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The saline oscillator consists of an inner vessel containing salt water partially immersed in an outer vessel
of fresh water, with a small orifice in the center of the bottom of the inner vessel. There is a cyclic alternation
between salt water flowing downwards out of the inner vessel into the outer vessel through the orifice and fresh
water flowing upwards into the inner vessel from the outer vessel through that same orifice. We develop a very
stable �i.e., stationary� version of this saline oscillator. We first investigate the response of the oscillator to
periodic forcing with a train of stimuli �period=Tp� of large amplitude. Each stimulus is the quick injection of
a fixed volume of fresh water into the outer vessel followed immediately by withdrawal of that very same
volume. For Tp sufficiently close to the intrinsic period of the oscillator �T0�, there is 1:1 synchronization or
phase locking between the stimulus train and the oscillator. As Tp is decreased below T0, one finds the
succession of phase-locking rhythms: 1:1, 2:2, 2:1, 2:2, and 1:1. As Tp is increased beyond T0, one encounters
successively 1:1, 1:2, 2:4, 2:3, 2:4, and 1:2 phase-locking rhythms. We next investigate the phase-resetting
response, in which injection of a single stimulus transiently changes the period of the oscillation. By system-
atically changing the phase of the cycle at which the stimulus is delivered �the old phase�, we construct the
new-phase—old-phase curve �the phase transition curve�, from which we then develop a one-dimensional
finite-difference equation �“map”� that predicts the response to periodic stimulation. These predicted phase-
locking rhythms are close to the experimental findings. In addition, iteration of the map predicts the existence
of bistability between two different 1:1 rhythms, which was then searched for and found experimentally.
Bistability between 1:1 and 2:2 rhythms is also encountered. Finally, with one exception, numerical modeling
with a phenomenologically derived Rayleigh oscillator reproduces all of the experimental behavior.
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I. INTRODUCTION

When two or more oscillators are coupled together, 1:1
mutual synchronization as well as more complicated rhythms
can arise. Analysis of this situation of bidirectional coupling,
in which each individual oscillator both affects and is af-
fected by the activity of the other oscillator, is difficult. A
simpler situation that deserves to be understood is the case of
unidirectional coupling, in which an external source periodi-
cally drives or stimulates a single oscillator �1�. In this situ-
ation, the oscillator will respond in a 1:1 fashion provided
that two conditions are satisfied: �i� the period of the driving
oscillator �Tp� must be sufficiently close to the intrinsic pe-
riod of the driven oscillator �T0�, and �ii� the forcing ampli-
tude must be sufficiently high when Tp�T0. Should either of
these two criteria not be met, 1:1 synchronization will be lost
and replaced by some other periodic, quasiperiodic, or cha-
otic response �2�.

When the forcing amplitude is sufficiently low, the re-
sponse is well known: one has either a periodic �phase-
locked� rhythm or an aperiodic �quasiperiodic� rhythm. In
the two-parameter �stimulation-period–forcing-amplitude�
plane, the former rhythms occur within areas called Arnol’d

tongues or resonance horns, while the latter occur on one-
dimensional arcs that thread up between the Arnol’d tongues.
This generic behavior has been seen in work on very many
physical, chemical, and biological oscillators, in both experi-
ment �e.g., �3–8�� and model �e.g., �2,9–19��.

Much richer behavior is seen at higher forcing ampli-
tudes, where there can be period-doubling bifurcations, torus
bifurcations, codimension-2 bifurcations, global bifurcations,
bistability, cusps, and chaotic dynamics. Moreover, as Tp is
changed systematically at some fixed forcing amplitude,
there is not just one simple generic bifurcation sequence, as
is the case at the lowest forcing amplitudes, where, e.g., the
Arnol’d tongues are born and die in saddle-node bifurca-
tions. Much of the behavior seen at higher forcing ampli-
tudes remains to be systematically described experimentally
and the corresponding theory worked out.

We thus decided to investigate systematically the response
to periodic stimulation at higher forcing amplitude of a
simple hydrodynamical oscillator: the saline oscillator. While
the behavior of as many as 36 mutually coupled saline oscil-
lators has been studied previously �20–24�, there have been
no studies of the unidirectional synchronization of a single
saline oscillator. To help understand the organization of the
synchronization rhythms, we conducted phase-resetting ex-
periments in order to obtain a one-dimensional map, which is
then iterated to predict the response to periodic stimulation
�25�. We also carried out numerical simulations of the peri-
odically forced two-variable Rayleigh oscillator, which has
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been shown to be a surprisingly realistic model of the saline
oscillator �26�. Our interest in systems as simple as the saline
oscillator is to gain insight into the phase-resetting and syn-
chronization properties of much more complex biological os-
cillators �e.g., cardiac and neural pacemaker cells, circadian
rhythms�.

II. METHODS

A. Saline oscillator

The saline �or density� oscillator is a very simple system
that was first described in 1970 by Martin, who discovered
that a rhythmic oscillation of fluid flow was produced when
a hypodermic syringe �without the plunger� was filled with
saline solution, held in the vertical position, and then par-
tially immersed in a beaker containing pure water �27�. Os-
cillations were also seen when the syringe was replaced with
a tin can with a pinhole in its bottom. Many studies subse-
quently investigated the hydrodynamical mechanisms under-
lying the oscillation, using both experimental and modeling
approaches �e.g., �21,26,28–36��.

Our experimental setup is illustrated in Fig. 1�a�. The
outer glass container, which was 9.7 cm high and 23 cm in
inner diameter, contained 3.1 l of distilled, de-ionized water,
so that the water had a depth of 7.5 cm. An acrylic plate with
a hole in its center was placed across the top of the outer
container to hold the inner cup in place. The inner plastic cup
was 6 cm in inner diameter and 7.7 cm in height, and con-
tained 90 ml of 3 M NaCl �175.5 g / l�. The bottom of the
cup was 4.1 cm above the bottom of the outer container. The
pinhole in the center of the bottom of the inner cup �p in Fig.

1�a�� was 0.9 mm in diameter and 2.2 mm in length. A
wooden plug was placed in the pinhole to prevent flow until
the start of the experiment.

To initiate the oscillation, the wooden plug was removed.
The salt water then began to flow downward through the
pinhole because it was denser than the distilled water in the
outer container �the Rayleigh instability �27��. A few minutes
later the downward flow reversed so that distilled water from
the outer container began to flow upward through the pinhole
into the inner cup. After several tens of seconds this upward
flow stopped, and then the salt water again began to flow
downward. This cycle repeated thousands of times over
many hours until the saline gradient was dissipated and the
oscillation stopped. Part of the reason why the oscillation
lasts so long is apparently that salt water sinks to the bottom
of the distilled-water container, while distilled water rises to
float on top of the salt water in the cup �21,34�. The density
oscillator uses a fluid �water� containing an electrolyte
�NaCl�, and when there is a flow a voltage is generated
which can be recorded using two Ag /AgCl2 electrodes �Fig.
1�b��, one placed in the salt water and the other placed in the
distilled water �Fig. 1�a��. While the origin of the voltage
variations is not completely clear, it appears to be due to
streaming potentials �32,33�, and it is known that changes in
voltage are representative of changes in flow �23,31,32,36�.

B. Volume pulse protocol

The oscillator was perturbed by infusing a fixed volume
�3 ml� of distilled water into the bottom of the outer con-
tainer and then withdrawing that same exact volume, using a
syringe pump driving two 60-ml syringes in parallel �WPI

a

b

c
d

0 100 200 300

10

20

30

V
ol

ta
ge

(m
V

)

Time (s)

(c)

0 5 10 15 20 25 30 35 40
0

500

1000

1500

C
um

ul
at

iv
e

P
er

io
d

(s
)

Cycle Number

(d)

(a) (b)

FIG. 1. �Color online� �a�
Schematic diagram of the experi-
mental setup. p denotes the pin-
hole at the bottom of the inner
container. �b� Basal voltage oscil-
lations which correlate with flux
changes through pinhole. During
phase b, distilled water flows
upwards through the pinhole; dur-
ing phase d, salt water flows
downwards; during phases a and c
there are flow reversals. �c� Volt-
age wave form recorded during
several cycles of unperturbed ac-
tivity. �d� Cumulative period for
42 consecutive cycles. Period
�mean�s.d.�=37.94�0.59 s.
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SP210iw infusion-withdrawal pump�. This volume is only
0.1% of the total volume in the outer container. A fixed flow
rate of 140 ml /min was used, so that the time to inject or
withdraw a volume of 3.0 ml was 1.3 s, which is only a
small fraction of the natural period of the oscillation
��35 s�. The accuracy of this pump is rated by the manufac-
turer at �99% and the reproducibility at �0.1%. A
computer-controlled interface was used to deliver these bi-
phasic volume pulses either singly �to investigate phase re-
setting� or in a periodic fashion �to investigate phase lock-
ing�. The rationale behind using a biphasic pulse is to
prevent the stimulus itself from producing a long-lasting, cu-
mulative effect on the volume—and thus the height—of the
fluid. This is especially important for experiments in which
long phase-locking runs, necessitating the delivery of many
pulses, are made.

C. Data recording and analysis

A digital data-acquisition system was employed to record
the voltage generated by the saline oscillator as well as a
transistor-transistor logic �TTL� signal that indicated when
the pump was infusing. A digital data recorder �InstruTech
VR-10B �95�; 47.2 kHz sampling frequency, 14-bit reso-
lution, DC-18 kHz frequency response� was used to record
the signals in pulse-code modulated �PCM� format on a vid-
eocassette recorder and as a disk file on a PC �InstruTech
VR-111 data interface board; decimation factor of 128 lead-
ing to an effective sampling interval of 2.71 ms�. The data
were further decimated by a factor of 3 and passed through a
Gaussian digital low-pass filter with �=0.05 �37�. To display,
measure, and plot the data, we used ACQUIRE-5.0.1, REVIEW-
5.0.1, and DATAACCESS-7.0.2 �Bruxton Corp. �96��, as well
as custom-written MATLAB programs.

D. Numerical simulations

Numerical simulation runs of the Rayleigh oscillator were
carried out using MATLAB and programs written in C and
FORTRAN ��16 significant decimal digits�. A forward Euler
numerical integration scheme with a time step of 0.001 s was
used.

III. EXPERIMENTAL RESULTS

A. The intrinsic oscillation

Figure 1�b� shows two cycles of the oscillation in voltage
�V� recorded in the saline oscillator. The salt water starts to
flow downwards through the pinhole at the time when phase
b turns into phase c, with this downwards flow continuing
during phase d. There is a flow reversal as phase d turns into
phase a, and during phases a and b of the oscillation fresh
water flows upwards through the pinhole, whereupon the
cycle then repeats. Phase b lasts slightly longer than phase d,
occupying 53% �0.9% �mean�standard deviation �s.d.�,
100 cycles� of the intrinsic period.

Under our experimental conditions, the intrinsic period at
the start of the experiment is 35.3�2.7 s �mean�s.d.; 46
runs made on 46 different days�. Due to mixing of salt and
fresh water, there is a gradual increase in the intrinsic period

that is generally less than 10% over a time period of �10 h
�see also �26��. Over a shorter period of time, the cycle-to-
cycle fluctuations in the voltage V �Fig. 1�c�� and intrinsic
period �Fig. 1�d�� are very slight, with the coefficient of
variation �s.d./mean� of period being only 1.6% over the
42 cycles shown in Fig. 1�d�.

B. Phase-locking rhythms

We investigated the response of the saline oscillator to
perturbation with a periodic train of biphasic volume pulses
delivered to the outer vessel, with the time between pulses
being denoted by Tp. Each pulse consists of the infusion of
3 ml of distilled water into the outer container, followed im-
mediately by withdrawal of that same volume. Since the os-
cillator recovers back to its intrinsic period very rapidly fol-
lowing the cessation of stimulation �see below�, we allowed
at least three unperturbed cycles to occur following the end
of each periodic stimulation run as a recovery period, before
restarting stimulation at a new value of Tp.

When Tp is shorter than T0, the intrinsic period of the
oscillation, but not too much so, there is a 1:1 phase-locking
rhythm in the steady state �Fig. 2�a�: Tp /T0=0.6�, following
a short start-up transient �the upper blue trace gives the volt-
age wave form, while the lower red trace indicates the first
half of the biphasic volume pulse �volume injection��. In a
1:1 rhythm there is one response associated with each stimu-
lus, with the stimulus falling at the same point or phase in the
cycle in different cycles. Following the cessation of stimula-
tion, the period of the oscillator recovers back to its intrinsic
period very quickly �e.g., for the run of Fig. 2�a�, the period
is 37.7 s on the cycle immediately following the cessation of
stimulation, while T0 is 37.1 s�. We denote this rhythm by
1:1s �slow� to distinguish it from a different 1:1 rhythm,
1:1f �fast�, which we shall encounter below. As Tp is in-
creasingly reduced, 1:1 rhythm is initially maintained, with a
gradual decrease in the durations of both phases b and d.
Phase d is shortened due to the fact that the stimulus pulse
increases the hydrostatic pressure in the outer container to
the point that a flow reversal occurs earlier than it otherwise
would spontaneously.

Eventually, as Tp is reduced further, 1:1 phase locking can
no longer be maintained and there is a transition to a 2:2
phase-locking rhythm, each cycle of which consists of two
stimuli and two large-amplitude responses of different dura-
tions �Fig. 2�b�: Tp /T0=0.5�. We denote this rhythm by 2:2s
to distinguish it from a different 2:2 rhythm �2:2f�, which
we shall encounter later. In an N :M rhythm, there is a re-
peating cycle that consists of N stimuli and M responses,
with each of the N different stimuli falling at its own char-
acteristic point or phase in the cycle. Further reduction of Tp
leads to a fall in the duration of the smaller of the two re-
sponses of the 2:2 rhythm until eventually a 2:1 phase-
locking rhythm occurs, each cycle of which consists of two
stimuli and only one large-amplitude response �Fig. 2�c�:
Tp /T0=0.3�. In this case, every second stimulus �the even-
numbered ones in Fig. 2�c�� shortens phase d by advancing
the point in time at which the next flow-reversal �phase a�
occurs. Reducing Tp further, a 2:2 rhythm, which we refer to
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as 2:2f , occurs �Fig. 2�d�: Tp /T0=0.2�. Finally, as the short-
est possible Tp is approached �there is an intrinsic lower limit
on Tp set by the duration of the stimulus�, a 1:1 rhythm,
which we refer to as 1:1f , is seen �Fig. 2�e�: Tp /T0=0.15�.
Thus, the sequence of rhythms seen as Tp is reduced from T0
is �1:1s→2:2s→2:1→2:2f →1:1f�.

We also investigated the response to periodic forcing with
Tp�T0. Figures 2�f�–2�j� show that as Tp /T0 is increased,
one sees the sequence �1:1s→1:2f →2:4f →2:3→2:4s
→1:2s�. So far, we have given the impression that only
periodic rhythms are seen in our experiments. However, ir-
regular rhythms are also seen, typically when Tp /T0 is close
to the border between two rhythms. Figure 2�g� shows an
example: the rhythm here is close to a periodic 2:4f rhythm,
which can be seen in other experimental runs. Due to the
slight drift in the period of the oscillation that occurs over the
course of a long experiment, the value of T0 for each of the
runs in Fig. 2 is taken from the last unperturbed cycle pre-
ceding that particular stimulation run.

C. Phase resetting

In situations in which the state point of the system returns
to the limit cycle rapidly following the perturbation provided
by a brief stimulus, it is possible to use the response to a
single stimulus delivered at various phases of the cycle �the
phase-resetting response� to predict the response to periodic
perturbation �10,25,38�. The fact that both the period and
amplitude of the oscillation are restored very quickly in the
saline oscillator following a single stimulus �see below� is
indicative of a rapid relaxation of the trajectory back to the
limit cycle following a perturbation. We therefore investi-
gated the phase-resetting response of the saline oscillator as a
necessary first step in carrying out this predictive approach.

A single brief stimulus delivered to the saline oscillator
transiently changes the period of the oscillation �“phase re-
setting”�. We take the start of the cycle—which is
arbitrary—to be midway through phase c �Fig. 1�b��, which

is termed the event marker. The coupling interval of the
stimulus �Tc� is the time from this point to the end of the
infusion phase, which is midway through the biphasic stimu-
lus pulse �Fig. 3�a�, top�. The cycle length of the perturbed
cycle �T1� is the time from the event marker immediately
preceding the stimulus pulse to the event marker immedi-
ately following the stimulus. A stimulus falling late in the
cycle, but not too late �Fig. 3�a�, top�, abbreviates the dura-
tion of phase b, resulting in a slight abbreviation of the per-
turbed cycle length. A stimulus falling during phase d, which
occupies the first half of the cycle, causes an almost imme-
diate flow reversal, producing a new large-amplitude event
�Fig. 3�a�, bottom left�. This event is brief in duration, and so
T1 is abbreviated. As the stimulus is delivered increasingly
later on during phase d, the duration of the new event gradu-
ally increases, so that T1 is increasingly less abbreviated.
Finally, a stimulus that falls very late in the cycle prolongs
the duration of phase b and so increases the length of the
perturbed cycle �Fig. 3�a�, bottom right�.

There are thus three qualitatively different phase-resetting
responses in Fig. 3�a�. In Fig. 3�a�, bottom left, the stimulus
is injected during phase d, during which time salt water is
flowing down through the pinhole. The first half of this
stimulus—an injection of water into the outer container—
causes the water level to rise in the outer container and thus
raises the hydrostatic pressure at the lower side of the pin-
hole. The forcing amplitude used here is sufficiently high so
that this rise causes a flow reversal, thus sharply abbreviating
the cycle length. In Fig. 3�a�, top, the stimulus is delivered
during phase b of the cycle, during which time fresh water is
flowing upwards through the pinhole. The effect of the
stimulus is to increase the pressure at the lower side of the
pinhole and so augment this upward flow. This in turn in-
creases the height of the water column in the inner container
and thus raises the hydrostatic pressure at the upper side of
the pinhole. Hence, the time of the next flow reversal is
advanced, and so the cycle length is abbreviated. Finally, in
Fig. 3�a�, bottom right, the stimulus is delivered very late in
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FIG. 2. �Color online� Top trace �blue� in each
panel is the voltage recording; bottom trace �red�
is the stimulus pulse train. Only the first half �vol-
ume injection� of each biphasic stimulus is
shown. �a�–�e� Stimulation period �Tp�
� intrinsic period �T0�. �a� 1:1s rhythm �Tp /T0

=0.6�, �b� 2:2s rhythm �Tp /T0=0.5�, �c� 2:1
rhythm �Tp /T0=0.3�, �d� 2:2f rhythm �Tp /T0

=0.2�, and �e� 1:1f rhythm �Tp /T0=0.15�. �f�–�j�
Tp�T0. �f� 1:2f rhythm �Tp /T0=1.1�, �g� �2:4f
rhythm �Tp /T0=1.25�, �h� 2:3 rhythm �Tp /T0

=1.3�, �i� 2:4s rhythm �Tp /T0=1.6�, and �j� 1:2s
rhythm �Tp /T0=1.9�. Recordings in �a�–�e� and
�f�–�j� obtained during experiments carried out on
two different days. Note the time-scale change in
�a�–�e� vs �f�–�j�.
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phase b, increasing the pressure in the outer container just
before the reversal of the flow would normally occur, thus
postponing the time of that reversal and lengthening the
cycle length.

A stimulus falls at a particular phase of the cycle called
the old phase ���, which is given by the normalized coupling
interval Tc /T0, where T0 is the length of the unperturbed
cycle immediately preceding stimulus injection �Fig. 3�a�,
top�. Figure 3�b�, left, is a plot of T1 /T0 vs � and shows that
while over most of the range of � �0���0.96� there is a
shortening of the cycle length, over a very short range of �
�0.96���1�, there is instead a prolongation of the cycle
length. The duration of the post-stimulation cycle is denoted
by T2 �Fig. 3�a�, top�, and plotting T2 /T0 vs � �Fig. 3�b�,
right� demonstrates that the intrinsic period is reestablished
very quickly following a perturbation.

The new phase ����, defined as ��=1−T1 /T0+Tc /T0
�modulo 1� �39�, is plotted in Fig. 3�c�, which shows results
from experiments made on four different days, separated by
a period of �3 years. These data demonstrate the reproduc-
ibility of the response, despite small day-to-day changes in
wave form and period. A quartic polynomial fit is made to
the lumped experimental data. However, this fit results in too
large a difference between its values at �=0 and �=1. To
help improve the match at the two ends of the curve, the fit
was remade after adding 12 additional points to the original
data set: the first six points of the data set were appended to
the end of the original data set with � replaced by �+1, and
the last 6 points of the data set were inserted before the start
of the original data set, with � replaced by �−1. The result-
ant fit is shown by the curve in Fig. 3�c� and is called the
phase transition curve �PTC�: ��=g���.

The PTC reflects the three qualitatively different re-
sponses of the system. The decreasing left-hand branch �0
���0.5� corresponds to the type of response shown in Fig.
3�a�, bottom left, where there is an abbreviation of T1 to a
value below T0; the initial part of the rising right-hand
branch �0.5���0.96�, with �� just barely greater than �,

corresponds to Fig. 3�a�, top, where there is only a small
shortening of T1 below T0; and the part of the curve at the
very right �0.96���1.0�, with �� just smaller than �, cor-
responds to Fig. 3�a�, bottom right, where there is a slight
prolongation of T1 beyond T0.

D. One-dimensional map and predicted phase-locking rhythms

During periodic stimulation at arbitrary Tp, let the ith
stimulus fall at a phase �i. Assume that the effect of this
stimulus is the same as had it been delivered as an isolated
stimulus during a phase-resetting experiment. One then has

�i+1 = g��i� + Tp/T0 �mod 1� , �1�

where g��� is the PTC of Fig. 3�c� �25�. This equation is a
one-dimensional finite-difference equation or map �“1D
map”�, allowing �i to be iterated from any arbitrary initial
condition, since Tp, T0, and g are known.

Figure 4�a� shows the bifurcation diagram obtained from
Eq. �1�. The solid blue curves are the stable period-1 and
period-2 orbits, while the dotted red curves are the unstable
period-1 orbits, all calculated directly from Eq. �1� �iterating
Eq. �1� from 100 evenly spaced initial conditions at each
value of Tp /T0 with an increment in Tp /T0 of 0.001 reveals
that the only stable orbits that are present are period-1 and
period-2 orbits�. As Tp /T0 is decreased in Fig. 4�a�, one ob-
tains the sequence �1:1s→2:2s→2:1→2:2f →1:1f�,
which is exactly what is seen in the experiments �Figs.
2�a�–2�e��. From the form of Eq. �1� �see Proposition 3 in
�10��, as Tp /T0 is increased, one then expects to see the se-
quence �1:1s→1:2f →2:4f →2:3→2:4s→1:2s�, which
again is exactly what is seen in the experiments �Figs.
2�f�–2�j��.

At Tp /T0=0.7, there is a stable period-1 orbit on the map,
corresponding to a 1:1s rhythm �Fig. 4�b�, left�. With a de-
crease in Tp /T0, there is a supercritical period-doubling bi-
furcation that results in the 2:2s rhythm �Fig. 4�b�, middle:
Tp /T0=0.6�. With a further decrease in Tp /T0, there is a
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change in rotation number �10�, resulting in a 2:1 rhythm
�Fig. 4�b�, right: Tp /T0=0.4�. This change in rotation number
occurs when one of the two points on the period-2 orbit
crosses through zero: just before this zero crossing, this point
has a phase just larger than zero �the lower point on the orbit
in Fig. 4�b�, middle�, which corresponds to the production of
a new large-amplitude response �see, e.g., Fig. 3�a�, bottom
left�, while after the zero crossing, the phase is just less than
one �the upper point of the orbit in Fig. 4�b�, right�, which
corresponds simply to the prolongation of a preexisting
large-amplitude event �see, e.g., Fig. 3�a�, bottom right�.
With still a further decrease in Tp /T0, there is another change
in rotation number, leading to the conversion of the 2:1
rhythm into the 2:2f rhythm, and finally a reverse supercriti-
cal period-doubling bifurcation, leading to a 1:1f rhythm
that exists only over a very narrow range of Tp /T0 �arrow in
Fig. 4�a��. Note that there is a stable or unstable period-1
orbit present for all Tp �40�.

E. 1:1a Õ1:1b bistability

At the extreme right of Fig. 4�a�, there is a narrow range
of Tp /T0, just below Tp /T0=1, where three period-1 orbits

coexist. In the map �Fig. 5�a�: Tp /T0=0.96�, there are two
stable period-1 orbits �blue diamonds�, corresponding to two
stable 1:1 rhythms, as well as one unstable period-1 orbit
�red circle�, corresponding to an unstable 1:1 rhythm. De-
pending on the initial condition, one or the other of the two
stable period-1 orbits �insets in Fig. 5�a�� is asymptotically
approached. Bistability of two different 1:1 rhythms
�1:1a /1:1b� is thus predicted. This suggests that if Tp /T0
would be adjusted finely during the experiments to be within
the putative bistable region, a well-timed perturbation should
move the state point of the system from the limit cycle of
one 1:1 rhythm into the basin of attraction of the limit cycle
of the other 1:1 rhythm. This theoretical prediction was veri-
fied experimentally in both directions �Fig. 5�b�, left and
right: Tp /T0=0.96�, with the arrows indicating the transient
alteration of stimulus timing that provided the perturbation to
induce the flip from one 1:1 rhythm to the other. To obtain
either flip the stimulus timing must be well chosen; more-
over, the timing was consistent with what is predicted from
the map �Fig. 5�a��. During the experimental 1 :1a rhythm,
the stimulus falls at a phase of �0.5, while during the 1:1b
rhythm it falls at �0.9, which is again in excellent agreement
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with the predictions of the map. We were unable to produce
these flips experimentally when Tp /T0 was reduced to 0.93,
or when Tp /T0 was increased to 0.99, again in agreement
with the theoretical prediction that bistability exists only
over a narrow range of Tp /T0 �Fig. 4�a��.

IV. MODELING RESULTS

A. Rayleigh oscillator

Numerical integration of the Navier-Stokes equations re-
produces many of the salient features of the intrinsic oscilla-
tion of the saline oscillator �26�. Working directly from the
results of these simulations, one can reduce the problem to
consideration of the Rayleigh oscillator

d2y

dt2 = A
dy

dt
− B�dy

dt
	3

− �0
2y , �2�

where y is the displacement of the height of the salt water in
the inner container from its equilibrium height, A=56, B
=1.2	108, and �0

2=7 �26� �see also �20,21,23,27,35,36� for
other modeling of the saline oscillator involving low-
dimensional ordinary differential equations�.

As mentioned earlier, while it is still not known exactly
which hydrodynamic variable corresponds to the voltage �V�,
the rapidly changing phases of V �phases a and c in Fig.
1�b�� line up closely in time with the flow reversals �31�. If
we take V �Fig. 6�a�� as a measure of flow velocity through
the orifice, then the integral of V �Fig. 6�b�� will be propor-
tional to the fluctuations in the volume and thus in the height
of the salt water. Indeed, Fig. 6�b� is similar to the experi-
mental result and the result from the full Navier-Stokes
simulation �Figs. 4 and 5 of �26�, respectively�, as is the
phase-plane trajectory �compare Fig. 6�c� here with Fig. 6 in
�26��.

We therefore decided to carry out phase-resetting and
phase-locking simulations in the Rayleigh oscillator, apply-

ing the same biphasic stimulus as that employed in our ex-
periments. One can rewrite Eq. �2� as

dx

dt
= Ax − Bx3 − �0

2y , �3a�

dy

dt
= x . �3b�

The mean flow velocity at the orifice is thus now propor-
tional to x. The time series of x and y, as well as the limit
cycle of the unperturbed relaxation oscillator, are shown in
Figs. 6�d�–6�f�, respectively. The sets of traces in the two
columns of Fig. 6 are similar, apart from the difference in
time scale: the intrinsic period of our saline oscillator
��35 s� is �2.5 times longer than that of the Rayleigh os-
cillator �13.8 s�, mainly because the reduction from the
Navier-Stokes simulations to the Rayleigh oscillator results
in a sharp fall in the intrinsic period �26�.

In the experiment, the biphasic stimulus pulse is an infu-
sion and then a withdrawal of distilled water into the outer
container at a fixed flow rate. This would be modeled by
adding a biphasic pulse F�t� to the right-hand side of the
equation for the rate of change of the water height in the
outer container. Using conservation of mass, one can show
that this is equivalent to adding a term G�t�=−��ro /ri�2

−1�F�t� to the right-hand side of Eq. �3b�, which governs the
height of water in the inner container �ri and ro are the radii
of the inner and outer containers, respectively�. The negative
sign in this term implies that the forcing of the inner con-
tainer must be then carried out using a biphasic wave form
with reversed polarities �i.e., withdrawal followed by infu-
sion�. We set the duration of the infusion and withdrawal
phases in the model to be each 0.55 s, so that each of these
phases lasts for 4% of the intrinsic period, as in the experi-
ment.
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Note also that by making the change of variable, z=y
−
G�t�dt, it can be shown that

dx

dt
= Ax − Bx3 − �0

2z − �0
2� G�t�dt , �4a�

dz

dt
= x , �4b�

so that forcing the oscillator by adding a biphasic square
pulse to the right-hand side of Eq. �3b� is equivalent to add-
ing a monophasic positive triangular pulse to the right-hand
side of Eq. �3a�.

B. Phase resetting of the Rayleigh oscillator

Figure 7�a� shows three phase-resetting runs. When the
stimulus is delivered relatively early in the cycle, during
phase d, there is an almost immediate flow reversal �Fig.
7�a�, left�, as in the saline oscillator �Fig. 3�a�, bottom left�.
The same pulse delivered later in the cycle, during the earlier
part of phase b, produces a shortening of that phase of the
cycle �Fig. 7�a�, middle�, as in the experiment �Fig. 3�a�,
top�, while if delivered sufficiently late in phase b, it pro-
duces a prolongation of that phase �Fig. 7�a�, right�, as in the
experiment �Fig. 3�a�, bottom right�. The amplitude of both
components of the biphasic pulse added to the right-hand
side of Eq. �3b� to represent the stimulus was empirically
chosen to be 0.01 in order to yield a PTC �Fig. 7�b�� com-
parable to that of the experiments �Fig. 3�c��.

In Fig. 7�b�, for 0���0.05, the PTC has a very small
negative slope, except in a neighborhood of �=0.036, where
there is a very small abrupt jump with very large negative
slope that is not appreciable on the scale of this figure �see
inset�. This jump is only an apparent discontinuity, since
finer computation reveals that canardlike trajectories are seen

within this region, producing a very negative slope in the
PTC. At �=0.54 there is a rather abrupt change in the slope
of the PTC from negative to positive; for 0.54���0.91,
�� just barely exceeds � and the slope of the PTC is slighter
�1; for 0.91���1, the PTC has a positive slope �1; and
for ��0.95, ����. The PTC of the Rayleigh oscillator
thus resembles closely the experimental PTC of Fig. 3�c� in
terms of its overall shape. Given the degree of noise in the
experimental system, as reflected in the scatter of data points
in Fig. 3�c�, it would be exceedingly difficult—indeed, prob-
ably impossible—to provide experimental evidence for the
canardlike behavior seen in the noise-free model on the
miniscule scale of the inset of Fig. 7�b�.

C. One-dimensional map from the Rayleigh oscillator

As for the experiments, we carried out iterations of Eq.
�1� using the PTC of the Rayleigh oscillator �Fig. 7�b��. The
phase-resetting data in Fig. 7�b� is composed of 13 810 data
points, and linear interpolation between these points was
used to generate a piecewise-linear function g in Eq. �1�.
Using an increment in Tp /T0 of 0.001, at each value of
Tp /T0, 1000 iterations were made from each of 100 evenly
spaced initial conditions in the interval �0,1�. Only period-1
and period-2 stable orbits were found. Figure 7�c� shows the
bifurcation diagram computed, not from iteration of Eq. �1�,
but rather by direct numerical calculation of period-1 and
period-2 orbits from that equation �solid blue curves, stable;
dotted red curves, unstable�.

At the right of Fig. 7�c�, an unstable period-1 branch links
the two bistable period-1 branches corresponding to 1:1a
and 1:1b rhythms; this bistability had been found earlier in
the experiments �Fig. 5�b�� and in the experimental map
�Figs. 4�a� and 5�a��. Towards the left in Fig. 7�c�, another
unstable period-1 branch links the stable period-1 branches
corresponding to 1:1s and 1:1f rhythms, as in the experi-
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mental map �Fig. 4�a��. The transition from the 1:1f rhythm
to the 2:2 rhythm at Tp /T0=0.125 is due to a supercritical
period-doubling bifurcation, as in the experimental map �Fig.
4�a��. However, the transition from a 1:1s rhythm to a 2:2
rhythm is associated with a subcritical period-doubling bifur-
cation that occurs at Tp /T0=0.38. This finding is in contrast
to the experimental map �Fig. 4�a��, where the bifurcation is
supercritical �more about this difference later�. Another dis-
crepancy with respect to the experiments �Fig. 2� and the
experimental map �Fig. 4�a�� is that a 2:1 rhythm is not seen.

The two arrows in Fig. 7�c� indicate two regions where
there is bistability between two different period-2 orbits �cor-
responding to two different 2:2 rhythms�, with the inset
showing a close-up of the part of the upper branch of the
bifurcation diagram indicated by the right-hand arrow: there
is an unstable period-2 branch linking two stable period-2
branches �a similar configuration holds for the left-hand
bistable region�. Figure 7�d�, left, shows an example of the
map found in the bistable region indicated by the left arrow
in Fig. 7�c� �Tp /T0=0.15�: there are two stable period-2 or-
bits �solid blue lines� and one unstable period-2 orbit �dashed
red lines�, with the latter acting as a separatrix to divide the
basins of attraction of the two stable orbits. The leftmost
point of the unstable period-2 orbit lies on the part of the
map where the slope is very negative due to the existence of
canardlike solutions on the PTC �inset of Fig. 7�b��. This
orbit could not be unstable—and the 2:2a /2:2b bistability
would not exist—in the absence of this steep, negatively
sloped range of the PTC �from the chain rule, the product of
the slopes of the map at the two unstable period-2 points has
to be �1 in absolute value for that orbit to be unstable�. This
steep region is similarly involved in generating the region of
bistability indicated by the right-hand arrow in Fig. 7�c�.
Although this jump appears to be miniscule, its existence is
crucial in allowing 2:2a /2:2b bistability to exist over two
quite large ranges of Tp /T0 in Fig. 7�c�.

D. Phase-locking rhythms in the Rayleigh oscillator

We next carried out direct numerical integration to inves-
tigate the phase-locking rhythms in the Rayleigh oscillator
for 0.1�Tp /T0�1.0, with an increment in Tp /T0 of 0.001.
Figure 8�a� shows the rhythms found as Tp is decreased:
1 :1b �upper left�, 1 :1a �upper right�, 2:2 �lower left�, and
1:1f �lower right�. To search for bistability, at each value of
Tp /T0, we carried out 100 runs, with the first stimulus of
each run being injected at one of 100 evenly spaced points
on the limit cycle. In the bifurcation diagram of Fig. 8�b�, we
plot the phases 
* in the cycle at which the stimuli are in-
jected from all 100 runs made at each value of Tp /T0 �the last
20 points of each run are plotted�.

Thus, as Tp /T0 is decreased, one has the sequence of
rhythms �1:1s→2:2→1:1f�. In agreement with the predic-
tion of the map �Fig. 7�c��, but in contrast to experiment
�Figs. 2 and 4�, a 2:1 rhythm is not seen. However, it is likely
that with tiny changes in parameters, the lower point on the
period-2 orbit in Fig. 8�b� would dip below 
=0, thus yield-
ing a 2:1 rhythm. Figure 8�b� shows that over a small range
of Tp /T0 there is 1 :1a /1:1b bistability, as in the experiments
�Fig. 5�b��, the experimental map �Figs. 4�a� and 5�a��, and
the map from the Rayleigh oscillator �Fig. 7�c��. But the
2:2a /2:2b bistability predicted from the map �Fig 7�c�� is
not found. Given the otherwise excellent agreement between
Figs. 7�c� and 8�b�, it is again likely that with tiny changes in
parameters, 2 :2a /2:2b bistability would be seen. For
Tp /T0�1, we see the sequence �1:1→1:2f →2:4→1:2s�,
which again agrees with the 1D map predictions.

E. 1:1s Õ2:2s bistability

The results of both the numerical integration runs �Fig.
8�b�� and the iterations of the map �Fig. 7�c�� in the Rayleigh
oscillator indicate that there is a range of 1:1s /2:2s bista-
bility, which is a consequence of the period-doubling bifur-
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was 1.47	104 s and in the region of the 1:1 /2:2
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cation from 1:1s rhythm being subcritical �Fig. 7�d�, right
shows the coexisting stable period-1 and period-2 orbits,
separated by an unstable period-2 orbit�. This bistability was
not predicted from the experimental map �Fig. 4�a��, where
the period-doubling bifurcation was supercritical. We never-
theless decided to search for this bistability in the experi-
ments. In the saline oscillator, one can indeed flip the 2:2s
rhythm to the 1:1s rhythm �Fig. 9�a�, left� or vice versa �Fig.
9�a�, right� by a carefully chosen transient advance in the
timing of stimulation �arrows�, as in the case of the
1:1a /1:1b bistability earlier described �Fig. 5�b��. The two
corresponding bistable rhythms in the Rayleigh oscillator
�Fig. 9�b�� look remarkably similar to those in the saline
oscillator �Fig. 9�a��.

F. Effect of different fits to the PTC on the bifurcation
diagram

The 1D map correctly predicts the sequence of rhythms
seen in the saline oscillator �Figs. 2�a�–2�e� vs Fig. 4�a�� as
well as the 1:1a /1:1b bistability �Fig. 5�b� vs Figs. 4�a� and
5�a��. The one major discrepancy is the prediction that the
2:2s rhythm should arise out of the 1:1s rhythm via a su-
percritical period-doubling bifurcation �Fig. 4�, which is not
in agreement with the experimental result demonstrating the
existence of a subcritical bifurcation �Fig. 9�a��. The period-
doubling bifurcation is also subcritical in the Rayleigh oscil-
lator, in both the phase-locking runs �Figs. 8�b� and 9�b�� and
the map �Fig. 7�c��.

Since the two maps that predict super- and subcritical
bifurcations �in the saline and Rayleigh oscillators, respec-
tively� come from PTCs that are very similar �compare Fig.
3�c� with Fig. 7�b��, it is clear that some very subtle, seem-
ingly insignificant, change in the PTC can convert the
period-doubling bifurcation from super- to subcritical or vice
versa. For example, fitting the PTC from the Rayleigh oscil-
lator with a quartic polynomial (as in the experiments �Fig.

3�c��) results in the subcritical period-doubling bifurcation at
Tp /T0= �0.4 in Fig. 7�c� becoming supercritical, with the
period-doubled branch of the bifurcation diagram resembling
very much that obtained in the experimental work �Fig. 4�a��.
We thus tried other functional forms for the fit to the saline
oscillator PTC �e.g., sine-wave, piecewise-linear-exponential
forms�, but in all cases the bifurcation remained supercritical.
However, in the case of the piecewise-linear-exponential fit
�Fig. 10�a� shows this fit �thin red curve� together with the
raw data �solid circles�; the original quartic fit of Fig. 3�c� is
also shown for comparison �thick blue curve��, while the
bifurcation remains supercritical, the period-doubled branch
emerges in a much steeper fashion �contrast Fig. 10�b� with
Fig. 4�a��. It is thus quite likely that further small changes in
the exact functional form of the fit would lead to the bifur-
cation becoming subcritical, which would then produce
agreement with the experimental result �Fig. 9�a��. However,
it is difficult to offer a solid justification for making such
subtle changes in the functional form of the fit, since all such
changes would result in curves lying within the scatter of the
data points �Fig. 10�a��.

When the period-doubling bifurcation is subcritical there
are two coexisting stable periodic orbits: one of period-1 and
the other of period-2 �e.g., Fig. 7�d� right�. Since bistability
cannot exist when the Schwarzian derivative of a map is
negative �41�, which is the case for our quartic polynomial,
piecewise-linear-exponential, and sine-wave fits, this ex-
plains why a subcritical period-doubling bifurcation cannot
be obtained using these particular fits.

V. DISCUSSION AND CONCLUSIONS

A. Phase-locked rhythms with high-amplitude forcing

Much of the experimental and modeling work with high-
amplitude forcing has been carried out hitherto on biological
rather than physical systems. As Tp is decreased below T0,
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we encounter the sequence of rhythms �1:1s→2:2s→2:1
→2:2f →1:1f� �Fig. 2�. The �1:1→2:2→2:1� sequence is
seen with high-amplitude forcing in a very simple limit-cycle
oscillator �10� and in the prototypical two-variable FitzHugh-
Nagumo model of an excitable, but not spontaneously oscil-
lating, system �42–44�. The 2:2 rhythm has been much stud-
ied in cardiac tissue, where it is called “alternans.” The
�1:1→2:2� transition occurs in cardiac oscillators �8,45,46�
as well as in excitable cardiac tissue �in both experiments
�47–55� and in ionic models �49,52,56–61��. A further de-
crease in Tp typically converts the 2:2 rhythm into a 2:1
rhythm in both spontaneously active �e.g., �8,45,46�� and ex-
citable �e.g., �48,49,51,54�� systems, as well as in ionic mod-
els �49,52,56,57,59,60�. However, several other possibilities
exist in excitable systems: there can be �i� a reversion back to
a 1:1 rhythm �experiment �55�, ionic model �58,61��, �ii� a
second period-doubling bifurcation leading to a 4:4 rhythm
�50,53�, �iii� a torus bifurcation leading to amplitude-
modulated 2:2 rhythms �53�, or �iv� a direct transition to
chaos �42�. Indeed, the first possibility is what is seen in the
Rayleigh oscillator at the stimulus amplitude used here
�Fig. 8�.

With Tp�T0, we obtain the sequence �1:1s→1:2f
→2:4f →2:3→2:4s→1:2s� �Fig. 2�. Transitions in which
only period-1 and period-2 rhythms occur between 1:1 and
1:2 rhythms have been seen in forced oscillators: e.g., the
sequence �1:1→2:2→2:3→2:4→1:2� �8,10�.

B. Bistability involving period-1 and period-2 rhythms

Bistability �and the resultant hysteresis� in periodically
forced systems has a long history in both the physical and
biological worlds �e.g., �1,62��. In both the saline and Ray-
leigh oscillators, we see both 1:1a /1:1b bistability �Figs.
4�a�, 5, 7�c�, and 8�b�� and 1:1 /2:2 bistability �Figs. 7�c�,
8�b�, and 9�. 1 :1a /1:1b bistability occurs experimentally in
forced electrical and electrochemical systems �63,64�, and
two stable period-1 rhythms can coexist in simple models of
periodically forced oscillatory and excitable systems
�19,42,44,64,65�. 1 :1 /2:2 bistability occurs in a convex uni-

modal 1D map with a positive Schwarzian derivative �66�, as
well as in far more complex ionic models of excitable car-
diac tissue �52,57,59,67�. While a third form of bistability,
2 :2a /2:2b bistability, was predicted to exist in the Rayleigh
oscillator from the 1D map �arrows in Fig. 7�c��, this was not
seen in the corresponding numerical integration runs �Fig.
8�b��. Particularly interesting in this context is the fact that
the unstable period-doubled limit cycle in the forced differ-
ential equation, corresponding to the unstable period-2 solu-
tion that is the separatrix in the map �Fig. 7�d�, left�, is then
predicted to be a canard. There is evidence in experimental
and modeling work for 2 :2a /2:2b bistability �47,56,57,68�,
as well as for two other forms of bistability and hysteresis
involving 1:1, 2:2, and 2:1 rhythms: 1 :1 /2:1 bistability
�8,42–44,48,49,54,59,60,62,65,68–73� and 2:2 /2:1 bistabil-
ity �42–44,48,49,54,56,57,60,68�.

C. Influence of the forcing amplitude on classes of phase-
locking rhythms

At the lowest forcing amplitudes, the 1D map
is a degree-1 invertible circle map, resulting in the
periodic-quasiperiodic sequence corresponding to inter-
leaved Arnol’d tongues and quasiperiodic dynamics �e.g.,
�2–5,8,11,12,15,17��. As forcing amplitude is raised,
there is a transition to a degree-1 noninvertible circle map
�e.g., �3��, and many Arnol’d tongues, after first widening,
tend to split, narrow, and eventually disappear, with there
being frequently an overlapping of tongues that produces
bistability; in addition, torus bifurcations, period-doubling
bifurcations, global bifurcations, and chaos can occur
�2,6,7,9–19,65,68,69,71,74–80�. At a sufficiently high forc-
ing amplitude, the PTC and the 1D map of Eq. �1� are of
topological degree zero �6,10,39,81–85�, and iteration of
such a map can produce bistability, period-doubling bifurca-
tions, and chaos �2,6,10,46,82,86�. As the amplitude is raised
still further, the PTC and thus the map tend to flatten, so that
higher-order rhythms are lost, leaving behind only period-1
and period-2 rhythms �sometimes only a period-1 rhythm�
�6,10,13,15,40,46,75�. In the saline and Rayleigh oscillators
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FIG. 10. �Color online� �a� Phase-resetting
data from saline oscillator �symbols� with
quartic fit �thick blue curve� and piecewise-
linear-exponential fit �thin red curve�. For
the piecewise-linear-exponential fit,
g�
�=0.94, 0�
�0.04178; g�
�=0.43842
+9.31286e−�
+0.58866�/�0.2158�, 0.04178�

�0.50017; g�
�=1.17473�1−e−2.41891�
−0.27194��,
0.50017�
�0.9377; and g�
�=0.94, 0.9377
�
�1.0. �b� Bifurcation diagram constructed
using Eq. �1� and the piecewise-linear-
exponential g�
� from �a�. Increment in Tp /T0

=0.001 �not all points computed are plotted�.
Solid blue curves, stable orbits; dotted red curves,
unstable orbits.
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�Figs. 3�c� and 7�b��, the amplitude is sufficiently high so
that the PTC and the map are of degree zero, and we encoun-
ter only period-1 and period-2 rhythms �Figs. 2, 4�a�, 7�c�,
and 8�b��. In preliminary work at lower forcing amplitudes in
both oscillators, we see higher-order rhythms in the maps, as
well as in the parallel phase-locking runs �e.g., 3:2, 3:1
rhythms�.

D. Excitable vs spontaneously active systems

Several of the reports mentioned in the discussion above
are on quiescent, excitable systems in which the unforced
system does not possess a limit cycle. Indeed, much of the
more complicated phenomenology mentioned above can be
seen in such systems �6,43,44,51,70,87–89�, as well as in
periodically forced anharmonic oscillators �e.g., �90,91��.
With high-amplitude forcing at small Tp, the fact that the
system might be oscillating is not significant, since excitation
will be produced by a stimulus before there can be a spon-
taneous excitation. In excitable systems, the analysis of the
�1:1→2:2→2:1� sequence typically involves a discontinu-
ous two-branched interval map rather than a degree-zero
circle map �e.g., �48,56,57,60��. The sequence �1:1→2:2
→2:1� and 1:1 /2:2 bistability can also be seen in excitable
systems when a parameter other than Tp is changed: e.g.,
decreasing the excitability, which can be viewed as being
equivalent to decreasing the forcing amplitude �67,92�.

E. Ordinary vs partial differential equations

The recordings from the saline oscillator bear an uncanny
resemblance to recordings of action potentials from cells in
the heart and could be mistaken for such should absolute
time and voltage scales be suppressed. In both cases, the
system is properly described by a partial differential equa-
tion. It is most interesting that in both cases the dynamics
can be reduced to the study of ordinary differential equa-
tions. This fact undoubtedly reflects the existence of an iner-

tial manifold in the system �93�. Perhaps even more surpris-
ing is the ability to successfully reduce analysis of the
dynamics further to consideration of a 1D map. Indeed, it is
possible on occasion to obtain a 1D map directly from simu-
lations of a forced partial differential equation �e.g., �56,67��.

F. Super- vs subcritical period-doubling bifurcation

The 2:2 rhythm seen with high-amplitude forcing arises
out of the 1:1 rhythm via a period-doubling bifurcation.
While in some instances this bifurcation is reported to be
supercritical �e.g., �10,40,46,48,54,56,75,94��, at other times
it is reported to be subcritical �e.g., �59��. However, within a
given system, both super- and subcritical bifurcations can be
found, depending on parameter values �e.g., stimulus ampli-
tude� �16,43,44,57,60,65�. Indeed, this existence of both
types of bifurcation in a single system appears to be a ge-
neric feature of forced oscillators �16�. As driving frequency
is further increased, the 2:2 rhythm can then be replaced by
any one of several rhythms: e.g., 1:1, 2:1, 4:4, or amplitude-
modulated 2:2 rhythm �references in Sec. V A above�. It re-
mains to be seen whether these different transitions all have
a natural place in a single universal global bifurcation dia-
gram �e.g., they might be seen at different forcing ampli-
tudes� or whether they are due to intrinsic differences be-
tween different systems.
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