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GUEVARA,MICHAEL R., AND HABO J.JONGSMA.PIUS~ re- 
setting in a model of sinoatrial nodal membrane: ionic and 
topological aspects. Am. J. Physiol. 258 (Heart Circ. Physiol. 
27): H734-H747,1990.-We describe the phase-resetting effect 
of injecting an isolated current pulse in an ionic model of a 
single cell of the sinoatrial node. Delivery of a depolarizing 
pulse early (late) in the cycle results in a prolongation (abbre- 
viation) of the cycle length. With a hyperpolarizing pulse, the 
effect is reversed. We determine the topological type or degree 
of phase resetting in two ways: 1) by analyzing interbeat 
intervals extracted from the voltage waveform, and 2) by ana- 
lyzing the waveform, not only of the voltage, but of all the 
activation and inactivation variables. The two methods give 
similar results. At low (high) pulse amplitudes, there is type 1 
(0) phase resetting. When type 1 phase resetting occurs, the 
new phase is a monotonically increasing function of the old 
phase at sufficiently low stimulus amplitudes, whereas at higher 
stimulus amplitudes it is not. Leading roles in generating phase 
resetting are attributed to the slow inward current and to the 
leakage current. Comparison is made with experimental phase- 
resetting findings in the sinoatrial node and other cardiac 
oscillators. Implications for unidirectional and bidirectional 
synchronization are also sketched out. 

ionic mechanisms; graded action potentials; type 1 phase reset- 
ting; type 0 phase resetting; all-or-none depolarization; anni- 
hilation 

OVER THE PAST SEVERAL DECADES, systematic phase- 
resetting experiments have been carried out on many 
biological oscillators (49). In a phase-resetting experi- 
ment, a stimulus of duration short in comparison with 
the characteristic period of the oscillator, is delivered to 
the oscillator. This perturbation results in a transient 
disturbance in the period of the oscillation, with recovery 
back to the original period eventually occurring. The 
stimulus, however, in general produces a permanent re- 
setting of the timing or “phase” of the oscillator (readers 
unfamiliar with the concept of phase resetting should 
consult the APPENDIX for a brief introduction to the 
subject). Winfree (49) has shown that there are certain 
qualitative or topological features common to the phase- 
resetting data obtained from a wide variety of biological 
oscillators, from isolated pacemaker cells to circadian 
rhythms. These topological similarities exist even though 
the particular mechanisms operating in any two given 
oscillators might be completely different. 

There have been several experimental studies on the 
phase-resetting response of the sinoatrial node (SAN) 
produced by stimulation with a current pulse (26, 35,45, 

47). There have also been a few reports in which this 
response has been modeled (5,27,36,43). We investigate 
an ionic model that has not previously been studied (23), 
concentrating on th .e ionic mechanisms underlying phase 
resetting and on topological aspects of phase resetting. 
We have three main motivations for investigating the 
phase-resetting response of the model. The first is to lay 
the foundations for determining the extent to which 
topological characteristics of the response to an isolated 
current pulse (i.e., the phase-resetting response) can 
account for coupling patterns seen when a periodic train 
of current pulses is delivered . . We have recently shown 
in experiments on . embryonic chick heart cell aggregates 
that such topological considerations do indeed determine 
the various classes of patterns seen when periodic stim- 
ulation is imposed (13, 15, 17, 20, 21). For example, the 
type of phase resetting seen with a low-amplitude stim- 
ulus pulse accounts for the fact that Wenckebach-like 
rhythms are seen with low-amplitude periodic stimula- 
tion (20). At very high stimulus amplitudes, when there 
is a qualitative change in the topological characteristics 
of the phase-resetting response, one no longer sees 
Wenckebach rhythms but rather alternans rhythms (15, 
21). At intermediate stimulus amplitudes, the topological 
characteristics are again different and account for the 
fact that chaotic rhythms and hysteresis can be seen (13, 
15, 17, 2 1). It is thus of prim .ary importance to charac- 
terize th .e topological features of phase resetting if one 1s 

to have any hope of making sense of the plethora of 
rhythms seen during periodic stimulation. 

The second motivation for studying phase resetting is 
to use the phase-resetting response, once characterized, 
to investigate the extent to which the phasic influence 
of one spontaneously active SAN cell on another might 
be responsible for producing mutual synchronization in 
a population of two or more coupled nodal cells (15, 27, 
36). A wide spectrum of coupling patterns can be seen in 
models of just two coupled oscillators (e.g., see Refs. 27, 
36). The topological characteristics of phase resetting 
again play a major role in determining which classes of 
coupling patterns are seen at a given level of 
(Guevara and Lewis, u npublished data ) b . 

coup1 ing 

Our third reason for studying phase resetting is that 
the study of phase resetting in an ionic model is inter- 
esting, indeed even valuable, in itself, because it can be 
used to determine the extent to which presently known 
ionic mechanisms, deduced from data obtained inde- 
pendently in voltage-clamp experiments, can account for 
experimentally observed behavior in phase-resetting ex- 
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periments. Discrepancies between theory and experiment 
might then point out new directions for modeling and 
perhaps even experimental work. 

METHODS 

We investigated the model of Irisawa and Noma (23), 
which is a modified version of the earlier model of 
Yanagihara, Noma, and Irisawa (51), incorporating es- 
pecially a revised description of the slow inward current. 
We set the acetylcholine concentration to zero in the 
model. Numerical integration was carried out by imple- 
menting a variable time-step algorithm that is much 
more efficient than fixed time-step algorithms, producing 
equivalent accuracy with much less computation (48). In 
addition, the convergence of the algorithm for equations 
of the Hodgkin-Huxley type used in this model can be 
mathematically proven (48). By adjusting the integration 
time step (At) at any time t to be one of the nine values 
2Na(0.032) ms with 0 s N s 8, the change in the trans- 
membrane potential (AV) in iterating from time t to 
time t + At can be kept below 0.4 mV at the current 
pulse amplitudes employed in this paper. When AV is 
>0.4 mV, before the next iteration is carried out the time 
step is successively halved and the calculation redone 
until a value of AV ~0.4 mV is achieved. When A V is 
~0.2 mV, the time step is doubled for the following 
iteration. In advancing from time t to time t + At, the 
current is calculated using the formula appearing in 
footnote 2 of Victorri et al. (48). The time step is adjusted 
to a nonstandard value [i.e., #2N. (0.032) ms] when a 
current pulse is injected so that the pulse is turned on 
and off at exactly the right times. L’Hopital’s rule is 
applied when necessary in calculating the rate constants 
Gn9 af, Pp, aq, and pS as well as the leakage current 11. 
Initial conditions are V = -60.000 mV, m = 0.064260, h 
= 0.92720, d = 0.030477, f = 0.86991, p = 0.20890, and q 
= 0.012767; the initial value of At is 4.096 ms. These 
initial conditions approximate, to five significant decimal 
places, a point on the limit cycle. 

RESULTS 

Figure 1 shows spontaneous activity in the model: the 
transmembrane potential (V), the total transmembrane 
current (Itot), the fast inward sodium current (INa), the 
slow inward current (IS), the potassium current (1k), the 
hyperpolarization-activated current (&J, and the time- 
independent background or leakage current (11). The 
interbeat interval is 329.2 ms; the maximum diastolic 
potential is -65.8 mV, and the overshoot potential is 
18.3 mV. These values are close to those appearing in 
the original description of the model (23). When double- 
precision arithmetic is used instead of single precision 
(-15 vs. -7 significant decimal digits), we obtain traces 
that superimpose with those shown in Fig. 1. In addition, 
decreasing the limits of the ranges of AV and At allowed 
by a factor of 10 using single-precision arithmetic, pro- 
duces very little change in the waveform, with, for ex- 
ample, the spontaneous interbeat interval increasing by 
<l%. In what follows, we have therefore used single- 
precision computation and the AV range is 0.2 mV s AV 
5 0.4 mV. 
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Inward currents are negative; outward currents are positive. Membrane 
capacitance is 1 pF/cm2. Itot, total transmembrane current; IrJa, fast 
inward sodium current; Is, slow inward current; IK, potassium current; 
I,,, hyperpolarization-activated current; and 11, leakage current. 
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FIG. 2. Prolongation (B) and abbreviation (C) of cycle length pro- 
duced by injecting a 20-ms-duration depolarizing current pulse of 
amplitude = -1.5 pA/cm2. A: unperturbed activity. B: tc = 120 ms, To 
= 329.2 ms, T1 = 364.8 ms, T2 = 328.4 ms, and T3 = 329.1 ms. C: tc = 
130 ms, To = 329.2 ms, Tl = 213.0 ms, T2 = 329.7 ms, and T3 = 329.2 
ms. V, transmembrane voltage. 

Note that during diastolic depolarization the changes 
in Is and 11 are of comparable magnitude but are oppo- 
sitely directed. The changes in 1K, 1Na, and 1h are much 
smaller, with 1k changing considerably more than either 
lNa or 1h. In fact, lNa and 1h contribute little to the overall 
activity; removing them both from the model causes 
small changes in the waveform of the action potential 
and increases the spontaneous interbeat interval by 
-20%. 

Figure 2 shows that injection of a 2O-ms-duration 
depolarizing current pulse can lengthen (B) or shorten 
(C) the interbeat interval, depending on the phase in the 
cycle at which it is injected. We define the interbeat 
interval to be the time between successive crossings of 
-10 mV on the upstroke phase of the action potential 
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(the “event marker”). The spontaneous interbeat interval 
is denoted by To, the perturbed interbeat interval by T1, 
and the first poststimulus interbeat interval by Z’Z (Fig. 
2). The coupling interval is the time from the crossing of 
-10 mV on the upstroke of the action potential imme- 
diately preceding the stimulus to the beginning of the 
stimulus itself and is denoted by tc. The normalized 
coupling interval t,/To is called the old phase, and is 
denoted by <p, which has the range 0 5 @ c 1. All intervals 
are given in milliseconds. The amplitude of the current 
pulse in microamperes per centimeter squared is denoted 
by A, with a negative amplitude corresponding to a 
depolarizing stimulus. Stimulus amplitude increases 
when the absolute value of A increases. 

The temporal shifts AT1 and AT2 are defined as indi- 
cated in Fig. 2. Thus 

AT 1 = T o- 1 T (1 

and 

AT 2= 0 v - Td + (To - T2) (2 

More generally 
1 

ATi = C (TO 0 Tj) (3) 
j=l 

Note that in Fig. 2, T2 = To, and so AT2 = AT,. Also 
note that AT1 is negative for Tl > To (“delay”) and 
positive for Tl < To (“advance”). Each column of Fig. 3 
shows the effect of systematically increasing tc from 60 
to 180 ms in steps of 20 ms at a fixed amplitude of the 
current pulse (a “phase-resetting run”). Phase-resetting 
runs at three different amplitudes (-1.0, -1.5, and -2.0 

A 
A-1.0 

B 
A-l.5 

C 
A=-2.0 

FIG. 3. Phase-resetting runs at 3 different current amplitudes (A) 
with tc incremented in steps of 20 ms from 60 ms (2nd row) to 180 ms 
(bottom row). Top row shows unperturbed activity. A: A = -1.0 ,uA/ 
cm2; B: A = -1.5 pA/cm2; and C: A = -2.0 pA/cm2. 

pA/cm2) are shown. At all three amplitudes, for tc < 60 
ms (not shown), Tl is slightly larger than To, whereas for 
tc > 180 ms (not shown), the pulse is suprathreshold, and 
so Tl = tc. 

We have investigated in some detail the way in which 
prolongation of cycle length turns into abbreviation as tc 
is increased at each of the three amplitudes shown in 
Fig. 3. At the two lower amplitudes, one sees a gradual 
smooth transition from maximal prolongation to maxi- 
mal abbreviation of cycle length. However, as stimulus 
amplitude increases, one needs an increasingly smaller 
increment in tc to demonstrate this continuity. For ex- 
ample, at A = -1.0 PA/cm2 (Fig. 4B), an increment in tc 
of ~2.0 ms is sufficient to reveal the continuity, but at A 
= -1.5 PA/cm2 (Fig. 4C) one must employ an increment 
in tc of 0.1 ms. 

At the highest amplitude used in Fig. 3 (A = -2.0 PA/ 
cm2) the current pulse is suprathreshold throughout dias- 
tole. Maximal prolongation of cycle length does not then 
occur via a prolongation of the duration of diastole as at 
the two lower stimulus amplitudes (Fig. 4); instead, it 
occurs via a prolongation of action potential duration. 
Figure 5 shows voltage tracings at values of tc in the 
neighborhood of the transition from maximal prolonga- 
tion to maximal abbreviation of interbeat interval at A 
= -2.0 pA/cm2. These tracings highlight methodological 
problems in determining the interbeat interval. It can be 
seen that the voltage tracing is changing in a nicely 
continuous manner in Fig. 5, with the amplitude of the 
graded waveform smoothly increasing as tc increases. 
Yet, there is arbitrariness involved in deciding at what 
coupling interval the event provoked by the stimulus is 
to be called an action potential. One criterion might be 
to say that an action potential occurs when there is some 
“active” response, i.e., when the membrane continues to 
depolarize after the termination of the current pulse. In 
that case, the transition from prolongation to abbrevia- 
tion of cycle length at A = -2.0 d/cm2 would occur 
somewhere between tc = 100 ms and tc = 102 ms in Fig. 
5. By our criterion of a positive-going crossing of -10 
mV, the transition occurs somewhere between 104 and 
110 ms. 

We now investigate topological aspects of the phase- 
resetting response of the model (see APPENDIX as well as 
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FIG. 4. Parts of phase-resetting runs shown in Fig. 3, A and B, but 
with finer increments in tc. A: unperturbed activity; B: amplitude = 
-1.0 pA/cm2, with tc = 146, 154, 156, 158, 162, and 180 ms; and C: 
amplitude = -1.5 pA/cm2, with tc = 126, 126.2, 126.3, 126.5, 127, 130, 
and 147 ms. Smallest and largest values of tc used in B and C result in 
maximal prolongation and abbreviation of cycle length, respectively, at 
these 2 amplitudes. 
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I250 w FIG. 6. Plots of normalized perturbed interbeat interval TJTo (A), 
1st transient phase # (B), 2nd transient phase ipi (C), and directly 
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FIG. 5. Part of phase-resetting run shown in Fig. 3C (amplitude = phase t,/To. Labeled arrows indicate features described in text. Dashed 

-2.0 PA/cm*), but with tc changed more finely. Top left-hand trace lines in middle row indicate where data points fall when tc is changed 

shows unperturbed activity; value of tc in ms is indicated on other in steps of 0.1 ms. In D, data points were calculated from initial 

traces. conditions V = -10.000 mV, rn = 0.92806, h = 0.0017017, d = 0.67194, 
f = 0.76323, p = 0.17147, q = 0.015129, and At = 0.064 ms, as described 

Refs. 14,15, 18, 31,49, 50 for background material). The in text* 
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first transient phase @$ is defined by 

4! I 1 = @ + ATI/To (modulo 1) 

the second transient phase G+ by 

+‘2 = a, + AT2/T0 (modulo 1) 

and the ith transient phase @‘i by 
~‘i = @ + ATJTO (modulo 1) 

(4 

(5 

(6 

where ATI, AT,, and AT; are as defined in Fig. 2 and 
Eqs. l-3. We define the modulo 1 operation to be such 
that x (modulo 1) is given by x - [xl, where [x] is the 
integer, positive or negative, produced by truncating x 
(i.e., discarding its fractional part). With this definition 
of the modulo 1 operation, the result given by Eqs. 4-6 
can be negative; one must therefore add 1 to the result 
in that case, to ensure that @‘i lies in the range 0 5 +‘i 
< 1 (see APPENDIX). Figure 6 shows the normalized 
perturbed interbeat interval TI/To (first column), G+ 
(second column), and a’2 (third column) at the three 
amplitudes of stimulation previously considered when tc 
is changed with an increment of 1 ms. A curve drawn 
through the +‘l(@‘a,Qj’i) is referred to as the first (second, 
ith) transient phase transition curve, abbreviated PTCl 
(PTCZ, PTCi). 

Note that there are artifacts present in the first and 
second columns of Fig. 6 at A = -1.5 and -2.0 pA/cm2. 
For example, at A = -2.0 pA/cm2, there is artifactual 
shortening of the normalized perturbed interbeat interval 
TI/To for + in the range of 0.17 < + < 0.21 (segment of 
data indicated by arrow labeled b). This is because the 
voltage crosses -10 mV during the current pulse (e.g., 
Fig. 3C; tc = 60 ms), and so an event occurs, resulting in 

a value of TI only slightly larger than tc. However, this 
cannot be said to be a real shortening of the cycle length, 
because the membrane resumes its repolarizing time 
course immediately on termination of the current pulse. 
In the reverse manner, at tc = 104 ms (Fig. 5), the voltage 
does not cross -10 mV; thus a prolongation of cycle 
length, which might be said to be artifactual, results. The 
artifactual shortenings produce jump discontinuities of 
<l cycle length in the curves of TI/To and @‘I in Fig. 6 
atA = -1.5 and -2.0 d/cm2 (e.g., at both ends of the 
segment labeled b in the left column at A = -2.0 PA/cm2 
and of the analogous segment at A = -1.5 pA/cm2). A 
second kind of discontinuous jump, also of Cl cycle 
length, occurs in the plot of TJTO at -2.0 PA/cm2 at Q 
H 0.33, where maximal prolongation of cycle length dis- 
continuously turns into shortening of cycle length as @ 
is increased (Fig. 5). An apparently similar jump appears 
in the plot of TJTO at A = -1.5 pA/cm2. This jump 
however is not real, because in this case there are actually 
data points lying in the apparent gap in the curve of data 
points. These points lie along the dashed line indicated 
in Fig. 6 (middle row) and can be seen only if tc is 
changed in steps of a fraction of a millisecond (Fig. 4C). 

The first kind of discontinuity [e.g., seen at the edges 
of the segment labeled b in Fig. 6 (bottom row)] is a 
compulsory feature of phase-resetting data (15, 18, 19, 
31) and is a consequence of the fact that some precise 
but arbitrary definition of an event marker must be 
taken. However, this form of discontinuity in Tr/To and 
in PTCi is expected to disappear in the limit i + 00 (see 
APPENDIX). In fact, no such discontinuities are apparent 
on PTC2 (Fig. 6C), indicating that the trajectory returns 
to the immediate vicinity of the limit cycle very quickly 



H738 SINOATRIAL NODE PHASE RESETTING 

in this model after a perturbation. In addition, on the 
scale of Fig. 6, the calculated values of @‘a (not shown) 
superimpose with those of @$. One can thus take PTC2 
as a very good approximation to PTC,, the “new phase- 
old phase” curve (see APPENDIX), with a’#, being termed 
the new or eventual phase (49). 

Note that the transient phases @‘i are calculated using 
EQS. 4-6 by inspecting only the voltage waveform; no 
account is taken of the activation variables m, d, p, and 
4 and the inactivation variables h and f. Because these 
other variables are not measurable during phase-reset- 
ting experiments, these formulas involving only V must 
of necessity be used in experimental work. However, in 
modeling work we can make use of the additional infor- 
mation contained in these other variables, which are 
then accessible, to more directly and perhaps more ac- 
curately compute the new phase. 

We now outline this method, which has previously 
been used in studying neural (2, 16) and simple two- 
dimensional (16) limit-cycle oscillators. First, starting at 
t = 0 from initial conditions appropriate to the point V 
= -10 mV on the upstroke of the action potential, the 
equations of the model are numerically integrated for 
one full cycle of spontaneous activity. At each iteration, 
the values of the time t and of the variables V, m, h, d, 
h p, and q at that time are stored in an array. There are 
623 points on the limit cycle stored in this way. Second, 
integration is restarted from the same initial conditions, 
and a current pulse is injected at a coupling interval tc. 
The integration is then carried forward for a total time 
tc + To (with To = 329.2 ms as before), and the coordi- 
nates (V, ~2, h, d, f, p, and q) of the state point of the 
system at the end of this second integration are stored. 
A search is then made through the array of 623 points 
stored initially to find the one that is nearest to this 
terminal point. We use as our measure of the distance 
between two seven-dimensional points X1 = ( Vl, ml, hl, 
4, fl, PI, and 41) and x2 = ( v2, m2, h2, d2, f2, p2, anil q2) 

the usual Euclidean metric 

1 Xl - X2 1 = ([O.Ol( VI - VZ)]~ + [ml - rn212 

+[h I - h212 + [d, - d212 + Lfi - f212 (7) 

+b 1 - P212 + CSl - q212p2 

The weighing factor of 0.01 is included because the range 
of the voltage variable is about two orders of magnitude 
larger than that of the other variables, which have a 
range from zero to one. Once the closest point on the 
limit cycle is thus found, we assign the phase of that 
point, which is simply &/To from the first integration 
carried out, to be the new phase @’ corresponding to the 
old phase @ = t,lT,. This second integration and subse- 
quent search is then repeated for a new value of tc. 

Figure 6D shows the new phase calculated in this direct 
way at three different amplitudes of stimulation with tc 
changing in steps of 1 ms. Data points superimposable 
with these are found if, in the second integration step 
described above, the integration is carried forward for a 
time tc + 2To instead of tc + To. This once again indicates 
that the limit cycle is strongly attracting, and that the 
points in Fig. 6D are indeed a very good approximation 

to the new phase. Note that there are negligible differ- 
ences between the new phase found in the direct way 
(D) and that computed from the voltage waveform alone 
(C) using Eq. 5. This indicates that the voltage waveform 
alone can be safely used to calculate the new phase: 
access to the other variables is not absolutely crucial. 
Note however that Q’2, and not @II, must be used to 
obtain a good approximation to the new phase when the 
voltage waveform alone is analyzed. Note also that, when 
the direct method is used, artifactual discontinuities of 
the sort resulting when the method involving analysis of 
interevent intervals is used (Fig. 6B) do not occur. 

At the lower two amplitudes of Fig. 6 (first and second 
rows), type 1 phase resetting occurs, because the average 
slope of PTC2, which is a good approximation to PTC,, 
is unity (see APPENDIX). Note that the simulations shown 
in Fig. 4C imply that data points would fall along the 
dashed line appearing at + = 0.4 in all panels of the 
second row of Fig. 6 where tc is changed with increments 
smaller than 1 ms. At the lowest amplitude (A = -1.0 
pA/cm2), +‘2 increases monotonically, whereas at the 
intermediate amplitude (A = -1.5 pA/cm2), it does not: 
a downturning in the curve appears at @ = 0.35 (arrow 
labeled a). At A = -2.0 PA/cm2 (third row), the average 
slope of PTC2 is zero, and type 0 phase resetting is said 
to occur (see APPENDIX). The transition from type 1 to 
type 0 phase resetting occurs at an amplitude just below 
A - -1.8 fi/cm2. At A = - -1.8 pA/cm2, incrementing 
small-amplitude oscillatory activity can be seen imme- 
diately after delivery of the current pulse (Fig. 7B), which 
is consistent with the fact that one is close to the type 
l/type 0 border at this amplitude (see APPENDIX). 

We now turn to investigation of the ionic mechanisms 
underlying phase resetting. Figure 8 shows the ionic basis 
of the lengthening (A ) and shortening (B) of cycle length 
produced by injecting a current pulse of intermediate 
amplitude (A = - 1.5 pA/cm2) during diastolic depolari- 
zation. At tc = 120 ms (A), the total current lies just 
outward at the end of the current pulse, producing a 
negative rate of change in transmembrane potential (dV/ 
dt) and a prolongation of cycle length. In contrast, at tc 
= 130 ms (B), the total current lies just inward, produc- 
ing a positive dV/dt that leads to premature activation 
of I, and a shortening of the interbeat interval. In both 
instances, injection of the current pulse produces almost 

0.0 
t(s) 

0.6 

FIG. 7. Waveforms near type l/type 0 border. Amplitude = -1.8 
PA/cm’ and tc = 108 ms (A), 109 ms (B), and 110 ms (C). V, 
transmembrane voltage. 
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FIG. 8. Ionic basis of transition from prolongation to abbreviation 
of cycle length. Voltage V is in mV. All currents are in PA/cm2 and 
drawn to same scale. Activation and inactivation variables d and f of 
slow inward current (I,) are shown. A stimulus pulse with amplitude = 
-1.5 PA/cm2 is injected at tC = 120 ms (A) and at tC = 130 ms (23). 

equal, but oppositely directed, changes in IS and 11. The 
increase in 11 is simply caused by the fact that 11 is 
outward and has a positive-slope current-voltage (I- V) 
relationship. The increase in the magnitude of IS is 
caused by two factors. 1) IS is inward and its I-V curve 
has a negative slope over this range of potentials (see 
Fig. 6B of Ref. 23). 2) There is increased activation (i.e., 
increase in the activation variable d) and decreased 
inactivation (i.e., increase in the inactivation variable f) 
of Is during the current pulse (Fig. 8). In addition, the 
potential at the end of the current pulse is m-44 mV at 
tc = 120 ms and -43 mV at tc = 130 ms, which is about 
where the foot of the activation curve for Is is situated 
(see Fig. 1 of Ref. 23). Thus the fine balance between the 
changes in Is and II produced during the current pulse 
together with the setting of the voltage by the current 
pulse into the region of activation of the large current Is 
makes it possible for small changes in tc to result in 
significant changes in the perturbed interbeat interval 
T1 at this current amplitude (Fig. 4C). 

Note that during injection of the current pulse, the 
changes in I Na, Ik, and Ih are smaller than those in IS and 
II; moreover, these changes are not appreciably different 
when either prolongation or abbreviation of cycle length 
is produced. In fact, if INa and Ih are removed from the 
model, traces of V, Itot, Is, IK, and II very similar to those 
shown in Fig. 8 still result. This indicates that in this 
model the major ionic mechanisms underlying prolon- 
gation and abbreviation of interbeat interval (as well as 
the rapid transition from the former to the latter) involve 
Is, II, and, to a lesser extent, IK. 

The decrease in the amplitude and the overshoot po- 
tential of the graded action potential of Fig. 8B is lareelv 

caused by the decrease in the magnitude of Is. This 
decrease is in turn caused by the markedly decreased 
rate of removal of inactivation (in fact, the inactivation 
variable f is almost constant in time) produced immedi- 
ately after injection of the current pulse (see bottom 
trace of Fig. 8B). Once again II is playing a compensatory 
role with respect to I,, with, for example, its peak value 
being less outward than during unperturbed activity. As 
tc is increased beyond 130 ms, the overshoot potential 
and the maximal rate of rise of the upstroke phase of the 
action potential ( vma,) both gradually increase (see Fig. 
3B; tc = 140, 160, and 180 ms). This is primarily caused 
by a progressive recovery of the Is waveform back to its 
normal shape. Indeed, for tc greater than -230 ms, the 
overshoot potential and the peak value of the total cur- 
rent (and hence Vmax) actually increase beyond their 
normal values. This also occurs at higher current ampli- 
tudes where the pulse is suprathreshold throughout dias- 
tole (e.g., Fig. 5; tc = 250 ms). These increases are caused 
by a direct effect of the current pulse and an increase in 
INa; IS remains slightly depressed even for tc very close to 
T 00 

The maximum diastolic potential (MDP) of a graded 
action potential elicited early in diastole (e.g., Fig. 5; tc 

= 120 ms) is slightly more negative (by -1 mV) than 
that of an action potential during unperturbed activity 
and is followed by a diastolic duration (i.e., time from 
MDP to subsequent upstroke) of the poststimulus cycle 
that is slightly longer than usual. Despite this prolonga- 
tion of the diastolic interval, the poststimulus interbeat 
interval T2 is still reduced below To because the action 
potential duration is reduced much more than the dia- 
stolic duration is increased (e.g., T2 = 316 ms at tc = 120 
ms in Fig. 5). 

We have also investigated the ionic basis of the pro- 
longation of cycle length produced when a large ampli- 
tude pulse is delivered during the action potential (e.g., 
Fig. 3C; tc = 80 ms). This prolongation is largely caused 
by an increase in the action potential duration; the 
diastolic time of the perturbed cycle is only slightly 
increased. As is the case when a very premature graded 
action potential is elicited, this increase in the diastolic 
time is associated with a slight increase in the negativity 
of the MDP. The effect of the current pulse is basically 
to reset the various activation and inactivation variables 
backwards in time; when the injection of current ends, 
the membrane then resumes repolarizing at more or less 
the usual rate appropriate to the voltage at that time. 
During the current pulse, there is an increase in Is that 
is almost exactly balanced by an increase in the sum of 
IK and Il. 

Even though we have concentrated above on the re- 
sponse of the model to a depolarizing stimulus, we have 
also investigated, in lesser detail, the response to a hy- 
perpolarizing stimulus. The motivation for doing so 
comes from the fact that nodal cells are normally subject 
to vagal stimulation, which is hyperpolarizing. Also, dur- 
ing spontaneous activity, at any one time some cells of 
the node will be more depolarized than others; this 
former group of cells will be subject to the hyperpolariz- 
ine influence of the latter (see Fig. 2-21 of Ref. 15). 
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FIG, 9. Phase-resetting effect of injecting a hyperpolarizing current 
pulse. Either shortening (truce a, tC = 120 ms) or prolongation (trace c, 
tC = 300 ms) of cycle length can be seen, depending on coupling interval. 
amplitude = 4.0 pA/cm2. Trace b shows unperturbed activity. 

Figure 9 shows that the response to injection of a hyper- 
polarizing pulse is the opposite to that of a depolarizing 
pulse, in that a stimulus falling early (trace a) in the 
cycle produces a shortening of cycle length, whereas one 
falling later (trace c) produces a prolongation. The tran- 
sition from type 1 to type 0 phase resetting occurs at a 
higher stimulus amplitude than with a depolarizing stim- 
ulus. 

CONCLUSIONS 

Comparison with experimental results. The computa- 
tions presented above demonstrate that the phase-reset- 
ting response of the model of Irisawa and Noma has 
much in common with that experimentally observed in 
the SAN. We now summarize what we see to be the five 
main correspondences, mentioning one discrepancy. 

1) The response is biphasic, with a depolarizing cur- 
rent pulse producing a lengthening of cycle length if 
applied early in the cycle and a shortening if applied 
later (model, Figs. 2-8; see also Refs. 27,36,43 for similar 
resultsin other SAN models; experiment, Refs. 26, 45, 
47). A similar biphasic effect of ventricular systole on 
the SAN cycle during complete heart block has also been 
documented in human beings (data of Roth and Kisch, 
1948, plotted in Fig. 11-32A of Ref. 1; Ref. 22) and has 
been attributed, among other things, to the action of 
ventricular currents on the SAN (22). The phase in the 
P-P cycle at which the QRS complex must fall to produce 
a prolongation or an abbreviation of the P-P interval is 
consistent with that interpretation. 

In contrast, in both experimental and modeling work 
on Purkinje fiber, the phase-resetting response is usually 
triphasic, because a slight shortening of action potential 
duration, and hence of cycle length, is seen when a 
relatively large amplitude depolarizing stimulus falls very 
early in the cycle (18). It is thus perhaps not coincidence 
that a similar triphasic response is also found in a model 
of the SAN derived by modifying a model of Purkinje 
fiber (Fig. 9A of Ref. 5). In addition, a quinquephasic 
response can be seen in Purkinje fiber when supernormal 
excitability occurs (18). We know of no experimental 
evidence for either triphasic or quinquephasic responses 
in the SAN. The biphasic response of the SAN is reversed 
when a hyperpolarizing current pulse is applied, in that 
a stimulus falling relatively early in the cycle produces 
an advance, whereas the same stimulus delivered later in 
the cycle results in a delay (model, Fig. 9; see also Refs. 
5, 36, 43; experiment, Ref. 26). Whereas delays have 
often been seen with vagal stimulation, which is hyper- 
polarizing in nature, advances have been reported only 
infrequently. 

The maximal prolongation that we have seen in the 
model when changing the pulse amplitude in steps of 0.1 
PA/cm2 and tc in steps of 1 ms occurs at tc = 109 ms and 
A = -1.8 pA/cm2, producing T1/TO = 1.89 (Fig. 7B). 
Whereas prolongations of as much as 80% (i.e., 7’JT0 = 
1.8) have been reported in experimental work on the 
SAN (26), the corresponding voltage tracings were not 
shown, and thus we cannot say whether small-amplitude 
oscillatory activity of the type shown in Fig. 7B is asso- 
ciated experimentally with such long prolongations. This 
oscillatory activity is not unexpected near the type l/ 
type 0 border and is presumably caused by the proximity 
of the trajectory, at the time the current pulse is turned 
off, to the stable manifold of the equilibrium point lying 
at V = -34 mV (see APPENDIX). Similar behavior has 
been previously described in ionic models of the SAN (5, 
43) and Purkinje fiber (18) and in experimental and 
modeling work on embryonic chick ventricular heart cell 
aggregates (10, 15, 19). However, in the latter case, the 
oscillatory activity is in the pacemaker rather than the 
plateau range of potentials, as is an equilibrium point. 

2) As the amplitude of a depolarizing stimulus is in- 
creased, the phase in the cycle at which lengthening of 
cycle length turns into shortening decreases, and the 
range of + over which this transition occurs also de- 
creases (model, Figs. 3, 4, and 6; see also Refs. 5, 36, 43; 
experiment, Refs. 26, 45). Similar behavior has been 
reported in Purkinje fiber (28), in ventricular heart cell 
aggregates (19), and in models thereof (10, 15, 18). In 
fact, in those cases the response can become so abrupt 
as to be effectively discontinuous; for example, in a model 
of the aggregate, intermediate responses spanning the 
diastolic interval (analogous to those shown in Fig. 4C) 
are not seen in a certain range of amplitudes when tc is 
changed with an increment as small as 1 ps (Fig. 3-9 of 
Ref. 15). Such abrupt behavior is not seen in the SAN 
model; this difference is probably connected with the fact 
that lNa has been implicated in generating such behavior 
(lo), and lNa in the SAN model is much smaller than in 
models of tissue of ventricular origin. 

3) Graded action potentials are seen in response to 
high amplitude depolarizing stimulation (model, Figs. 3 
and 5, see also Ref. 5; experiment, Refs. 4, 11, 26, 32, 35, 
47). The overshoot potential and ri,,, tend to increase 
as tc is increased; in fact, they exceed the control value 
if tc is made sufficiently large (model, Fig. 5; experiment, 
Refs. 11, 35). Graded action potentials can also be seen 
in response to a hyperpolarizing stimulus when an ano- 
dal-break effect is produced. As the amplitude of the 
hyperpolarizing pulse is increased at fixed tc, there can 
be a progressive fall in the overshoot of the action poten- 
tial (model, not shown; experiment, Fig. 3A of Ref. 26). 
A rise in the overshoot can also be seen in the model 
(not shown) for other combinations of stimulus ampli- 
tude and timing (see also Fig. 6B of Ref. 5). 

4) Annihilation of activity with a single current pulse 
is not possible in the model studied above, because 
clamping the membrane to the zero-current potential, 
setting all activation and inactivation variables to the 
asymptotic values appropriate to that potential, and then 
releasing the clamp results in the resumption of sponta- 
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neous activity. This result also occurs in the precursor 
to the model studied here (Fig. 9 of Ref. 51) and is in 
agreement with the corresponding experimental finding 
(39). Note that the model studied here is formulated 
using voltage-clamp data from the same experimental 
preparations in which this behavior was found experi- 
mentally. There is one report of annihilation in strips of 
tissue taken from the kitten SAN (24); the model consid- 
ered in this paper (23) can be made to show annihilation 
if it is suitably modified (unpublished data). 

5) In the model, the stimulus pulse has only a slight 
effect on the poststimulus and subsequent cycles at lower 
stimulus amplitudes, i.e., Ti = 7’0 for i > 2. This is 
reflected in Fig. 6B (A = -1.5 pA/cm2), where G+ and 
(P’2 are nearly identical, indicating T2 = To. At higher 
stimulus amplitudes (e.g., A = -2.0 pA/cm2), T2 can be 
considerably less than To when a graded action potential 
is produced (cf. VI and V2 in bottom row of Fig. 6). This 
is caused by the large decrease in action potential dura- 
tion, which overrides the slight increase of diastolic 
duration of the poststimulus cycle (Fig. 5). This increase 
in diastolic duration is associated in the model with a 
slightly more negative MDP of the graded action poten- 
tial. Whereas concurrent increases in the negativity of 
MDP and the diastolic duration have been reported (e.g., 
Fig. 70 of Ref. 26), prolongation of diastolic duration is 
more often associated with an MDP depolarized beyond 
its usual value (e.g., Refs. 4, 11, 33). In these cases, the 
diastolic duration can be prolonged to the extent that 
significant “depression of automaticity” (42) of the SAN 
occurs. We have not seen such effects in our modeling 
work. 

Ionic mechanisms underlyingphase resetting. The ionic 
mechanisms underlying phase resetting in the model 
studied here are similar in some instances to those re- 
sponsible for analogous behaviors in models of other 
cardiac oscillators. For example, the mechanisms respon- 
sible for the prolongation of action potential duration 
(e.g., Fig. 3C; tc = 80 ms) and for the production of graded 
action potentials (Figs. 3, 5, and 8) are similar to those 
operating in a model of Purkinje fiber (18). In contrast, 
the mechanisms operative in the pacemaker range of 
potentials (illustrated in Fig. 8) are quite different from 
those operating in models of Purkinje fiber (18) and 
heart cell aggregates (10) when similar voltage traces are 
seen; in both those instances the pacemaker current 1h 
(or If or IK,) is a major factor. However, a feature common 
to both these classes of models is that the current pulse 
produces almost equal, but oppositely directed, changes 
in the two major currents involved in generating diastolic 
depolarization (I, and 11 in the SAN model, 1k, and 11 in 
the Purkinje fiber and aggregate models). 

At this point, we must stress that the SAN is an 
inhomogeneous structure, both histologically and elec- 
trophysiologically (3). For example, action potentials of 
different morphologies are found in different parts of the 
node during spontaneous activity. Recording from small 
pieces cut from the node reveals that these differences 
are to a large extent intrinsic, because the morphology 
of the action potentials recorded from any piece are quite 
similar to those recorded in situ at the parent location 

in the intact node (34). In addition, the response to 
electrical stimulation of small pieces coming from differ- 
ent parts of the node can be quite different (34,35). The 
model investigated above was based on data obtained 
from voltage-clamp work on small pieces probably taken 
in large part from regions of the node displaying latent 
pacemaker activity, because pieces dissected from the 
dominant pacemaker region apparently only rarely re- 
cover their spontaneous activity (35). Thus the model of 
Irisawa and Noma (23), or for that matter any other 
model of SAN cells, should not be regarded as represent- 
ative of the SAN as a whole, because of the above 
mentioned inhomogeneities. In particular, in cells of the 
SAN (6, 35) and models thereof (38, 43) in which 1h is 
more implicated in generating diastolic depolarization, 
one would expect to have a mechanism of phase resetting 
involving 1h when a subthreshold current pulse is deliv- 
ered during diastole similar to that previously described 
in heart cell aggregates (10). One recent modeling study 
on the SAN has indeed claimed that effects caused by 1h 
are important in phase resetting (43). In addition, in the 
more peripheral regions of the node, where 1Na is present 
to a greater degree, one might expect to see an abrupt 
transition from prolongation to abbreviation of cycle 
length when a current pulse of intermediate amplitude 
is delivered, similar to that recently described in heart 
cell aggregates (15, 19) and Purkinje fiber (18). Indeed, 
in a study on the precursor (51) of the model studied 
here, a more significant role was attributed to lNa when 
behavior similar to that shown in Fig. 8 was analyzed 
(36) 

The model studied here (23) does not contain currents 
included in other models, e.g., the Na+-K+ pump current 
(38), the Na+-Ca2+ exchange current (38), and the tran- 
sient-type calcium current (37), which can have an effect 
on the beat rate; nor are the various ionic concentrations 
allowed to fluctuate as in one other model (38). Although 
preliminary calculations performed by us on both of these 
models (37, 38) show no major changes in the phase- 
resetting characteristics, we cannot rule out at this time 
the possibility that there might be one or more aspects 
of phase resetting that would be influenced by these 
modifications. 

The topology of phase resetting. In many experimental 
and modeling studies, plots of TJTO similar to that 
shown in Fig. 6 (top row) have been found; these findings 
are consistent with the existence of type 1 phase reset- 
ting. In fact, for any limit-cycle oscillator, type 1 phase 
resetting is obligatory at a sufficiently low stimulus am- 
plitude (see APPENDIX). Patterns of activity very similar 
to that shown in Fig. 3C have also been seen many times 
in the SAN (e.g., Refs. 4, 11, 32, 33). We have identified 
such behavior, in which graded action potentials are 
produced by stimuli falling relatively early in the cycle, 
as corresponding to type 0 phase resetting (Fig. 6, bottom 
row). Similar voltage waveforms showing graded action 
potentials are also seen during type 0 phase resetting in 
reaggregates of trypsin-dispersed embryonic chick ven- 
tricular cells (15, 19) and in both experimental and 
modeling work on Purkinje fiber (18). 

The direct calculation of the new phase-old phase 
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curve (Fig. 6D) has not previously been carried out for a 
cardiac oscillator. Such a calculation cannot be carried 
out in experimental work. Fortunately, the calculations 
show that consideration of the voltage waveform alone, 
which is experimentally measurable, gives results very 
similar to the full-blown seven-dimensional calculation 
(cf. data in C and D of Fig. 6). This finding is probably 
connected in some way with the fact that the voltage 
variable plays a role disproportionate to that of any other 
variable in models of the Hodgkin-Huxley type. 

Our modeling work indicates that determination of Tl 
alone, which is the common practice, is not sufficient to 
ascertain the type of phase resetting present near the 
border between type 1 and type 0 phase resetting; for 
example, the TJTO data at A = -1.5 PA/cm2 and A = 
-2.0 PA/cm2 in Fig. 6A look quite similar, but in the 
former case type 1 phase resetting occurs, whereas in the 
latter case there is type 0 phase resetting. In addition, at 
these two stimulus amplitudes, changing tc in steps as 
small as 1 ms is not sufficient to determine the type of 
phase resetting present; increments of less than 1 ms are 
required (e.g., Fig. 4C). In all previous experimental and 
modeling work on the SAN, tc was not changed suffi- 
ciently finely in the transitional range of coupling inter- 
vals (as in Fig. 4) to determine the type of phase resetting 
present. This suggests that previous identifications (24, 
43, 50) of phase-resetting behavior as being of type 0 in 
the SAN were premature. 

The transition from type 1 to type 0 phase resetting 
reported above is direct, in that it takes place at a single 
well-defined value of the stimulus amplitude (just below 
A = -1.8 pA/cm2). Three other circumstances have re- 
cently been described in cardiac oscillators in which the 
transition is not direct. In all three cases, type 1 phase 
resetting is seen at low amplitudes, type 0 is seen at high 
amplitudes, and phase resetting to which a topological 
type or degree cannot be assigned is seen over an inter- 
mediate range of stimulus amplitudes. 

In the first case, it is possible to annihilate sponta- 
neous activity with a pulse of intermediate amplitude, 
because of the presence of at least one equilibrium point 
that is stable. This can be seen in the SAN (24), depo- 
larized Purkinje fiber (25, 44)) depolarized ventricular 
muscle (12, 44), and ionic models thereof (unpublished 
data; Refs. 7 and 8, respectively). Note that annihilation 
cannot occur in the model we have studied, because there 
is only one equilibrium point present (Fig 6B of Ref. 23), 
which numerical simulation reveals to be unstable. 

In the second case, because of the presence of a saddle 
equilibrium point in the system, the topological degree 
of the phase resetting is also indeterminate over an 
intermediate range of stimulus amplitudes (10, 14). In 
this case, the saddle point arises via a saddle-node bifur- 
cation; such a bifurcation hinges on there being a region 
of negative slope in the steady-state I- V curve (10). 
Whereas the SAN model studied here possesses an N- 
shaped I-V curve, many specimens of the SAN appar- 
ently do not possess such an N-shaped I-V curve (e.g., 
Ref. 40). In addition, because the negative resistance 
region of the N-shaped curve, when present, tends to be 
quite shallow in the SAN [unlike for example, in Purkinje 

fiber or ventricular cells (40)], it would be difficult, 
indeed perhaps even impossible, to clearly distinguish 
experimentally this indeterminate case of phase resetting 
from type 1 and type 0 phase resetting. This is true even 
in modeling work; in fact, in one recent study of a model 
containing a saddle point in which type 0 phase-resetting 
was said to exist (Fig. 8C of Ref. 43), it is not clear that 
a sufficiently high pulse amplitude was used to indeed 
obtain type 0 phase resetting. In addition, V1 was used 
to approximate a’,, which will lead to errors of interpre- 
tation as outlined above. 

In the third case, seen in Purkinje fiber (28) and in 
embryonic chick ventricular heart cell aggregates (19), 
there is an intermediate range of stimulus amplitude over 
which the membrane demonstrates all-or-none depolar- 
ization. Modeling work in both these cases suggests that 
this behavior hinges upon the presence of 1~~ (15, 18). 
One would therefore not expect to see such behavior in 
cells taken from the central region of the SAN, which 
possesses little I Na. However, one would expect that it 
might be seen in spontaneously active cells taken from 
more peripheral regions of the SAN, where INa appears 
to be present in significantly larger amounts. Note that 
even in the model considered above, which does not 
contain much I&, the transition from maximal prolon- 
gation to maximal shortening of the cycle length Tl can 
be very abrupt, taking place with a change in tc of a few 
milliseconds at a stimulus amplitude just below that at 
which the type l/type 0 border is attained (Fig. 4C). 

Another circumstance in which a topological degree 
cannot be ascribed to the phase-resetting response, 
caused by all-or-none behavior, has recently been de- 
scribed in experiments on the SAN involving vagal stim- 
ulation (Fig. 2 of Ref. 30). It is possible that type 0 
resetting would also have been seen in that case if the 
magnitude of vagal stimulation would have been further 
increased. However, the discontinuity seen in this in- 
stance might be caused by the fact that propagation of 
the cardiac impulse is all-or-none, and the phase-reset- 
ting response was measured at a site in the right atrium, 
not the sinoatrial node. 

As stimulus amplitude is increased in the model, there 
is a direct transition from type 1 to type 0 phase resetting 
atA = -1.8 pA/cm2. Before this transition occurs, there 
is a change in the structure of the type 1 curve; it becomes 
nonmonotonic at A = -1.3 pA/cm2, and then has two 
extrema, one a minimum and the other a maximum. A 
similar change is seen in response to hyperpolarizing 
input. Note that this change is obligatory because, as 
stimulus amplitude increases, there is no way of contin- 
uously distorting a monotonic curve of degree one into a 
curve of degree zero. The existence of this nonmonoto- 
nicity has not previously been pointed out in modeling 
or experimental work on the SAN. Note that the type 0 
curve is also, by definition, nonmonotonic, and that at A 
= -2.0 PA/cm2 (Fig. 6, C and D) it also possesses two 
extrema. Nonmonotonicity (also termed noninvertibil- 
ity) of the PTC has important consequences when a 
limit-cycle oscillator is periodically stimulated; for ex- 
ample, the existence of one extremum can result in 
period-doubling bifurcations, leading to alternans pat- 
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terns (13, 15-17, 21); a cascade of such bifurcations can 
lead to “chaotic” dynamics (13, E-17, 21); and the 
existence of two extrema can produce bistability, the 
coexistence of two different synchronization patterns, 
leading to hysteresis (13, 15, 16, 21). Because there are 
amplitudes at which PTC, possesses four extrema (not 
shown), the possibility of quadristability is also raised. 
Such four-extrema PTCs have recently been described 
in ionic models of Purkinje fiber (18) and depolarized 
ventricular muscle (29). It remains to be seen whether 
the above phenomena, predicted to exist from the phase- 
resetting response, are indeed present in the model when 
it is subjected to periodic stimulation. 

Induction of a rotor. Repetitive activity at a fast rate 
can sometimes be seen in the SAN when a premature 
stimulus of the correct timing is delivered to the atrium 
(4, 33). It is generally accepted that these nondriven 
repetitive extrasystoles are caused by reentrant activity 
produced when the stimulus falls sufficiently early in the 
cycle so as to encounter refractoriness and produce block 
somewhere in the SAN itself or in the surrounding 
perinodal tissue. A theoretical mechanism for producing, 
de novo, a focus of activity (“rotor”) in a spatially dis- 
tributed, spontaneously oscillating medium by injecting 
a stimulus of the proper amplitude and timing has re- 
cently been propounded by Winfree (50). This mecha- 
nism hinges on the ability to obtain type 0 phase reset- 
ting. We have identified the waveforms in Fig. 3C as 
corresponding to type 0 phase resetting. Because, as 
previously mentioned, similar waveforms can be seen in 
the node in response to premature atria1 stimulation, we 
can therefore conclude that the propagated atria1 impulse 
is sufficiently strong to produce type 0 phase resetting of 
nodal cells. Thus the amplitude requirement (50) for 
provoking a rotor is satisfied. The traces shown in Fig. 7 
indicate that the stable manifold of the only equilibrium 
point in the model studied above is encountered at a 
coupling interval such that the stimulus falls during the 
latter part of the repolarization phase of the action 
potential. The critical timing of the premature stimulus 
theoretically needed to induce a rotor coincides with this 
time (Ref. 50; see also Fig. 2-26 and associated explana- 
tion in Ref. 15); moreover, this time coincides with the 
“vulnerable period” during which rapid repetitive activity 
can indeed be induced experimentally. Thus both the 
amplitude and timing criteria for induction of a rotor in 
a spontaneously active medium are satisfied. Winfree’s 
theory for the initiation and maintenance of a rotor can 
also be extended to the case of a quiescent, but excitable, 
medium (50); there is recent experimental evidence in 
quiescent ventricular muscle that lends support to this 
extension of the theory (9). 

In conclusion, with one major exception reported on 
above, the absence of significant depression of automa- 
ticity, the model of Irisawa and Noma (23) replicates to 
a large extent the voltage waveforms seen during phase- 
resetting experiments. This exception might not be 
caused by any intrinsic shortcoming in the description 
of a patch of isopotential SAN membrane provided by 
the model but rather may be caused by propagation and 
electrotonic effects (46) that are necessarily excluded in 

our simulations. Indeed, some phenomena that can be 
seen in response to premature stimulation, such as pace- 
maker shift (4), will, by definition, only exist if there is 
a distributed pacemaker complex. Nevertheless, we find 
it rather surprising that a relatively simple model, en- 
compassing only six currents, performs so well. Because 
lNa and 1h do not play a great role in the Irisawa-Noma 
model, removal of these two currents results in almost 
unchanged behavior (the sole exception being that the 
increases in overshoot potential and upstroke potential 
beyond the normal value by a pulse delivered late in the 
cycle are then absent). Thus a four-variable model ( V, d, 
f, and p) containing only the three currents I,, 1K, and 11 
would suffice to account, by and large, for the phase- 
resetting characteristics of the SAN 

APPENDIX 

A brief introduction to phase resetting, stressing topological 
concepts, is given by the following. More detailed information 
about the concepts outlined below can be found in the textbooks 
of Pavlidis (41) and Winfree (49, 50), as well as in two review 
articles (14, 31). 

Phase shift, old phase, and new phase. When a brief-duration 
stimulus is applied to an oscillator, there is generally a transient 
speeding up or slowing down of the oscillator. Although the 
oscillator’s period will eventually come back to its preexisting 
control value, the oscillator will in general suffer a permanent 
resetting of its rhythm. Figure 10 illustrates this concept, using 
a computer simulation of the ionic model of the sinoatrial node 
(23) studied in the body of this paper. Figure 1OA shows an 
unperturbed control, whereas Fig. 1OB shows the effect of 
injecting a stimulus that is a brief pulse of current. In this case, 
the stimulus causes a transient slowing of beat rate but a 
permanent shifting or resetting of the rhythm of the oscillator. 
For example, action potential upstrokes, which occur simulta- 
neously in the two traces of Fig. 10 before injection of the 
stimulus pulse, are no longer synchronous after stimulus injec- 
tion, even after waiting for a very long time. In experimental 
work, if one waits for a time long enough for the cycle to regain 
its original control period, one notices that there is a permanent 
temporal shift AT, established between the timing of the 
upstroke of the control oscillator and that of the phase-shifted 
oscillator (Fig. 10). Note that AT, is mathematically defined 
as the difference in the times at which the ith upstrokes occur 
in the two traces of Fig. 10 in the limit i + 00, hence the 
subscript 00. Also by definition, the sign of AT, is arbitrarily 
taken as being negative for the example shown in Fig. lOB, 
because the upstroke of the ith action potential in the perturbed 
trace occurs after that in the control trace in the limit i + 00. 
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FIG. 10. A: unperturbed control activity in Irisawa-Noma (23) 
model. B: phase resetting produced by injecting a stimulus, a depolar- 
izing current pulse of duration 20 ms and amplitude -1.5 PA/cm*, at a 
coupling interval of tC = 120 ms. 
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The phase shift AGo0 is defined as 

AT,/TO (modulo l), 

for -0.5 5 AT,/To (modulo 1) < 0.5 

A@,= AT,/To (modulo 1) + 1, (Al) 

for ATJT, (modulo 1) < -0.5 

AT,/TO (modulo 1) - 1, 

for AT,/To (modulo 1) 2 0.5 

Thus when AT= = 0, A@, = 0, and there is no phase shift. For 
A@, < 0, one speaks of a “phase delay,” whereas for A@, > 0, 
one has a “phase advance.” Because a phase advance of one- 
half cycle is equivalent to a phase delay of one-half cycle, one 
must restrict A@, to the range -0.5 s A@, < 0.5. Given that it 
is possible in general for AT, to exceed To in magnitude, e.g., 
when a very long prolongation in cycle length is produced (e.g., 
Fig. 5 of Ref. 19), the fractional part of AT,/To must be taken 
as indicated by the (modulo 1) operation in Eq. Al. We define 
the modulo 1 operation to be such that x (modulo 1), for X, a 
real number (positive or negative), is given by x - [x], where 
[x] indicates the integer (positive or negative) produced by 
truncating X, i.e., by removing its fractional part. Because AT,/ 
To(modulo 1) thus gives values lying between -1 and +l, 
values equal to or bigger than 0.5 or more negative than -0.5 
must then be converted to values lying in the range -0.5 5 
A@, < 0.5 by subtracting 1 or adding 1, respectively, as in Eq. 
Al. 

One can also define the phase shift as the difference between 
the new phase and the old phase. To do so, one must first 
define these two phases. The phase in the cycle at which the 
stimulus is injected is given simply by t,/T,, where To is the 
intrinsic cycle length of the oscillator, and tc is the coupling 
interval at which the pulse is injected (Fig. 10). This particular 
phase is called the old phase and is denoted by @ 

@ = &/To (Aa 

It is termed the old phase, because it indicates the phase of the 
oscillator just before delivery of the phase-shifting stimulus. As 
a result of its definition as the fractional part of the cycle at 
which the stimulus is injected, one has 0 5 4e) < 1. For example, 
a stimulus pulse injected at the beginning of the cycle is 
delivered at @ = 0.0, whereas one injected halfway through the 
cycle is delivered at Q> = 0.5. 

The new phase or “eventual phase” @& depends on the 
magnitude and sign of the phase shift A@, produced by the 
stimulus, and is defined by 

a; = (@ + AT,/TJ (modulo 1) + N W) 

where N is the smallest positive integer ensuring @L > 0. The 
subscript 00 indicates that the new phase is measured an infi- 
nitely long time after delivery of the stimulus. Thus at values 
of @ where AT, = 0, @L will equal + (the new phase will equal 
the old phase), and no phase shift will have occurred. Because 
the old phase has the range 0 5 * < 1, one allows the same 
range for the new phase, i.e., 0 s a& < 1, so as to be able to 
compare new phase with old phase. The fractional part of the 
term @ + AT-/To appearing in the right-hand side of Eq. A3 
must be taken [using the modulo 1 operation], because it is 
possible for this sum to equal or exceed unity if AT, is suffi- 
ciently large. For example, a stimulus that causes a prolonga- 
tion of exactly two cycle lengths does not produce any phase 
shift by this definition, because a,& = a. Also, because (@ + 
AT,/TJ(modulo 1) can be negative (e.g., if AT, is sufficiently 
negative and Qi sufficiently small), one must convert such a 

negative value to a positive value by adding the smallest positive 
integer (N) that ensures that @& is nonnegative. Finally, the 
definition of phase shift A%,, which must have the range -0.5 
< A@, < 0.5, can now be given in terms of new phase and old - 
phase 

Note that AT,, A@,, and +X, depend both on stimulus timing 
(i.e., tc or a) and the stimulus parameters, i.e., stimulus polarity, 
amplitude, and duration. For a given combination of stimulus 
parameters, one can investigate in a systematic manner the 
effect of changing the old phase *. One can then measure AT,, 
calculate the phase shift A+, from Eq. Al, and plot the phase 
shift A@, vs. the old phase @. This curve is called the phase 
response curve (PRC). At a small stimulus strength, a plot such 
as that shown in Fig. 1lA results in many biological prepara- 
tions (49). There is a range of 4p over which A@, < 0 (i.e., the 
oscillator is phase delayed), whereas over another range A+, > 
0 (i.e., the oscillator is phase advanced). One can also calculate 
@L from Eq. A3, and plot the new phase a,& vs. the old phase 
@. This curve is called the new phase-old phase curve or the 
phase transition curve (PTC). Figure 11B shows the PTC 
corresponding to the PRC of Fig. 1lA. Note that in the limit 
of zero-stimulus strength, A@, = 0, independent of @, and so 
the PRC approaches the horizontal straight line A@, = 0 in 
that limit, whereas the PTC approaches the diagonal line @L = 
cp. 

The phase shift A%, in Fig. 1lA does not span the full range 
-0.5 5 A@, < 0.5. It is only at a sufficiently high stimulus 
amplitude that all possible values of A@, will be encountered. 
Figure 11, C and D, shows the PRC and PTC, respectively, in 
this case. These two curves are not discontinuous, because a 
phase shift of 0.5 is equivalent to a phase shift of -0.5, and a 
new phase of 1.0 is equivalent to a new phase of 0.0. Note that 
the old phase @ where A@, = 0.5 is not the same as that at 
which (a; = 0. 

0.5 A 

A@ 

-051 . 

0.5 c 

A@ \% 
0 \ a, 1 

. . 

-05 . \ 

FIG. 11. Phase response curves (A, C) and phase transition curves 
(B, D) at low (top row: amplitude = -1.0 PA/cm*) and high (bottom 
row: amplitude = -2.0 PA/cm*) levels of stimulus amplitude, corre- 
sponding to type 1 and type 0 phase resetting, respectively. Second 
transient phase (B, D) and phase shift (A, C) are shown in these curves 
(see text). 
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There is a qualitative difference in the two curves of Fig. 11, 
B and D, the first being obtained at a sufficiently low stimulus 
strength and the second at a sufficiently high strength. The 
average slope of the PTC in Fig. 1lB is 1, the curve is of 
topological degree 1, and thus type 1 phase resetting is said to 
occur (49). In contrast, in Fig. llD, the average slope is zero, 
the curve is of topological degree 0, and so type 0 phase resetting 
occurs (49). 

Isochrons. These two qualitatively different kinds of PTC 
have been seen in phase-resetting experiments carried out on 
many biological oscillators (49). Why are these two types, and 
no others, seen? The answer to this question, as initially 
pointed out by Winfree (49), lies in the qualitative theory of 
differential equations. The oscillation in Fig. 1OA is described 
by a set of differential equations; indeed, it is this set of 
equations, forming a model for the sinoatrial node, that we 
numerically integrate to produce the trace shown in Fig. 1OA. 
In this model, at any time t, the state of the system is completely 
specified by the values of the seven variables of the system at 
that time. These variables are the transmembrane potential V, 
and the six activation and inactivation variables (m, h, d, h p, 
and q) that gate the various ionic currents in the model. The 
state space of the system is thus seven-dimensional, with the 
state of the system at any point in time being specified by the 
position of a point, the state point, in that seven-dimensional 
space. As the system evolves in time, the state point traces out 
a curve in the state space called a trajectory. Thus the usual 
cyclic activity seen in the model and responsible for producing 
the voltage trace shown in Fig. 1OA corresponds to movement 
of the state point along a closed trajectory called a limit cycle. 

Because it is difficult to visualize events occurring in a seven- 
dimensional space, we use the simple two-dimensional limit- 
cycle oscillator shown in Fig. 12A to illustrate Winfree’s theory. 
The thick closed curve with the arrow is the limit cycle itself. 
As time proceeds, the state point of the system moves along 
this cycle in the direction of the arrow, generating a repetitive 
cyclic waveform for both variables (X and y) of the system. Let 
us now perform a phase-resetting experiment by injecting a 
stimulus when the state point is at the point labeled a on the 
cycle (Fig. 12A), corresponding to an old phase of, say, 0.0. 
During the time that the stimulus is on, the state point will 
move away from its usual path along the limit cycle and will 
instead move along the trajectory from point a to point b. When 
the stimulus is turned off at point b, the trajectory will then 
relax back toward the limit cycle along the path illustrated. 
Mathematically, even though this trajectory approaches the 
limit cycle more closely as time goes on, it never really returns 
to it in finite time. Let us assume that the corresponding new 
phase (%) in this example is 0.1. By continuity, there will be 
a set of points close to b with the property that if at the end of 
a stimulus pulse, the state point coincides with any one of these 
points, the new phase will also be 0.1. This set of points forms 
a curve that will thread through the limit cycle. Note that this 
curve, called an isochron, must intersect the limit cycle at a 
point, c, where the old phase is 0.1 (Fig. 12B), because, should 
a stimulus deliver the state point to point c, one would have a 
new phase of 0.1. There are infinitely many isochrons, one for 
each value of a&,, threading through the limit cycle. In Fig. l2B, 
we show the 0.1, 0.3, 0.5, 0.7, and 0.9 isochrons. In Fig. 12C, 
injection of a stimulus at an old phase of, say, 0.6, causes the 
state point to move from d to e, which lies on the 0.5 isochron. 
By starting out from many old phases on the limit cycle, the 
dashed curve in Fig. 12C can be constructed. This curve is the 
shifted cycle, which defines the locus of the state point at the 
end of the stimulus pulse for any old phase, i.e., it is the locus 
of all points such as b and e shown as specific examples in Fig. 
12C. Note that in the case of Fig. 12C, the shifted cycle 
intersects all isochrons between 0.0 and 1.0; thus given any 

A 

C 

b 

b 

FIG. 12. Simple 2dimensional limit-cycle oscillator (A) used to 
illustrate concept of isochron (B) and genesis of type 1 (C) and type 0 
(D) phase resetting. See text for further explanation. 

arbitrary isochron with a particular new phase, there is always 
some old phase, starting from which that new phase is acces- 
sible. This results in a type 1 new phase-old phase curve, similar 
to that shown in Fig. 1lB. 

As stimulus amplitude is increased, the effect of the pertur- 
bation will be greater, and the shifted cycle will move further 
away from the limit cycle. Eventually, a situation such as that 
shown in Fig. 120 will result. Note that the shifted cycle no 
longer intersects all of the isochrons. In fact, isochrons with 
new phase in the range from ~0.3 to 0.9 are not accessible in 
this particular case, no matter at what old phase the stimulus 
pulse is injected. Thus a gap will appear in the new phase 
values of the new phase-old phase curve, as in the type 0 curve 
of Fig. 1lD. Note also that each of the accessible isochrons 
(e.g., @ii = 0.1 in Fig. 120) has two intersections with the 
shifted cycle, meaning that any accessible new phase can be 
reached from two different values of the old phase (see also 
Fig. 110). 

At one definite stimulus amplitude somewhere between those 
used in Fig. 12, C and D, one point on the shifted cycle will 
coincide with the equilibrium point in the interior of the limit 
cycle (indicated by the symbol x). Because this is an equilibrium 
point, the state point will rest there indefinitely (in a noise- 
free system) after stimulation, oscillation will cease, and the 
new phase will be undefined for the corresponding old phase. 
It is precisely at this amplitude that the type l/type 0 border 
is encountered. In a state space of dimension greater than 2, 
this border occurs at the amplitude where the shifted cycle 
encounters the stable manifold of the equilibrium point, which 
is not a point but a higher-dimensional object such as a curve 
(49). (Also in that case, the isochrons are not one-dimensional 
curves; for example, in the seven-dimension .a1 ionic model 
studied here, the isochrons are six-dimensional hypersurfaces.) 
The traces of Fig. 7 are similar to what one would expect when 
the state point of the system lies very close to the stable 
manifold after stimulus injection, because they show incre- 
menting low-amplitude oscillatory activity; indeed the traces 
are quite similar to what one sees if one starts the simulation 
with initial conditions close to the equilibrium point in the 
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model. This interpretation is also consistent with the fact that 
the stimulus amplitude at which these traces are found lies just 
above that defining the type l/type 0 border. 

Discontinuities in phase resetting. So far, we have character- 
ized the phase-resetting response in the limit of waiting for an 
infinitely long time (Fig. lo), because it is only in that limit 
that the trajectory theoretically returns to the limit cycle after 
a perturbation (Fig. 12A). However, in experimental and mod- 
eling work, one must perforce acquire data at a finite time after 
delivery of the stimulus. In addition, real systems are “noisy,” 
and one can imagine that it would suffice in Fig. 12A that the 
corresponding noisy trajectory originating at point b simply 
enters the region of phase space wherein the noisy limit cycle 
is circulating. As a rule of thumb, one can reliably estimate the 
new phase once the cycle length has returned to within a few 
percent of its control value. In cardiac phase-resetting studies 
involving current-pulse injection, this usually occurs within a 
few cycles (15). 

However, if one does not wait for a sufficiently long time, 
which has been a common practice in previous experimental 
and modeling work, the characteristics of the phase-resetting 
response can be quite altered. The most extreme example of 
this is perhaps seen if one considers the timing of the upstroke 
immediately after delivery of the stimulus. In that case, one 
can define the first transient new phase a{ in a manner anal- 
ogous to that in which @L was earlier defined in Eq. A3 

@i = (@ + AT1/TO) (modulo 1) + N (A5) 

where TI is as indicated in Fig. 2. Note that defining an absolute 
time TI requires a precise, but arbitrary, definition of when the 
upstroke occurs. In the body of this paper, we have chosen a 
positive-going crossing of -10 mV of the transmembrane po- 
tential V as our definition of this event marker. In the seven- 
dimensional phase space of the ionic model, an event thus 
occurs when the trajectory pierces the hyperplane V = -10 mV 
in the direction corresponding to increasing V. One can in 
general define the ith transient new phase Qi 

a$ = (a + ATi/To) (modulo 1) + N (Aa 

where the ATis are as indicated in Fig. 2. A plot of QE vs. @ is 
called the ith transient phase transition curve (PTC,). Discon- 
tinuous jumps will exist in general (31) in all of the PTC, (e.g., 
see @i in middle and bottom rows of Fig. 6). However, the size 
of these jumps will decrease as i increases. In fact, in the limit 
i + 00, it can be proven mathematically that these Kawato- 
Suzuki “discontinuities of the first kind” must heal up, resulting 
in a PTC, that is continuous (31). Again, the rate at which the 
discontinuity heals up will depend on how quickly the trajectory 
returns to the limit cycle after a perturbation. On the scale of 
the computations shown in this paper, no discontinuities are 
visible in PTCz (see ‘Pi curves in Fig. 6); indeed, PTC2 is 
superimposable with PT&, and so PTCz can be taken as a very 
good approximation to PTC,. In fact, in Fig. 11 we actually 
show +I and the second transient phase shift A& (which is 
defined as in Eq. Al, replacing A&, with A& and AT, with 
ATZ). In situations in which the effect of the perturbation on 
the oscillator is longer lasting (e.g., vagal stimulation of the 
sinoatrial node), one might have to examine PTCi for i > 4. 
The origin of the discontinuities in PTCi can be understood if 
one considers how the shifted cycle of Fig. 12, C and D, 
intersects the event marker surface; for a graphical illustration 
of this fact in a simple two-variable model, see Fig. 5 of Ref. 31 
and associated explanation. 
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