change of external K+ concentration. In one 
very careful experimental study on a chemical oscillator 
in which patterns similar to those shown in Fig. 9 were 
described, no trace of aperiodic dynamics could be found 
(46). A subsequent modeling study showed evidence of 
small-scale chaos over very narrow ranges of the bifur- 
cation parameter; however, the chaos was judged to be 
on “a scale too small to be observable in laboratory 
experiments” (see Fig. 6 of Ref. 5). Further discussion 
about the possible existence of chaotic dynamics can be 
found in Ref. 33, where a simplified three-dimensional 
version of the Irisawa-Noma model is investigated, with 
rhythms similar to some of those shown in Fig. 9 being 
seen as 11 is increased. 

Although we have not observed period-doubling bifur- 
cations in the single-precision numerical integrations of 
Fig. 9, as would be expected since Shil’nikov chaos exists 
(23,26,82), we have found a period-doubling bifurcation 
in the Irisawa-Noma model when the maximal conduct- 
ance of IS is increased (Fig. 15) instead of decreased as 
earlier in Figs. 2 and 3 (which produced a Hopf bifurca- 
tion). Note the beat-to-beat alternation in action poten- 
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Fig. 15. A and B: period-doubling bifurcation in ionic model. Effect of 
increasing maximal conductance of 1s to 4.9 (A) and 5.0 (B) times its 
standard value. A period-doubling bifurcation occurs for maximal con- 
ductance somewhere between 4.9 and 5.0 times its normal value. Note 
transient alternation in A. Minimum value of At was decreased to 0.008 
ms for this simulation to allow AV to remain CO.4 mV. C and Lk 
period-doubling bifurcation in S-dimensional system. As a parameter 
is changed, preexisting stable limit cycle (solid closed curve in C) 
becomes unstable (dashed curve in D) and spawns in its immediate 
vicinity a stable limit cycle (solid closed curve in D) that has twice the 
period of original stable limit-cycle oscillation in C. 

tial parameters, most noticeably the maximum diastolic 
potential, in Fig. 15B. Alternation in action potential 
morphology has previously been described in the SAN at 
least once, in an experiment in which isoproterenol, 
which augments 18, was applied (81). As is the case with 
a homoclinic orbit, a period-doubled orbit can exist only 
in a system with dimension greater than or equal to 
three, since in a two-dimensional system the period- 
doubled orbit would have to cross itself, thus violating 
uniqueness of solution. Figure 15C shows a projection of 
a limit cycle in such a high-dimensional system onto the 
plane of the paper. This limit cycle undergoes a period- 
doubling bifurcation producing a period-doubled orbit 
(solid curve in Fig. 150). Note that the original orbit is 
still preserved but has become unstable (dashed curve in 
Fig. 15D), repelling nearby trajectories onto the stable 
period-doubled orbit. 

Other biological oscillators. Although we have concen- 
trated above on the SAN, our proposed classification 
scheme can be extended to include other cardiac oscil- 
lators. For example, the second way of stopping (anni- 
hilation) and the associated single-pulse triggering have 
been described in experiments on depolarized Purkinje 
fiber (38, 68; see other refs. in Ref. 20), depolarized 
ventricular muscle (24, 68), aggregates of embryonic 
atria1 cells (72), the mitral valve (20), and in ionic models 
of the first three tissues (15, 16, 72, 80). In fact, a 
bifurcation diagram qualitatively equivalent to that 
shown in Fig. 6 can be obtained in a reduced two- 
dimensional model of ventricular muscle subjected to a 
depolarizing bias current (see Fig. 8 of Ref. 80). However, 
in the full ventricular model (16,80) there is a subcritical 
rather than a supercritical Hopf bifurcation with depo- 
larizing Ibias, leading to annihilation with the resting 
potential lying in the plateau, and not the pacemaker, 
range of potentials (see also Refs. 15, 43). 
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Patterns of activity resembling some of those shown 
in Fig. 9 can be seen in atria1 muscle (64, 67), Purkinje 
fiber (see refs. in Ref. 27), and heart-cell aggregates (49), 
as well as in ionic models of the latter two tissues (Ref. 
27 and J. R. Clay and A. Shrier, personal communication, 
respectively). However, unlike the case of the SAN, this 
modeling work shows that the existence of the main- 
tained subthreshold oscillation and the skipped-beat 
runs, which occur in a more hyperpolarized range of 
potentials. hinges on the presence of 1h. A mirror image 
of the third way, in which there are afterpotentials in 
the plateau range of potentials (“early afterdepolariza- 
tions”), can be seen in Purkinje fiber and ventricular 
muscle and their models (15, 16, 18, 20,80). In that case, 
the maintained small-amplitude oscillation (“IX oscilla- 
tion”) lies in the plateau range of potentials, and the 
membrane becomes quiescent with the membrane poten- 
tial lying in that range. In one of these modeling studies 
(16), the existence of chaotic dynamics was claimed. Two 
reports show that this inversion of the third way (i.e., 
early afterdepolarizations) can be seen in experiments 
on the SAN (50, 58). 

Our classification scheme can be applied to biological 
oscillators originating from tissues other than the heart. 
For example, patterns of activity similar to those shown 
in Fig. 3, which are generated by a single Hopf bifurca- 
tion, have been described in the giant axon of the squid 
(2), as well as in the Hodgkin-Huxley equations that 
model the squid axon (2). Homoclinic orbits occur in the 
Hodgkin-Huxley equations when the Nernst potential 
for K+ is changed in conjunction with injection of 1bias 
(42). Annihilation has been described experimentally in 
the squid axon (35), following its theoretical prediction 
in the Hodgkin-Huxley model (6, 35, 66). Skipped-beat 
runs [34 (“skip runs”), 451 and a maintained small- 
amplitude oscillation (45) have been described in neural 
tissue, as well as in an electronic analogue of the Hodg- 
kin-Huxley equations (28). Skipped-beat runs (22) and 
a “slow-wave” subthreshold pacemaker oscillation are 
also commonly seen in smooth muscle. 

Spatial effects. We have not dealt above with rhythms, 
such as sinoatrial exit block, intranodal reentry, or atria1 
fibrillation, in which the usual more-or-less concentric 
spread of activation out of the node and into the right 
atrium (7) is abolished and replaced by a different spa- 
tiotemporal organization of the activation sequence. Be- 
cause propagation is involved, modeling of such rhythms 
involves simulation of a partial differential equation, and 
we have confined ourselves in the above to isopotential 
situations described by systems of ordinary differential 
equations. In addition, due to the highly complex nature 
of the coupling between cells in the SAN, it would be 
difficult to construct such a model in a realistic way, 
since, among other things, the usual cable-model ap- 
proach used in such work would not be appropriate (e.g., 
see Fig. 4 of Ref. 8). 

Clinical significance. Although injection of a single 
stimulus can indeed initiate nonsustained reentrant ac- 
tivity in a pathway including the SAN (3), Fig. 5B 
suggests that activity can also be initiated by a nonreen- 
trant mechanism (see also discussion in chapt. VIII of 
Ref. 20). Figure 9, B-D, demonstrates a novel way of 
producing very long interbeat intervals. Should similar 

activity occur in the intact heart, analysis of the electro- 
cardiogram would lead to the diagnosis of sinoatrial 
pause or exit block, even though the SAN would still be 
active, generating incrementing subthreshold prepoten- 
tials during the pause. Indeed in an arrhythmia that is 
presently diagnosed as one form of second-degree sino- 
atria1 exit block (Wenckebach or Mobitz I), the pro- 
longed R-R interval is less than twice the duration of the 
preceding R-R interval (77); similar rhythms can be seen 
at values of I bias lying between those used in Fig. 9, A 
and B. In addition, should similar activity occur in a 
parasystolic focus [e.g., Purkinje fiber (27)], long inter- 
ectopic intervals that would be approximately multiples 
of some basic interval would be manifest on the electro- 
cardiogram. This would be attributed to intermittent exit 
block from the parasystolic focus, even though block of 
conduction would not be involved. 

Nonlinear dynamics. In summary, consideration of a 
large body of experimental and modeling work in the 
SAN and other cardiac tissues points to the conclusion 
that the number of ways in which spontaneous activity 
in a cardiac oscillator can be stopped or started is quite 
small. In fact, the presently available experimental evi- 
dence indicates that this number might be as small as 
three in the SAN. It is not yet entirely clear why a 
particular intervention results in one way and not an- 
other. In particular, conditions necessary and sufficient 
for annihilation to occur are yet to be determined. Be- 
cause annihilation can be seen in a reduced three-dimen- 
sional ( V, f, p) version of the Irisawa-Noma model (33), 
we anticipate that further investigation of that model 
will help in sorting out these conditions. Finally, as in 
the case of periodically stimulated cardiac cells (e.g., see 
Ref. 29), the above work provides further evidence that 
concepts drawn from a branch of nonlinear mathematics, 
bifurcation theory, can be used to form a classification 
scheme for a variety of behaviors seen in experimental 
cardiac electrophysiology. 

NOTE ADDED IN PROOF 

Annihilation has been reported recently in an isolated SAN 
cell subjected to a depolarizing bias current (J. M. B. Anu- 
monwo, et al. Circ. Res. 68: 1138-1153, 1991). Annihilation was 
not seen in the second cell studied, which was not subjected to 
a bias current. 
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