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Abstract. A mathematical model for the perturbation of a biological oscillator 
by single and periodic impulses is analyzed. In response to a single stimulus the 
phase of the oscillator is changed. If  the new phase following a stimulus is 
plotted against the old phase the resulting curve is called the phase transition 
curve or PTC (Pavlidis, 1973). There are two qualitatively different types of 
phase resetting. Using the terminology of Winfree (1977, 1980), large per- 
turbations give a type 0 PTC (average slope of the PTC equals zero), whereas 
small perturbations give a type 1 PTC. The effects of periodic inputs can be 
analyzed by using the PTC to construct the Poincar6 or phase advance map. 
Over a limited range of stimulation frequency and amplitude, the Poincar6 map 
can be reduced to an interval map possessing a single maximum. Over this range 
there are period doubling bifurcations as well as chaotic dynamics. Numerical 
and analytical studies of the Poincar6 map show that both phase locked and 
non-phase locked dynamics occur. We propose that cardiac dysrhythmias may 
arise from desynchronization of two or more spontaneously oscillating regions 
of the heart. This hypothesis serves to account for the various forms of atrio- 
ventricular (AV) block clinically observed. In particular 2 : 2 and 4 : 2 AV block 
can arise by period doubling bifurcations, and intermittent or variable AV 
block may be due to the complex irregular behavior associated with chaotic 
dynamics. 

Key words: Cardiac dysrhythmias - Phase locking - Chaos - Period 
doubling bifurcations 

I. Introduction 

The rhythm of autonomous biological oscillators can be markedly affected by 
periodic perturbation. Studies of the effects of periodic electrical stimulation of 
neural and cardiac oscillators have revealed that the intrinsic rhythm may become 
entrained or phase locked to the periodic stimulus (Perkel et al., 1964; 
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Moulopoulos et al., 1965; Reid, 1969; van der Tweel et al., 1973; Ayers and 
Selverston, 1977; Pinsker, 1977; Jalife and Moe, 1979; Scott, 1979; Guttman et al., 
1980; Guevara et al., 1981). Phase locking in an N: M ratio occurs when there are M 
cycles of the driven oscillator for every N stimuli. In N : M  phase locking one 
observes M marker events associated with the driven cycle (for example, upstrokes 
of the action potential) occurring at M different times or phases in the stimulus 
cycle. The N: M pattern is a repeating sequence periodic in time. 

In addition to phase locked dynamics, irregular or aperiodic dynamics have 
been observed in theoretical studies (Cartwright and Littlewood, 1945; Levinson, 
1949; Zaslavsky, 1978; Tomita and Kai, 1978; Guckenheimer, 1980; Levi, 1981). 
The term "chaos" has been adopted by recent workers (Li and Yorke, 1975; May, 
1976) to describe complex and aperiodic dynamics that can arise in deterministic 
systems (i.e. systems described by equations that do not include stochastic terms). 
Experimentalists have often observed dynamics which were not phase locked in 
response to periodic stimulation of biological oscillators (Perkel et al., 1964; 
Moulopoulos et al., 1965; Reid, 1969; van der Tweel et al., 1973; Ayers and 
Selverston, 1977; Pinsker, 1977; Ushiyama and Brooks, 1977; Jalife and Moe, 
1979; Scott, 1979; Guttman et al., 1980; Petrillo, 1981 ; Guevara et al., 1981). The 
usual explanation for such irregular behaviour is that "noise" present in a complex 
system will tend to destroy periodic patterns (Guttman et al., 1980; Glass et al., 
1980). An alternative explanation is that at least some of the irregular behaviour is a 
reflection of chaotic dynamics intrinsic to the deterministic equations describing the 
system. 

In principle, numerical computation of the effects of periodic input on 
equations displaying limit cycle behaviour should be a straightforward procedure. 
However, since realistic models of biological oscillators are formulated as stiff 
systems of several nonlinear differential equations (Hodgkin and Huxley, 1952; 
McAllister et al., 1975), numerical integration of such equations in response to 
periodic input is an expensive and time consuming procedure and has seldom been 
carried out (Holden, 1976; Guttman et al., 1980). In addition, it is difficult, even 
with simplified systems such as the van der Pol oscillator, to obtain a clear view of 
the dynamics in response to periodic stimulation (Cartwright and Littlewood, 
1945; Levinson, 1949; Flaherty and Hoppensteadt, 1978; Scott, 1979; 
Guckenheimer, 1980; Levi, 1981). Therefore, in order to investigate the effect of 
periodic stimulation, we have developed a general mathematical model that is 
simple enough to allow use of an alternative approach to numerical integration of 
nonlinear differential equations. 

If a biological oscillator is subjected to a single, short (in comparison to its 
period of oscillation) stimulus, its rhythm undergoes a transient disturbance. 
Following the transient period, the oscillation eventually reverts to its original rate, 
but with a resetting of the phase of the oscillation (Winfree, 1977). We obtain an 
analytic expression for the response of our simple two dimensional oscillator to 
such an isolated stimulus (the phase transition curve or PTC). Using the analytic 
form of the PTC, we then investigate the response of the model to periodic 
stimulation by constructing the Poincarb map, This approach of using the response 
to a single stimulus to predict the response to repetitive stimulation has been 
previously used (Perkel et al., 1964; Moe et al., 1977; Pinsker, 1977; Scott, 1979). 
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There are correspondences between the behaviour displayed by the model and 
experimental observations, both in regard to the response to a single stimulus and in 
regard to the response to periodic stimulation. When a periodic stimulus is applied, 
the model displays phase locked patterns as well as irregular, non-phase locked 
behaviour that arises out of chaotic dynamics. 

Since our work may be of interest to experimentalists, we have written this paper 
so that the results can be appreciated without understanding the technical details. 
Section II is a general presentation of the mathematical model and the principal 
results. Sections III, IV and V are technical and directed towards theoreticians and 
show how the results were obtained, Section VI is a non-technical discussion of the 
relevance of this theoretical work to experimental and clinical observations. The 
Appendices contain proofs and computations. 

II. The M a t h e m a t i c a l  M o d e l  and an Overview of  the Results  

In this section we describe the mathematical model and its limitations, and the 
response of the model to a single isolated stimulus. Next we illustrate the different 
types of phase locked and irregular dynamics that can result from periodic 
stimulation. 

The mathematical model for the biological oscillator in this paper has 
previously been discussed by Winfree (1975, 1980) and Scott (1979). The model is 
given in two dimensional polar coordinates by the equations 

d~ 
- 2~z, 

dt 
dr (1) 
- -  = a r ( 1  - r ) ,  
dt 

where ~0 is the angular coordinate ( -  ~ < # < oo), r is the radial coordinate and a 
is a positive real number. The unit circle forms a limit cycle that is globally 
attracting for all initial conditions except for the equilibrium point at the origin. 
Note that the unperturbed oscillator has unit period and its state can be 
parametrized by an angular coordinate ~b: 

4 = G (  mod 1). (2) 

The variable ~b is called the phase of the oscillation (0 ~< ~b < 1). 
Perturbation away from the limit cycle results in relaxation back to the stable 

limit cycle at a rate that depends on the parameter a. We consider the limiting case 
of a -* Go. In this case, following perturbation away from the limit cycle, there is an 
instantaneous relaxation back to the limit cycle along a radial direction. In what 
follows we shall consider perturbations consisting of impulses of magnitude b which 
are directed parallel to the x-axis (Fig. 1). Thus, the effect of a single impulse is to 
instantaneously reset the phase of the oscillator. Calling q9 the old phase of the 
oscillation immediately preceeding the perturbation, and 0 the new phase of the 
oscillation immediately following the perturbation we have 

0 = f ( ~ ,  b), (3) 
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Fig. l. Schematic representation of the effect of 
perturbation with an impulse of magnitude b on the 
model oscillator. The unit circle forms a limit cycle 
which is globally attracting for all points except the 
origin. The perturbation instantaneously resets the 
phase of the oscillator from phase q5 prior to the 
perturbation to phase 0 after the perturbation. Every 
time the oscillator passes through phase q~ = 0, we 
associate this with an observable event such as a 
neural or cardiac action potential. Identifying the x- 
axis variable with membrane potential, perturbations 
directed along the x-axis (b > 0) are analogous to 
depolarizations, whereas perturbations directed in the 
opposite direction (b < 0) are analogous to hyper- 
polarizations 

where the functionfis called the phase transition curve (PTC). In Section III of this 
paper we analytically compute the PTC for this model and discuss its properties. 
Our choice of the model in Fig. 1 has been motivated by the fact that an analytic 
expression can be found for the PTC. This is in sharp contrast to other simple 
models of limit cycle oscillations such as the van der Pol oscillator for which 
analytical expressions for the PTC are not available (Pavlidis, 1973; Winfree, 1980). 

In addition to its analytic simplicity, the PTC of (1) displays certain qualitative 
features which resemble some experimental observations. Consider a perturbation 
directed along the positive x-axis (b > 0). Applying the perturbation during the first 
half of the cycle (0 < q5 < 0.5) leads to a delay in the phase of the oscillation, 
whereas application of the same perturbation in the second half of the cycle 
(0.5 < q5 < 1.0) leads to an advance of phase. Also, for this model, the average slope 
of the PTC is 1 (type 1 PTC) at low amplitudes of perturbation and 0 (type 0 PTC) at 
higher amplitudes. Winfree (1977, 1980) reviewed data resulting from different 
experimental preparations and showed that in many situations the PTC's are 
biphasic and either type 1 or type 0. 

Despite these parallels with experiment, the mathematical model is unrealistic 
for many reasons. Since most realistic mathematical models for biological 
oscillations are systems of differential equations of dimension greater than 2, the 
topological dimension of the proposed system of equations is too low. 
Furthermore, it is unrealistic to assume that d~b/dt is independent of r, and that the 
relaxation back to the limit cycle is instantaneous. Finally, due to the rotational 
symmetry inherent in the model, the PTC shows symmetries (see Section III) which 
are not observed experimentally (Pavlidis, 1973 ; Jalife and M oe, 1979; Scott, 1979; 
Guevara et al., 1981). Possible changes in the behaviour of the system which arise 
from relaxing one or more of our assumptions to make them more realistic have not 
yet been studied. 

The PTC describes the response of the oscillator to an isolated impulse. The 
PTC can be used to predict the response to periodic stimulation. In Section IV we 
show how the PTC can be used to derive a mathematical function called the 
Poincar6 map. Iteration of the Poincar6 map allows us to study the dynamics of the 
model in response to periodic input. Although equivalent procedures have been 
previously employed (Perkel et al., 1964; Moe et al., 1977; Pinsker, 1977; Glass 
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and Mackey, 1979; Scott, 1979; 1980; Levi, 1981), there has not been a thorough 
analysis of the different phase locking behaviors displayed by a mathematical 
model displaying both type 0 and type 1 PTC's. 

The major results of this paper are given in Fig. 2 which shows the principal 
phase locking zones as a function of the magnitude b of the perturbation and the 
time r between successive stimuli. Figure 2a shows the zones of N: M phase locking 
for N ~> M, N ~ 3. Figure 2b shows some of these zones as well as all the 4 : M 
locking zones over a more limited region of (r, b) parameter space. In the unlabelled 
regions of Fig. 2, there are other phase locked zones, as well as points at which phase 
locked dynamics does not occur (see Section V). 
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Fig. 2. Phase locking zones resulting from 
periodic pulsatile inputs of magnitude b 
and frequency r- i. The areas not labelled 
contain both phase locked and non-phase 
locked dynamics (see Section V). (a) Phase 
locking zones of the form N ~> M, N ~< 3. 
(b) Phase locking zones of the form 
N i> M, N ~< 4 over a more limited region 
of (z, b) parameter space. Using the sym- 
metry relations in Section IVB, phase 
locking patterns for other values of z can 
be generated 
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In order to illustrate the different phase locking patterns, we assume that 
crossing of the positive x-axis (i.e. ~b passing through 0) corresponds to an 
observable event (for example, an action potential). In Figs. 3 and 4 we show some 
of the different coupling patterns between the periodic perturbation and the model 
oscillator at several different values of frequency and amplitude of the per- 
turbation. The periodic input pulses are represented in Figs. 3 and 4 by heavy dark 
lines and the times when the model oscillator passes through the phase q5 = 0 (called 
the firing times) are represented by lighter, shorter lines. All the patterns shown are 
phase locked except for those in Fig. 3b and Fig. 4d. The rhythm in Fig. 3b is an 
example of quasiperiodic dynamics (Glass et al., 1980), and the rhythm in Fig. 4d is 
an example of an irregular pattern arising out of chaotic dynamics (see Section V). 

There is a striking qualitative similarity between the patterns observed in Figs. 3 
and 4 and coupling patterns observed between periodic input and driven activity in 
experimental preparations (Perkel et al., 1964; Reid, 1969; Pinsker, 1977; Jalife and 
Moe, 1979; Guttman et al., 1980). Many of the patterns in Figs. 3 and 4 resemble 
clinically observed cardiac arrhythmias such as AV block (see Section VI). 

(a) 

h h I, h L I, 
0:0 3:0 

(r 

th  I,I i i, lLI 
0.0 3:0 

(b) 

I, i h i, I, I,I L i, h I, I I L II I i,i 
6:0 0:0 3:0 6:0 9:0 12.0 

(d) 

I h I, I i olol, I I I, I I I, I I hi I Ii 
6:0 9:0 - 3:0 6:0 9:0 

Time 

Fig. 3. Schematic representation of the effects of periodic stimulation on the model oscillator for 
b = 0.95. The heavy dark bar shows the periodic pulsatile input and the shorter light bar shows the firing 
times (time when oscillator passes through phase ~b = 0) of the model oscillator. (a) ~ = 0.90, 1 : 1 phase 
locking; (b) T = 0.75, quasiperiodic dynamics; (c) z = 0.70, 4 :3  phase locking; (d) z = 0.65, 3:2 phase 
locking. The patterns of (c) and (d) display Wenckebach periodicity, since the interval between stimulus 
and succeeding response gets progressively longer until the driven oscillator skips or misses a beat 
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Fig. 4. Same as Fig. 3 but with b = 1.13. (a) z = 0.75, 1 : 1 phase locking; (b) ~ = 0.69, 2 : 2 phase locking: 
note the alternation of firing times; (c) �9 = 0.68, 4 : 4 phase locking: note that there are four different 
firing times; (d) ~ = 0.65, irregular coupling aris!ng from chaotic dynamics: note the narrow range of 
firing times and the irregularly skipped beats of the driven oscillator; (e) ~ = 0.607, 4 : 3 phase locking: 
note the atypical Wenckebach periodicity; (f) z = 0.60, 4 : 2 phase locking: note again the alternation of 
firing times; (g) ~ = 0.55, 2:1 phase locking 
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IlL The Phase Transition Curve (PTC) and Its Properties 

The PTC gives the new phase 0 as a function of the old phase 4', following a 
perturbation of  amplitude b (Fig. 1). The computations which follow require 
analytical expressions for the PTC. The PTC is written using the principal values of 
the inverse tangent and inverse cosine functions, denoted by tan-  1 x and cos-  1 x 
respectively. For - ~ < x <  ~ ,  - z ~ / 2 < t a n  l x < ~ / 2  and for - 1 < x <  1, 
0 < c o s - i x  < z. From the construction in Fig. 1 the PTC is readily computed. 
Define 

( sinZ~z4' ) (4a) 
= z ~ z t a n - l \ c ~ o s 2 ~ -  b ' 

]~ = l c o s - l ( -  b). (4b) 
2~ 

We find 

f(4,, b) = ~, 0 ~ 4, ~</?, ]b[ ~< 1, (5a) 

0 ~< 4, ~< 0.5, b > l ,  

f(4,, b) = 0.5 + c~, fl < 4' < 1 - /~ ,  Ibl ~< 1, (5b) 

0-. .<4'<1,  b <  - 1 ,  

f(4', b) = 1.0 + c~, 1 - fl ~< 4' < 1, Ibl ~< 1, (5c) 

0 . 5 < 4 ' < 1 ,  b > l .  

Figure 5 shows examples of type 1 PTCs (which are found for Ib[ < 1) and type 0 
PTCs (which are found for [bl > 1). The PTCs are continuous on the unit circle and 
have continuous derivatives of all orders on the unit circle. Mathematical models 
displaying PTCs which are discontinuous on the unit circle have been described 
(Glass and Mackey, i979; Keener, 1980; Keener et al., 1981). 

The PTCs given by (5) and shown in Fig. 5, display the following symmetries 

f(1 - 4,, b) = 1 - f (4 , ,  b), (6a) 

f(4, + 0.5, - b) =f(4 , ,b)  + 0.5, 4, ~< 0.5, (6b) 

f(4, - 0.5, - b) =f(4, ,  b) - 0.5, 4) ~> 0.5. (6c) 

Fig. 5. The phase transition curve (PTC) of  the model oscillator 
for several values of  b. For Ib I < 1 the PTC has average slope 1 
and is called a type 1 PTC, whereas for Ib[ > 1 the PTC has 
average slope 0 and is called a type 0 PTC 

I'O 

0 0"5 

0 .0  

b.  I ' I~ '~ 

0.5  1.0 
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These symmet ry  relat ions in the P T C  will be used later to derive symmetr ies  in 
the phase locking zones. 

The  slope of  the P T C  is given by 

, ~3f 1 + b cos 2n~b 
(7) 

Oq5 1 + b 2 + 2b cos 2~zq5 

For  Ib] < 1, the P T C  is a monotonica l ly  increasing funct ion on the interval  
(0, 1). For  Ibl > 1 there is a unique local m i n i m u m  at ~bmin and a unique local 
m a x i m u m  at q~ma~. 

Define 

1 1 
# --- ~ -  cos - 1 --}bl' (8a) 

v = I t a n -  i(bZ - 1)-  1/2 (8b) 
21r 

Fo r  b > l ,  we compu te  

and  f o r b < - I  

~min = 0.5 + ]A, f(q~min, b) = 1 - v, (9a) 

r x = 0 . 5  - -  ]./, f ( q b  . . . .  b) = v,  ( 9 b )  

~bmi n : ]2, f(~bmin, b) = 0.5 - v, 

qSm, x = 1 -- #, f(~b . . . .  b) = 0.5 + v. 

These formulae  will be used in the later analysis. 

(9c) 

(9d) 

IV. The Poincar6 M a p  and Phase  Locking 

In  this section we use the P T C  to const ruct  the Poincar~ m a p  in order  to investigate 
the response of  the mode l  oscillator to periodic st imulation.  The  limit a --, ~ in (1) 
was taken in order  to reduce the Poincar~ m a p  to a one dimensional  map .  

IVA. Fixed Points, Phase Locking, and the Rotation Number 

Call ~bi-1 the phase immediate ly  preceeding the (i - 1)st stimulus, and ~ the t ime 
interval between two consecutive stimuli o f  the periodic input. Then  immediate ly  
preceeding the i th stimulus, the phase  of  the oscillator will change by an amoun t  
A~i, where 

Aq~i = f(~bi_ 1,b) + z - ~bi-1 (10) 

andf(qSi_ t, b) is defined by (5). Consequent ly,  the phase immediate ly  preceeding 
the i th stimulus is 

q~, = f (~b , -1 ,b )  + z (rood 1). (11) 

The  m a p  

T: ~bi_ 1 ~ 4h (12) 
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Fig. 6. The Poincar6 map for b = - 1.30 and three 
values of 

1.0 

(•L+I 
0'5 

0.0 

c > /  

0 . 5  1.0 

defined by (11) is called the Poincar6 or phase advance map. Figure 6 shows the 
Poincar6 map for b = - 1.30 and for three values of r. This figure illustrates that 
vertical translation of the PTC by an amount r gives the Poincar6 map. 

Iteration of  the Poincar6 map can be used to compute the evolution of the phase 
in response to periodic input (Arnold, 1973; Glass and Mackey, 1979; 
Guckenheimer, 1980; Levi, 1981) 

= T ( 4 ' 0 ,  

~b,+m = T(q~,+z-1)= T'(~b,). (13) 

A phase 0* is called a fixed point of period N if 

TN(dP*) = q~*' (14) 

T'(q~*) # q~*, 1 < i < N. 

A fixed point 4)* of period N is stable if 

0TN(qS')~?~, *,=** < 1. (15) 

A concept which has been useful in the study of phase locking is the rotation 
number, O, defined as the average advance in phase of the driven oscillator for each 
cycle of  the periodic input. The rotation number is defined 

1 s 
p = lim ~ aqS,, (16) 

J~azJ i=l 

where A~b, is given in (10). 
Stable fixed points on the Poincar6 map are associated with phase locked 

dynamics. Assume that for some value of (7, b), there are N stable fixed points of 
period N, q~o, 01 . . . .  , q~N = q~o where ~bi+l = T(Oi) as before. Define 

N 

M = ~ A49,. (17) 
, = 1  

Since ~bN = ~bo, M must be an integer and the sequence is associated with N: M 
phase locking with rotation number p = M/N. Consequently, for phase locked 
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pat terns,  the ro ta t ion  number  is rational.  Note  that  p does not  specify a unique 
phase  locking pattern.  Fo r  example,  bo th  1 : 1 and 2 : 2 locking have p -- 1 and bo th  
2 : 1 and 4 : 2 phase locking have p = �89 Also, for  fixed values of  b and z, p m a y  not  
be unique and m a y  depend on the initial phase. 

IVB. Symmetries of  the Phase Locking Zones 

As a consequence of  the symmetr ies  of  the P T C  detailed in (6), there are symmetr ies  
in the phase locking zones. These symmetries  are summar ized  by the following 
proposi t ions ,  the first of  which is proven in Appendix  A. 

Proposit ion 1. Assume that there is a stable period N cycle with f ixed points 
~bo, ~b 1 . . . .  , ~bN- i f  or b = Y, z = 0.5 - 6 (0 < 6 < 0.5) associated with an N: Mphase 
locking pattern. Then, for z = 0.5 + 3, there will be a stable cycle of  period N 
associated with an N : N - M  phase locking ratio. The N f ixed points 
~o, ~i,  . . . , ~bN- i of  this cycle are given by 

qh = 1 - ~bi. (18) 

Proposition 2. Suppose that for b = 7, z = 6 (0 < 6 < 1) there is a stable cycle of  
period N with f ixed points (ao, ~i,  . . . , ~n -  i associated with an N: M phase locking 
pattern. Then,for b = - 7, z = 3, there will be a stable cycle of  period N associated 
with an N: M phase locking pattern with N f ixed points ~bo, ~bi . . . .  , ~ n - 1  where 

~i = q~i + 0.5, 

~i = q~i - 0.5, 

0 < qSi < 0.5, 

0.5 ~< qSi < 1.0. 
(19) 

Proposition 3. Suppose there is a stable cycle of  period N with f ixed points 
(ao, ~ 1 , . . . ,  ~N- i for b = 7, z = 6 (0 < 6 < 1) associated with an N: Mphase locking 
pattern. Then there will be a stable cycle of  period N with f ixed points 
q~o, ~bl , . . . ,  ~N- i for b = 7, z = 6 + K (where K is any positive integer) associated 
with an N: M + KN phase locking ratio. 

IVC. The Poincarb Map as an Interval Map with a Single Maximum 

Over  certain regions of  the (z, b) pa ramete r  space, the Poincar6 m a p  reduces to a 
m a p  defined on an interval in which there is a single m a x i m u m  of  the map.  Interval  
maps  with a single m a x i m u m  have been the focus of  considerable analysis recently 
(Li and Yorke ,  1975; May,  1976; Guckenheimer ,  1977; gtefan, 1977). The  
boundar ies  of  the phase  locking zones shown in Fig. 2 can be part ial ly unders tood  
by considering the bifurcat ions of  interval maps.  

The  reduct ion of  the Poincar6 m a p  to an interval m a p  with a single m a x i m u m  
can be illustrated by considering an example.  Figure 6 shows the Poincar6 m a p  for  

= 0.35, b = - 1.30. Fo r  this situation, T: [0, 1] ~ I-0.7103, 0.9897] and in this 
interval T h a s  a single m a x i m u m  (Fig. 7). In  general, for  b < - 1 and 0 ~< z ~< 0.5 
the first iterate of  the Poincar6 m a p  will be an invariant  interval m a p  with a single 
m a x i m u m  provided the following inequalities hold: 
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I'0 

0"9 

Cj~ L+I 

0-8 

0.7  

0.7 0 '8  0"9 I-0 

4,, 

Fig. 7. The Poincar6 map  for ~ = 0.35 and 
three values of  b. For each value of b all 
initial phases between 0 and 1 will map  
into the invariant region shown following 
one iteration of the Poincar6 map. For 
ease of presentation, q~i+l is not  given 
modulo 1 

Z-5 

2"0 

1.5 

Ibl 

I-0 

0.5  

i i 

0"0 0"25 0"50 0"75 I'0 
T 

Fig. 8. Representation of the three regions in which qualitatively different dynamics occur. In the 
diagonally striped area the Poincar6 map  reduces to an interval map  with a single max imum (Section 
IVC). For IbJ < 1 (region I) the Poincar6 map  is monotonic,  continuous and differentiable on the unit  
circle. In this region there will either be quasiperiodic or phase locked dynamics. For [b] > 1 there are two 
qualitatively different regions with respect to the types of transitions between neighboring phase locking 
zones. Region III is comprised of  the small stippled areas as well as the 3 : 1 and 3 : 2 zones, whereas 
region II is the remainder of  the area for Ib] > 1. In region II are found period doubling bifurcations 
leading to phase locking ratios of  the form 2 i : M. The complex dynamics of  region III are discussed in the 
text (Section VC) 
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z + f(~b . . . .  b) > q5 . . . .  (20a) 

+ f(~b . . . .  b) < ~hmi,, (20b) 

z + f(q~mi., b) < ~bm,x. (20c) 

Applying some simple trigonometry, the inequalities can be rewritten using (8) and 
(9) 

z > 0.25, (21a) 

1 1 sin- 1 b2 - 2 
< 2 - 2~ b2 , (21b) 

where s i n - i x  denotes the principal value of the inverse sine function 
( -  n/2 < sin- 1 x < + re/2 for - 1 < x < 1). From the symmetries in (6), the 
Poincar6 map in other regions of  (z, b) parameter space can also be reduced to an 
interval map with a single maximum. In Fig. 8 the regions of (z, b) parameter space 
in which the Poincar6 map reduces to an interval map with a single maximum are 
shown by diagonal stripes. 

In Fig. 7 we show the Poincar6 map for z = 0.35, b = - 1.1, - 1.3, - 1.5 over 
the region in which the map is an interval map with a single maximum. Note that as 
Ibl approaches 1, the map becomes progressively steeper in the neighborhood of the 
fixed point ~bi+ 1 = ~bi. Note from Fig. 6 that changes in r while keeping b constant 
also can lead to changes in the slope of the map at the fixed point. As we will show 
below, a progressive steepening of the slope at the fixed point is associated with a 
sequence of period doubling bifurcations that lead to chaotic dynamics. 

V. Phase Locking Zones in Different Regions of (~, b) Parameter Space 

Our major goal has been to provide qualitative and quantitative analysis of the 
different types of dynamics that arise from pulsatile periodic inputs to a simple two 
dimensional limit cycle oscillator (Fig. 1). The analysis has involved numerical 
study of the effects of iteration of the Poincar~ map at different values of (z, b) as 
well as analytic derivation of bifurcation boundaries when this has been feasible. 
The analytic computations are discussed in Appendix B. These computations were 
cross-checked with numerical computation. For a given vMue of b, the values o f t  at 
the boundaries of the phase locking zones are accurate to + 0.01 in Fig. 2a and to 
+ 0.003 in Fig. 2b. 

The analysis shows that there are three different regions of (z, b) parameter 
space that can be identified with respect to the types of transitions between 
neighboring phase locking zones. The three regions are shown in Fig. 8. The types 
of bifurcations that occur in each region will now be briefly discussed. 

VA. Region I: ]bJ < 1 

In this region the Poincar6 map is a continuous, monotonic and differentiable map 
of the unit circle onto itself. The qualitative properties of the dynamics can be 
completely described by the rotation number p. If p is rational then there is 
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stable phase locking (Figs. 3a, 3c, 3d) whereas if p is irrational, quasiperiodic 
dynamics result (Fig. 3b). In quasiperiodic dynamics, there is a continual shift of  the 
firing time with respect to the stimulus. 

In region I, the rotation number  is a continuous function of "c and b which is 
piecewise constant over the set of  rationals. The measure of  the set on which the 
rotation number is irrational is positive (Herman, 1977). Thus, the dynamics found 
in region I are topologically equivalent to the dynamics found in other models of  
phase locking in the limit of  "small"  perturbations (Arnold, 1965; Knight, 1972; 
Glass and Mackey, 1979; Keener et al., 1981). These references should be consulted 
for a further discussion of the dynamics in region I. 

Fig. 9. The stable fixed points as a function ofb for v = 0.35. Only 
the first two period doubling bifurcations and the period 3 orbit 
are shown. Lying in the blank space between the period 4 orbit 
and the period 3 orbit are orbits of all other periods (May, 1976; 
Guckenheimer, 1977). For ease of presentation, q5 is not given 
modulo 1 

VB. Region H: Period Doublin9 Bifurcations with Jb[ > 1 

In region II, there are orbits of  period 2 i (i a non-negative integer). There are two 
different types of  boundaries between adjacent phase locking zones: boundaries 
due to period doubling bifurcations, and boundaries due to changes in the rotation 
number. The analytic computat ion of boundaries in region II  is discussed in detail 
in Appendix B. 

On a period doubling boundary, there is a period doubling bifurcation of the 
associated Poincar6 map  without any change in rotation number. For example, 
such period doubling bifurcations are responsible for the borders between the 1 : 0 
and 2 : 0 zones and the 1 : 1 and 2 : 2 zones of  Fig. 2a, and between the 2 : 1 and 4 : 2 
zones and the 2 : 2 and 4 : 4 zones of  Fig. 2b. I f  q~* is a fixed point of  the Poincar6 
map T N, then a period doubling (or "pi tchfork")  bifurcation to an orbit of  period 
2N will arise when 

0TN = - 1. (22) 

In Fig. 9 we show the stable fixed points for ~ = 0.35 as a function of b. For  
- 1 . 8  < b < -  1.0 there is the familiar cascading sequence of fixed points 
culminating in the emergence of an orbit of  period 3, analogous to the sequences 
found in studies of  the iteration of one parameter  families of interval maps with a 
single maximum (May, 1976; Guckenheimer, 1977). 
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Fig. 10. Hypothesized arrangement of 
the phase locking zones in region II of 
Fig. 8. The vertices represent the phase 
locking zones and the edges represent 
the boundaries between neighboring 
zones. Along each horizontal line the 
rotation number increases. Vertical 
edges represent phase locking bounda- 
ries corresponding to period doubling 
bifurcations of the Poincar+ map 

Delicately interlaced with these period doubling boundaries are boundaries 
across which the rotation number changes, but across which the number of fixed 
points on the Poincar6 map remains constant. For example, such boundaries occur 
between the 1 : 0 and 1 �9 1 zones (Fig. 2a), the 2 : 1 and 2" 2 zones (Fig. 2a, 2b), the 
4" 2 and 4 : 3 zones (Fig. 2b), and the 4 : 3 and 4 : 4 zones (Fig. 2b). If ~b* is a fixed 
point of the map T N for b < - 1, then such a boundary occurs when 

q~* = 0. (23) 

Note that in Fig. 9, ~b* = 0 (=  1, mod 1) for b -~ - 1.220, ~ = 0.35. This point lies 
on the boundary of the 4" 0 and 4 1 phase locking regions. 

The two distinct types of boundaries intersect at singular points at which (22) 
and (23) are simultaneously satisfied. The singular points represent points on the 
common boundaries of five different phase locking zones. The point [b[ = 2, 

= 0.5, whichis on the boundaries of the 1 "0, 1 : 1,2 : 2, 2 : 1, and 2" 0 phase locking 
regions (Fig. 2a) represents such a singular point. Applying (22) and (23) enables us 
to compute the singular point at Ib[ = 2, z = 0.5 as well as a pair of singular points 
located at Ibh = 51/2 - 1, z -~ 0.5 +__ 0.14 (Fig. 2b, Appendix B). In addition to these 
singular points, numerical studies show that there are four additional singular 
points at which period 8 orbits arise located at the values Ibh ~ 1.17, r ~- 0.5 _ 0.16 
and [b[ -~ 1.06, ~ -~ 0.5 + 0.10. 

On the basis of these results, we propose that the topology of the different phase 
locking zones and singular points in region II can be depicted using the graphical 
representation shown in Fig. 10. This graph is the geometric dual of the phase 
locking zones in the period doubling region of Fig. 2. Thus vertices of the graph 
represent the phase locking zones, while the edges of the graph represent the 
boundaries between phase locking zones. Note that each row of the graph is related 
to the rows above it by period doubling bifurcations. Within each row the rotation 
number increases as one progresses from left to right. Numerical studies have not 
been performed to check the validity of the extension of the scheme in Fig. 10 to 
orbits of period 2% i >~ 4. 

VC. Region III: Stippled Areas Plus 3 : 1 and 3" 2 Zones in Fig. 8 

In region III, there is an overlap between the regions where the Poincar6 map 
reduces to an interval map with a single maximum (the diagonally striped regions of 
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Fig. 8) and the regions where stable period 3 orbits exist (corresponding to 3 : 1 and 
3 : 2 phase locking). A consequence of this fact is that "chaos" exists at values of 
(z, b) where such a period 3 orbit exists, in that there are initial phases starting from 
which iteration of the Poincar6 map will produce orbits of arbitrarily large period as 
well as aperiodic orbits (garkovskii, 1964; gtefan, 1975; Li and Yorke, 1975). 
However, these orbits are unstable, and the sole attracting orbit is the one of period 
3. Thus, in a physical or biological system, one would not observe any of the infinity 
of unstable orbits, but only the attracting one of period 3. 

We expect that the area of (z, b) space lying between the period doubling zone of 
region II and the period 3 orbits (i.e. the stippled area of Fig. 8) will contain N: M 
phase locking zones with arbitrary N, as well as points where aperiodic patterns 
exist (Metropolis et al., 1973; May, 1976; Guckenheimer, 1977; Hoppensteadt, 
1981). For most values of (~, b) in this region, we find complicated dynamics with an 
irregular appearance such as that shown in Fig. 4d (b-- 1.13, z = 0.65). This 
pattern shows no sign of periodicity after 1000 iterations. Note that the irregularity 
is manifest by a seemingly random dropping or skipping of beats of the driven 
oscillator, even though the intervals between stimuli and firing times are restricted 
to a comparatively narrow range. 

The term "chaotic dynamics" is appropriate to describe the extremely complex 
behaviour displayed by the model in the stippled area of Fig. 8. As discussed above, 
the pattern generated at a particular value of (z, b) in this area is in general very 
complicated and may even be aperiodic. In addition, since quite small changes in 
or b away from that particular value of (z, b) will cause a change in the pattern 
observed, the effect of fluctuations or "noise" inherent to any experimental system 
will be to destroy patterns in zones with high order phase locking ratios (Crutchfield 
and Huberman, 1980; Glass et al., 1980; Guttman et al., 1980). Thus, higher order 
zones that cover small enough areas of (z, b) parameter space will not be observed in 
the laboratory. Instead, they will be replaced by zones that are not phase locked and 
which display irregular dynamics. 

Orbits in region III (such as the period 3 orbit) can arise from tangent 
bifurcations (see Appendix B). The detailed topology of the phase locking zones in 
this region is not well understood. 

VI. Discussion 

We are interested in mechanisms for the genesis of cardiac arrhythmias, and have 
been conducting experiments in which spontaneously beating aggregates of cardiac 
cells are periodically stimulated with pulses of current (Guevara et al., 1981). Our 
development of the simple mathematical model in this paper was motivated by a 
desire to obtain insight into the dynamics of an oscillator in response to periodic 
stimulation. We have found that the experimental preparation behaves in a manner 
that is similar to the behavior of the model. In particular, the experimentally 
determined Poincar6 maps can sometimes be reduced to interval maps containing a 
single maximum. When iterated, these maps show evidence of period doubling 
bifurcations and chaotic dynamics. Furthermore , in response to periodic stimu- 
lation, patterns due to period doubling bifurcations (such as 2 : 2 and 4 : 4 phase 
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locking) are experimentally found, as well as irregular patterns which may be due to 
underlying "chaotic dynamics". 

The experimental observation of these phenomena in cardiac tissue, coupled 
with the predictions of a rather general mathematical model, leads us to believe that 
the results of this study have direct implication for the analysis of both normal and 
pathological cardiac rhythms. Under normal physiological conditions, the primary 
pacemaking site in the heart is located in the sinoatrial (SA) node. The cardiac 
impulse originates in the SA node, spreads to the atrial musculature, proceeds to the 
atrioventricular (AV) node, and then passes through the bundle of His, the bundle 
branches, and the Purkinje network to the ventricular muscle (Mandel, 1980). 
Thus, firing of the SA node leads to an almost immediate contraction of the atria, 
followed after a small delay by contraction of the ventricles. 

There are at least two ways in which to interpret the delay between activation of 
the atria and the ventricles. The traditional and most widely held view is that the 
delay is due to slow conduction of the cardiac impulse when passing through the AV 
node (Tsien and Siegelbaum, 1978). 

One alternate view is based on the hypothesis that the specialized electrical 
conduction system of the mammalian heart contains two or more autonomous 
oscillators (van der Pol and van der Mark, 1928). Normally, one oscillator (situated 
in the SA node) is the driving oscillator that entrains another (situated in the region 
of the AV node) in a 1:1 fashion. Recent work has provided simultaneous 
anatomical and electrophysiological evidence that the site of the driven (subsidiary 
or latent) oscillator is at the border of the AV node and the bundle of His (James et 
al., 1979). Since the driven oscillator has an intrinsic frequency that is lower than 
that of the SA node (Nadeau and James, 1966; Urthaler et al., 1973 ; Urthaler et al., 
1974), there will be a phase shift between the two oscillators when synchronization 
in a 1 : 1 pattern occurs (Fig. 3a, 4a). This phase shift would appear as a delay 
between the contraction of the atria and the contraction of the ventricles. Indeed, if 
the intrinsic frequency of the SA node is decreased sufficiently by pharmacological 
intervention, the phase shift reverses its sign, and contraction of the ventricles 
precedes contraction of the atria (Nadeau and James, 1966; Roberge et al., 1968). 

Modeling the heart as a system of two or more coupled nonlinear oscillators was 
pioneered by van der Pol and van der Mark (1928) using an electrical circuit. In the 
intervening 50 years, several other investigators have extended their work using 
electrical and electronic analogues and computer simulations (Grant, 1956; 
Roberge et al., 1968; Sideris and Moulopoulos, 1977; Katholi et al., 1977) as well as 
physiological experimentation (Nadeau and James, 1966; Roberge et al., 1968; 
Roberge and Nadeau, 1969; Urthaler et al., 1973; Urthaler et al., 1974). The 
modeling work shows that the disturbances of atrioventricular conduction (AV 
blocks) seen in the electrocardiogram can be simulated by changing either of the 
intrinsic frequencies of the two oscillators or by altering the degree of inter- 
oscillator coupling. The physiological work also demonstrates that pharmacologi- 
cal manipulation of the intrinsic frequencies of the oscillators or of the level of block 
at the AV node can produce dysrhythmias when 1 : 1 synchronization is lost. Prior 
modelling largely relied on electrical analogues. However, there has not been a 
theoretical investigation and an analysis of the topology of the phase locking zones 
such as that presented here. 
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In electrocardiography, electrical events associated with the contraction of the 
atria (P wave) and ventricle (QRS complex) can be observed by recording electrical 
potentials on the surface of the body. The coupling patterns between the stimulus 
and oscillator observed in Figs. 3 and 4 are similar to clinically observed patterns of 
AV block. In particular, we make the following identifications: 

i) Normal sinus rhythm or first degree AV b lock-F ig .  3a, Fig. 4a. 
ii) 1 : 1 AV conduction with alternating PR intervals-  Fig. 4b (2 : 2 block). 

iii) Second degree AV block with Wenckebach periodici ty-Fig.  3c (4:3 
block), Fig. 3d (3:2 block). 

iv) Second degree AV block with atypical Wenckebach periodici ty-  Fig. 4e 
(4 : 3 block). 

v) Second degree AV block with variable conduction or third degree AV 
block with accrochage- Fig. 4d. 

vi) High grade second degree AV b lock-F ig .  4g (2:1 block). 
vii) Second degree AV block (2:1 block with alternating PR intervals) - Fig. 4f 

(4:2 block). 
viii) Third degree or complete AV b lock-F ig .  3b. 

The current analysis predicts the existence on purely theoretical grounds of such 
patterns as 2 :2  and 4 :2  phase locking, whereas prior theoretical work did not 
identify these patterns. A striking description of a 2 : 2 pattern is in an early canine 
study by Lewis and Mathison (1910) of the results of asphyxia on the heart beat: 
"At or about the time when the heart appears to waver between a condition of 2 : 1 
heart block and regular sequential contraction accompanied by prolongation of the 
P-R interval, it not infrequently happens that passing into the latter state it exhibits 
a regular alternation of the P-R intervals" (see Fig. 5 of Lewis and Mathison (1910) 
and compare with Fig. 4b of this paper). A recent review (Watanabe and Dreifus, 
1980) has emphasized that the mechanisms for generating patterns with alternating 
PR intervals (2 : 2 rhythms) are not well understood and are controversial. Note 
that for 51/2 - 1 < b < 2, as the frequency of the stimulation is increased one passes 
in turn from 1 : 1 to 2 : 2 to 2 : 1 phase locking (Fig. 2). Thus, we hypothesize that the 
pattern with alternating PR intervals experimentally observed corresponds to a 2 : 2 
phase locking pattern and arises as a consequence of a period doubling bifurcation. 
The 4 :2  patterns clinically observed (Segers, 1951) may be due to a second period 
doubling bifurcation (Fig. 4f). 

Another feature of our analysis is that chaotic dynamics can arise as a 
consequence of periodic inputs to a limit cycle oscillator. A review of clinically 
observed dysrhythmias reveals that there are many dysrhythmias which have an 
extremely irregular appearance. To cite a few examples of irregular AV block: 

i) "Advanced second degree block with fluctuation in the depth of penetration 
into the AV n o d e " -  Fig. 16-17  in Watanabe and Dreifus (1980). 

ii) "Intermittent 2 : 1 A-V block and an area of 3 : 2 Mobitz type II A-V 
block" - Fig. 291 in Chung (1971). 

iii) "Wenckebach A-V block of varying degree (6 : 5, 5 : 4, 4 : 3, 3 : 2)" - Fig. 295 
in Chung (1971). 

iv) "Atrial flutter with varying second degree AV block and phasic aberrant 
ventricular conduction" - Case 8, p. 349 in Schamroth (1971). 
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v) "Partial AV heart b lock"-Fig .  1-16E in Bellet (1971). 

These examples serve to illustrate the fact that clinically observed cardiac 
dysrhythmias are frequently quite irregular. On the basis of our analysis, we 
propose that one source of irregularity in electrocardiographic patterns of AV 
block may well be chaotic dynamics resulting from interaction between different 
autonomous pacemaker sites in the heart (Fig. 4d). Testing of this hypothesis 
requires collection and analysis of long electrocardiographic records, as well as a 
better understanding of the different ways in which chaotic dynamics may become 
manifest in mathematical models. 

Our identification of cardiac dysrhythmia with desynchronization of auto- 
nomous oscillators is highly speculative. The reader should be aware that these 
ideas run counter to conventional clinical teaching, and also that alternative 
theoretical models based on fatigue and relative refractoriness (Landahl and 
Griffeath, 1971 ; Keener, 1981a, 1981b) display some qualitative features similar to 
the properties described here. However, the detailed topological structure of the 
phase locking presented in these other models is completely different from that of 
our model (Keener, 1980, 1981 a, 1981 b). For example, other models do not include 
phase locking zones of the form 2N: 2M and the "chaos" observed by Keener does 
not arise from a sequence of period doubling bifurcations. Finally, although the 
theory is general, the above discussion has centered on dysrhythmias arising in the 
AV conduction system. For instance, interactions between nodal pacemakers and 
ectopic spontaneously active foci would lead to similar dynamics and dysrhythmias 
(Moe et al., 1977; Jalife and Moe, 1979). 

In the mathematical literature, although it has long been known that aperiodic 
solutions can be found in response to periodic inputs to two dimensional oscillators 
(Cartwright and Littlewood, 1945; Levinson, 1949) the topology of the different 
phase locking zones under changes in the stimulation parameters is not completely 
understood (Guckenheimer, 1980; Levi, 1981). The novel contribution of our work 
is to show that over certain ranges of parameter space, the phase locking problem 
reduces to a problem in the analysis of interval maps. We show that transitions 
between phase locking zones are due to period doubling bifurcations, tangent 
bifurcations, or simply changes in rotation number. We have also proposed a 
scheme for the topology of the phase locking zones (Fig. 10) in the period doubling 
region. Period doubling bifurcations and chaotic dynamics have been observed in 
previous work on sinusoidally forced nonlinear oscillators (Tomita and Kai, 1978; 
Huberman and Crutchfield, 1979). In addition, "chaotic dynamics" have been 
observed from two mutually coupled tunnel diode oscillators but no evidence of 
period doubling bifurcations was found (Gollub et al., 1980). However, a study of 
mutual entrainment of two electronic models of cardiac pacemaker cells apparently 
did not show chaotic dynamics (Ypey et al., 1980). 

One of the main ways for studying biological oscillators is to subject the 
oscillators to periodic pulsatile inputs. This paper has described the qualitative 
properties of phase locking for a simple mathematical model of a two dimensional 
oscillator. On the basis of this theoretical work we predict that period doubling 
bifurcations leading to chaotic dynamics as a consequence of periodic stimulation 
of spontaneously oscillating biological systems will be widespread. 
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A p p e n d i x  A 

In this appendix we prove Proposition 1 of Section IVB. The proofs of  the other two propositions follow 
in a similar fashion. 

Proof  o f  Proposition 1. From the statement of  the proposition and the definition of the Poincare map we 
know that 

4, =f(O,  1,7) + 0.5 - 6, (A1) 

A~b~ =f(~b~_l,7) + 0.5 - 6 - qSi 1, (A2) 

N 

M = Z A~),. (A3) 
i - I  

Starting from phase ~b~ ~ = 1 - ~b~ ~ and assuming z = 0.5 + ~ we compute the new phase, y/ 

r l = f (1  - q~-l,Y) + 0.5 + 6 (rood 1). (A4) 

Applying the symmetry in Eq. (6a) and substituting from Eq. (A1), we find 

= 1 - q~i. (AS) 

Thus,  the sequence #o, ~bl . . . . .  f lu-1 will form a cycle for z = 0.5 + 6 where ~ = 1 - ~bl. The phase 
locking pattern is computed by summing the A~kl, where 

A~/~ =fOP~-l,7) + 0.5 + 6 - r  (A6) 

Once again using the symmetry in (6a) and substituting from (A2), we find 

�9 A ~  = 1 - A~b~. (A7) 

Summing and applying (A3), we compute  

N 

Z A~bl = X -  M. (AS) 

Therefore, the sequence tPo, ~P~,..., ~N- 1 is associated with an N:  N - M phase locking pattern. 

A p p e n d i x  B 

In this appendix we give a brief summary  of the analytic computat ion of the boundaries of  the phase 
locking zones and singular points in (~, b) parameter space. In this analysis we utilize results from local 
bifurcation theory in conjunction with a consideration of  the rotation number.  

Assume that  0* is a periodic point of  period n of  the Poincar~ map  (13). Then, change in the stability 
of  the periodic point (bifurcation) will occur if 

= _ 1. (B1) 

If the derivative in (B1) is + 1 the bifurcation is called a saddle-node or tangent bifurcation and if the 
derivative is - 1 then the bifurcation is called a pitchfork of  flip bifurcation (May, 1976; Guckenheimer,  
1977). In addition to satisfying (B1) there are additional non-degeneracy conditions (Guckenheimer, 
1977) which we do not  consider in the computat ions  which follow. At a pitchfork bifurcation the number  
of  stable fixed points is doubled but  the rotation number  is in general the same. At a tangent bifurcation 
the number  of  stable fixed points changes and the rotation number  may or may  not  change. 
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In addition to changes in rotation number associated with tangent bifurcations, the rotation number 
of the stable phase locked orbit may change with parametric changes in b and z, even though the number 
and stability of the fixed points remain unchanged. Such changes in rotation number only occur for 
Ibb > 1. To show how these changes arise consider the case in which b > 1, and assume that along the 
locus of points 

= o ( b )  (B2) 

~b* = 0.5 is a stable fixed point of period N. Assume that in the neighborhood of the curve in (B2) there 
exists a stable fixed point qS* of the map TN 

4 "  = 0.5 - ~(b, T), ( a 3 )  

where ~ is a continuous differentiable function 

e(b, g(b)) = 0 (B4) 

and e is positive on one side of the line in (B2) and negative on the other side. Assume that in the region in 
which e is negative there is N:  M phase locking. Then from a direct application of  (17) there will be 
N:M + 1 phase locking on the other side. Consequently the locus of points in (B2) will constitute the 
boundary between the two phase locking regions. In a similar fashion, and recalling the symmetries in 
Section IV, a locus of points along which ~b* = 0 constitutes a boundary of a phase locking region for 
b <  - 1 .  

In the remainder of this Appendix we give a brief summary of the computation of the bifurcation 
boundaries and singular points in (~, b) parameter space. The results are appropriate for b < 0 and 
0 <~ z ~< 0.5. Using the symmetries in Section IV appropriate formulae for symmetrically placed 
boundaries can be computed. Since the computations entail simple algebra and trigonometry, only the 
main results of the computations are given. The formulae presented have been checked against results 
from numerical iteration of  the Poincar6 map. 

The 1:0 phase locking boundary coincides with a tangent bifurcation for ]bl < 1, a pitchfork 
bifurcation for 1 < Ibl < 2 and a change in rotation number for [b[ > 2. 

Consider first the locus of the tangent bifurcation. Setting 3T/O~ = + 1 and using (7) we find 

1 
qb = 1 - - - c o s - l (  - b). (B5) 

2~ 

Note that the only real solution of (B5) occurs for Ibl < 1, and thus the boundary of the 1 : 0 phase 
locking coincides with a tangent bifurcation only for Ibl < 1. Application of  (5) and (11) gives the 
boundary of the 1 : 0 phase locking for - 1 < b < 0 

z = l ~ c o s - l b  - 0.25. (B6) 
27r 

A pitchfork bifurcation is computed by setting ~T/OO = - 1. Using (7), a pitchfork bifurcation occurs 
for 

~b = 1 - l c o s - l ( -  b2 + 2~ (B7) 
2~z 2 3b / "  

Note that the only real solutions of (B7) occur for 2/> Ib I ~> 1. Substituting (B7) in the Poincar6 map 
gives 

1 1 [ ( b Z + 2 ~ +  (1-b2/4~1/2~ 
z . . . .  cos -1 - tan 1 (B8) 

2 27r 3b J \ ~ /  J" 

This is the boundary between 1 : 0 and 2 : 0 phase locking regions for 0 < z < �89 and - 2 < b < - 1. 
The boundary between the 1 : 0 and 1 : 1 phase locking zones for b < - 2 is associated with a change 

in rotation number. Assuming that there is a fixed point qS* = 0 on the Poincar6 map (11) we find that 

z = �89 (B9) 

The intersection of(B8) and (B9) gives the singular point on the common boundaries of the I : 0, 1 : 1,  
_ 1 2 : 2, 2 : 1 and 2 : 0 phase locking regions. The intersection occurs for z - ~, Ibl = 2. 
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The boundary between 2 : 0 and 2 : 1 phase locking occurs when 

T2(0) = 0. (B10) 

Substituting in the Poincar6 map (11) we find 

1 1 ( b )  1 cos_l_b ' (Bl l )  z = - - - - - C O S  -1 -- = 
2 2~ 27r 2 

Note that the fixed points along the boundary in (Bl l )  occur for ~b = 0, ~b = 0.5 + z. 
The singular point on the common boundaries of the 2:0, 2: 1, 4:2,  4:1 and 4:0  phase locking 

regions occurs when (B10) is satisfied along with the criterion 

63T 2 _ OT c~T 4,=o.5+~ 
c~b c~b ,=0c~b = - 1, (B12) 

where we have used the chain rule. Using (7) we find the singular point occurs for 

b =  1 -51 /2  , r = - - c o s  -1 -~0.356. 
2~ 
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