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INTRODUCTION 

An appreciation of the extraordinarily rich dynamics of cardiac arrhythmias can 
be obtained from examination of any text in electrocardiography. Typically, there are 
a large number (100 or more) of rhythms that are identified on the basis of changes 
outside of normal limits of rhythm and wave morphology in the electrocardiogram.’*’ 
The point of this paper is to show that mathematics can provide a framework for 
studying several cardiac arrhythmias. It is possible to theoretically predict dynamics in 
some biological models and clinical situations using appropriate mathematical mod- 
els. 

The main theoretical technique used is to represent cardiac systems by a finite- 
difference equation of the form, 

wherefis a nonlinear function, x, is the value of a variable measured at discrete time t ,  
and X is a parameter.’Once an initial condition x, is chosen, and provided the function f 
is known, the sequence xI, x2, . . . can be generated by an iterative procedure. Even for 
simple nonlinear functionsf, the possible range of dynamics includes equilibria, stable 
periodic cycles, and “chaos” (aperiodic dynamics in a deterministic system demon- 
strating sensitive dependence on initial conditions). A qualitative change in the 
dynamics due to a change in the parameter A is called a bifurcation. A remarkable 
observation is that for simple classes of nonlinear functions, the same sequences of 
bifurcations are observed for all members of that class as X is changed. Thus, the 
bifurcations are called universal.>’ 

In what follows, we examine the bifurcations present in finite-difference equations 
that model cardiac systems and compare the predicted dynamics with experimental 
observations. First, we review previous studies of certain cardiac arrhythmias. Then, 
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we show how the response of cardiac tissue to periodic stimulation can be modeled by 
finite-difference equations. After that, we discuss the periodic stimulation of nonoscil- 
lating, but excitable cardiac tissue and also of spontaneously oscillating cardiac tissue. 
Finally, we show that these results can be used to develop a partial classification of 
cardiac arrhythmias and we discuss the limitations of this approach. 

MECHANISMS OF CARDIAC ARRHYTHMIAS 

The intrinsic rhythm of the normal heart is set by a small region of specialized cells 
located in the right atrium called the sinoatrial (SA) node. From the S A  node, the 
cardiac impulse spreads sequentially through the atrial musculature, the atrioventricu- 
lar (AV) node, and then through the bundle of His, the bundle branches, and 
specialized conducting tissue called the Purkinje fibers to the ventricular muscle. 
Cardiac arrhythmias are often associated with abnormalities in the generation of the 
spontaneous rhythm at the S A  node, abnormal propagation of the cardiac activity, or 
development of spontaneous rhythmic activity a t  abnormal locations (ectopic foci). 
These abnormalities can arise a t  virtually any location in the heart and can occur in 
combination, thus leading to a large number of different cardiac arrhythmias that are 
frequently complex and difficult to interpret.'*2 To simplify matters, we discuss 
separately certain classes of arrhythmias that may be due to abnormal impulse 
conduction and abnormal impulse generation. 

Arrhythmias due to disturbances in impulse conduction are often studied by 
evaluating the conduction velocity as stimulation parameters are varied. Early in this 
century, investigators measured the time between atrial and ventricular activation as a 
function of atrial frequency. It was observed that as atrial frequency is increased, the 
propagation time through the AV node is increased, and that a t  high atrial frequencies 
some of the impulses are not conducted through the AV node to the  ventricle^.^^' This 
can lead to rhythms in which there is a progressive prolongation of the time between 
atrial and ventricular activations until a ventricular beat is dropped (the Wenckebach 
phenomenon). At very high frequencies, more than one consecutive impulse is not 
conducted (high-grade block). These early findings have been confirmed more recently 
in a number of different studies.*-" A simple theoretical model for these results was 
proposed in 1924 by Mobitz." If it is assumed that the time from atrial stimulation to 
ventricular activity is a function (called the recovery curve) of the time that has elapsed 
since the preceding ventricular activation, then once the recovery curve is determined, 
the effects of periodic stimulation at  any frequency can be calculated using an iterative 
pr~cedure.~. '~- ' '  The form of the recovery curve is generally quite simple and this allows 
for a detailed mathematical description of the dynamics as stimulation frequency is 
varied. l4 

Disorders related to abnormal cardiac impulse generation are often studied by 
considering the effects of a single stimulus or of a periodic train of stimuli delivered to 
spontaneously oscillating cardiac tissue." It has been shown that periodic stimulation 
of spontaneously oscillating cardiac tissue will lead to different patterns of interaction 
between the periodic stimulator and the spontaneous oscillator. For example, an in 
vitro preparation of periodically stimulated spontaneously active Purkinje fibers can be 
a biologic model of parasystolic rhythms (in which a ventricular ectopic focus competes 
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with the normal output from the .SA node).'*'' An early theoretical study of the 
competition between spontaneously oscillating cardiac sites was undertaken by van der 
Pol and van der Mark in 1928," who modeled the heart by three coupled nonlinear 
electrical oscillators. More recent studies have extended this work by carrying out 
studies on analogue  system^'^*^ and by numerical integration of nonlinear equations." 
In this work, there is continuous interaction between the oscillators, and such systems 
are extremely difficult to analyze mathematically.22 An approach that largely sidesteps 
this complication is to consider the effect of pulsatile stimulation on a single oscillator. 
Once the effects of a single pulse on resetting the rhythm are known, then (provided 
there is rapid relaxation to the cycle following a single pulse) an iterative procedure can 
be used to compute the effects of a periodic train of pulses. This iterative procedure was 
first used in studies of the circadian rhythm and periodic forcing of nerve  cell^.^^*^' 
Essentially equivalent procedures were subsequently employed by many other 
authors . I 5*2'-28 

FIGURE 1. Schematic representation of experiments in which cardiac tissue is periodically 
stimulated. The stimulus (S) is periodic in time. The response (R) may or may not be measured at 
the same location where the stimulus is delivered. 

In summary, experimental studies have shown that periodic stimulation of 
excitable cardiac tissue (spontaneously oscillating or not) reproduces rhythms analo- 
gous to many cardiac arrhythmias. Under certain well-defined approximations, 
theoretical analysis of such systems is possible using iterative procedures. We now 
show that such iterative procedures can be represented mathematically by finite- 
difference equations. 

CARDIAC DYNAMICS AND FINITE-DIFFERENCE EQUATIONS 

In order to cast cardiac dynamics into the form of finite-difference equations, we 
consider the effects of periodic stimulation of cardiac tissue, schematically represented 
in FIGURE 1. Assume that each stimulus (S) periodically delivered to the cardiac tissue 
is followed by a response (R) at some later time. One assumption that we make to 
facilitate mathematical analysis is that the time between the stimulus and response 
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(SR) depends on the interval from the preceding response to the stimulus (RS). 
Referring to FIGURE I ,  we write 

where SR,,, is the time between the stimulus and subsequent response and RS, is the 
time from preceding response to the stimulus. Equation 1 can be rewritten as 

( 3 4  SRj,, = g(t, - SRj), 

where t ,  is the time interval between periodic stimuli, or alternatively 

RSj,, = t ,  - g(RSj) (3b) 

by using the identities t ,  = SR, + RS, = SR,,, + RS,,,. Equations 3a and 3b are 
finite-difference equations. We now discuss the application of these equations in two 
different contexts. 

PERIODIC STIMULATION OF NONOSCILLATING, 
BUT EXCITABLE CARDIAC TISSUE 

We first consider how finite-difference equations can be used to describe the 
conduction time of the cardiac impulse through the AV node. Using catheters inserted 
into the heart, data can be collected that provides information about electrical activity 
in the atrium, in the bundle of His (which lies just below the AV node), and in the 
ventricle. In a study in humans, Levy et a/.9 found that during periodic stimulation of 
the atria, at a stimulation period of 440 ms, Wenckebach block was established in 
which there were 11  stimuli to 10 ventricular contractions ( 1  1 : l O  AV block) (FIGURE 
2a). The time intervals from a given stimulus (St) to activity in the bundle of His (H) 
are also shown in FIGURE 2a. We designate the time interval from St  to H as SH and 
that from H to St as HS. Successive measurements of S H  as  a function of the 
preceding HS interval are shown by the triangular symbols in  FIGURE 2b. An 
exponential function can be fitted to the data 

S H  = SH,, + a exp ( -  HS/7) for HS > 0, (4) 

where SH,,, = 230 ms, a = 308 ms, 7 = 1 1  1 ms, and 0 = 50 ms (0 is called the 
refractory period). Assume that the curve shown in FIGURE 2b gives the response of the 
AV node during periodic stimulation of the atrium with period t,. Let SH, represent the 
S H  interval of the i-th conducted impulse. By substituting Eq. 4 into Eq. 2, we obtain 

(5) 

where N is the smallest integer such that Nt, - SH, > 0. 
By iterating Eq. 5 ,  it is possible to determine the dynamics for any value of t,. The 

iteration may be done graphically as illustrated in FIGURE 2c, in which SH,,, is plotted 
as a function of SH, using Eq. 5 with t, = 442 ms. The resulting cycle corresponds to 
10:9 AV block. Alternately, Eq. 5 can be numerically iterated on a digital computer. 
The results are shown in FIGURE 2d, which gives the conduction ratio p ( p  is the 
average number of ventricular contractions per atrial stimulus, i.e., for N M  block, p = 

SH,,, = SH,, + a exp [-(Nt, - SH,)/7], 
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M / N )  as a function of t,. The function depicted in FIGURE 2d is called a Cantor 
function or “devil’s staircase”; it is a nowhere decreasing function that is piecewise 
constant on the rationals.’4s29 

The results presented in FIGURE 2 are of general applicability. Provided that the 
recovery curve is a monotonically decreasing curve such as shown in FIGURE 2a, then 
upon periodic stimulation, the same sequence of bifurcations are observed as stimula- 
tion frequency is varied.14 Thus, for any N: M ( N  > M, N and M are relatively prime) 
rhythm, a range of values of t ,  can be found that generates that rhythm. For example, 
the typical N: N - 1 Wenckeback rhythms and N: 1 ( N  > 2) high-grade block rhythms, 
as  well as less common such as reverse Wenckebach (rhythms interme- 
diate to 5:3 and 2:l) and alternating Wenckebach (rhythms intermediate to 2:l and 
5:2), and still rarer varieties, should be found at some value of the stimulation 
frequency. However, as the period of the repeating rhythm increases, the interval oft, 
over which the rhythm can be observed generally becomes increasingly narrow. 
Consequently, in experimental systems in which parameters fluctuate, observation of 
high order periods is difficult, if not impossible, because high order periods will be 
destroyed by the “noise.” The theoretical results provide a firm basis for understanding 
experimental observations of Wenckebach and allied rhythms in diverse experimental 
systems,8-10.19.30 Tests of the theory have been carried out by measuring the recovery 
curve of patients and then by using this to predict the conduction ratio as a function of 
stimulation frequency. These findings confirm that the recovery curve can be used to 
predict AV conduction block in  human^.^' 

PERIODIC STIMULATION OF SPONTANEOUSLY OSCILLATING 
CARDIAC TISSUE 

We now consider the effects of periodic stimulation of spontaneously oscillating 
cardiac tissue. We have conducted extensive studies on aggregates of spontaneously 
beating cultured ventricular cells isolated from embryonic chick heart. In these 
experiments, brief current pulses are periodically injected into the aggregate via an 
intracellular m i c r ~ e l e c t r o d e . ~ ~ ’ ~ ~  Although we rely on these experiments to illustrate 
our approach, similar arguments apply in other  system^.'^-'^^^^-^^ 

As the frequency or amplitude of the periodic stimulation is varied, a large number 
of different regular and irregular rhythms are observed (some of which are illustrated 
as insets in FIGURE 3). The patterns include the various Wenckebach and high-grade 
block rhythms that are found during cardiac arrhythmias. Because the aggregates are 
essentially electrically homogeneous (space-clamped), the Wenckebach rhythms do 
not arise from slowing and eventual blocking of conduction. As the stimulation 
frequency is decreased to a frequency less than the intrinsic beat frequency, escape 
rhythms (N .M rhythms with N < M )  are also observed. One also observes N : M  
rhythms with N = M # I ,  as well as nonperiodic rhythms.26 

The origin of this remarkable diversity and the order in  which the various rhythms 
appear as a function of stimulation frequency and amplitude can only be understood 
from a theoretical analysis of the bifurcations of this system. Assume that the 
spontaneous cycle length of the oscillator in the absence of periodic forcing is To. 
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FIGURE 3. Theoretically computed phase-locking zones (solid lines) and illustrative experimen- 
tal traces (insets) for periodically stimulated aggregates of embryonic chick heart cells. The 
ordinate is the stimulus amplitude (arbitrary units)” and the abscissa is T - t,/T,. For A held 
fixed in the range 0 c A c 0.039, the rotation number (the average number of action potentials 
per stimulus) is theoretically a Cantor function of T similar to that shown in FIGURE 2d. For A > 
0.039, the rotation number may theoretically depend on the phase in the cycle at which the first 
stimulus is delivered. Thus, for these higher stimulus amplitudes, the rotation number for A fixed 
is not a Cantor function. The theoretically computed curves are taken from reference 27. Vertical 
calibration is 50 mV and horizontal calibration is 1 S. 

Dividing both sides of Eq. 3b by To, we obtain 

$,+I  = F(4,) + 7 ( m d  I ) ,  (64 

where 

4 i = R S , / T o ,  7-tS/To9 F(4,)= - g ( 4 r 9 T o ) / T o ( m d 1 ) .  (6b) 

The variable 4, is the phase (0 5 4, < 1) at which the i-th stimulus falls and F ( 4 , )  is 
called the phase transition curve (PTC).’’”* The PTC can be determined by delivering 
a single stimulus pulse a t  different phases of the cycle. The function that gives the 
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percentage deviation of perturbed cycle length from the intrinsic cycle length as a 
function of phase of stimulus presentation (sometimes called the phase response curve) 
can be used to compute the PTC.23-28.33 In our experiments, we have determined the 
PTC from data obtained by injecting single pulses of various amplitudes. Subsequent- 
ly, we have fit the PTC to an analytic function and we have computed the ranges off, 
over which stable periodic rhythms (also called phase-locking patterns) are predicted 
to O C C U ~ . ~ ~ . ~ ~  The results of these computations are  shown as the solid lines in FIGURE 3. 
Experiments, in general, showed close agreement with the theoretical predictions of 
FIGURE 3. However, in some regions, for example, 1.05 < 7 < 1.40, 0.06 < A < 0.10, 
where A is an arbitrary stimulus amplitude ~ a r a m e t e r , ’ ~  it was difficult to observe the 
stable patterns that were theoretically predicted to exist over small parameter ranges. 
Instead, irregular rhythms were observed. 

We now consider the bifurcations observed in this system. In the terminology of 
nonlinear dynamics, Eq. 6a is called a “circle map.”1416 This circle map is invertible 
for low stimulus strengths (less than about A = 0.039 in our example). All invertible 
circle maps of the form in Eq. 6a display the same sequence of bifurcations as T 
increases. For this situation, it is known that one must observe the various Wencke- 
bach, high-grade blocks and escape rhythms following the order shown in FIGURE 

As the stimulus strength is increased, the PTC computed from our experimental 
data becomes noninvertible. At the present time, a complete theory for bifurcations in 
noninvertible circle maps has not been developed. However, it is known that the zones 
present in the invertible region ( A  < 0.039) will extend into the noninvertible region 
( A  > 0.039).27 Also, as a direct consequence of the noninvertibility. zones may branch 
and cross. This provides a condition in which, even in the absence of noise, either one or 
the other of two patterns will be seen at  the same stimulation frequency and amplitude 
(bistability), depending on initial conditions. In addition, there can be period-doubling 
bifurcations in which the period of an oscillation doubles as a parameter changes. 
These bifurcations lead to alternans, such as the 2:2 rhythms shown in FIGURE 3. 
Finally, the mathematics predicts that there should be chaotic dynamics. We have 
observed period-doubling bifurcations, “chaotic” dynamics, bistability, and hysteresis 
(which may be associated with bistability) in our experimental ~ o r k . ~ ~ * ~ ~ * ~ ~  

3.27.16 

CONCLUSIONS 

The simple biological and theoretical models that we have described produce 
rhythms analogous to a large number of different cardiac arrhythmias. These 
arrhythmias include the simple and complex Wenckebach rhythms, high-grade block, 
and escape Rhythms analogous to parasystolic and related rhythms set up 
between activity originating in the SA node and in an ectopic focus’s-17 (e.g., bigeminy 
with each manifest ectopic beat followed, after a compensatory pause, by a beat of 
sinus origin) are also observed. Cardiac rhythms demonstrating behavior in which 
there is alternation of the morphology of one or more of the complexes or of the 
intervals in the electrocardiogram may be due to period-doubling bifurcations in the 
heart.1640 Finally, nonperiodic rhythms may be identified with “chaotic” dynamics in 
the associated models.26.27.36.17.39 
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The current work shows that the effect of periodic stimulation of either oscillating 
or nonoscillating (but excitable) tissue can be understood from an analysis of 
bifurcations of one-dimensional finite-difference equations containing two or more 
adjustable parameters. Because the sequences of bifurcations observed do not depend 
on the detailed functional form of the equations, but rather on their qualitative 
properties, the bifurcations are “universal.” 

An interesting aspect of the analysis is that Wenckebach rhythms will arise from 
periodic stimulation of excitable tissue (whether or not it is spontaneously oscillating) 
at stimulation rates higher than the intrinsic frequency provided that the stimulation 
intensity is not too high. Consequently, the appearance of Wenckebach rhythmicity 
cannot be used to determine whether or not the AV node is spontaneously oscillating, 
as some ~ u g g e s t , ’ ~ * ’ * ~ ~  or is merely a passive conduit with slow conduction. 

The theoretical methods presented in this paper are still at an early stage of 
development. Several physiological factors such as fatigue of cardiac tissue at  high 
stimulation frequencies, frequency-dependent change of refractory times, and the 
influence of a blocked action potential on the subsequent conductivity of the AV node 
are not accounted for in the current formulation of the model. In addition, geometric 
effects such as spatial variability of refractoriness and conduction velocity in the 
cardiac muscle also play important roles in the generation of cardiac arrhythmias. 
Arrhythmias due to reentry, such as some tachycardias and fibrillation, fall outside the 
scope of the theoretical methods described here. Careful analysis of lengthy rhythm 
strips of patients is needed to assess the stability of arrhythmias and the bifurcations 
that occur clinically. Thus, the extent to which the theoretical and biological models 
have direct applicability to clinical situations is still largely unknown and is a focus for 
future research. However, the close correspondence between the dynamics in finite- 
difference equations and those observed clinically strongly suggests that the style of 
analysis developed above, appropriately modified and extended, will provide a unified 
theory applicable to a large subset of, but by no means all, cardiac arrhythmias. 
Consequently, this theoretical approach should be useful in research, teaching, and, 
perhaps, clinical treatment. 
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DISCUSSION OF T H E  PAPER 

J.  ARON: You commented that even if you made an extremely complicated, 
detailed model, you would end up showing how useful the simple difference equation 
was. Do you think, then, that one should go ahead and build detailed models? 

L. GLASS: That is a good point. I think that if you do build them, then you are going 
to see the same sorts of things. In the intact patient, things are bound to be more 
complicated than the simple bifurcations we are seeing here. I should have stated a t  the 
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outset that these are not all the arrhythmias in the heart. There are arrhythmias with 
important propagation effects, which indeed must be analyzed with models that 
include propagation, and 1 am sure that effects can be seen with propagation that are 
not present in these models. When somebody starts doing complicated models and 
more realistic geometries, that person is going to see the sort of stuff that is happening 
in our model, that is, the first-order and maybe the second-order things going on. It is 
interesting from a theoretical point of view that those complicated things are showing 
the same sorts of bifurcations that we have here. I think that there is a lot of value in 
trying to take the next steps in building the models. 

M. SHLESINGER: Could you make any comments about ionic mechanisms? Are 
there any general statements (such as, you would need the calcium besides the sodium 
and potassium currents)? Do you need a couple of differential equations and, say, more 
than two variables? 

GLASS: To my knowledge, the people who have tried to look at phase resetting 
using ionic mechanisms would include Guevara, Clay, Shrier, and others. The ionic 
mechanisms that they have examined give reasonable agreement with most of the 
features observed experimentally. With the ionic model, you need at least two variables 
to get an oscillation. Most of those who look at the ionic models try to use the most 
accurate equations available now and try to do the computer experiments on the 
models. I cannot make any stronger generalizations. 

E. BASAR: During these arrhythmias, did you try to observe a kind of competition 
between various rhythms from various parts of the heart? 

GLASS: Yes. In Michael Guevara’s thesis and also in some papers submitted for 
publication, over certain regions of the parameter space we showed the presence of 2:l 
and 1:l rhythms at the same stimulation parameters and demonstrated a hysteresis 
effect. Also, in the regions where the Arnol’d tongues overlap one another, there are 
extremely complicated dynamics, and one potential interpretation is that there may be 
two basins of attraction in addition to the noise. Our discussion of that is in a paper 
called “Chaotic Cardiac Rhythms,” which is in Arun Holden’s recent collection of 
papers on chaos.” 

I think there is evidence for bistability. Different sorts of bistability can arise in 
different regions of the parameter space. It is a very delicate operation to observe it in 
this preparation (at least in the way that we have tried to do it), but it does exist. 

BASAR: We observed something similar in the brain rhythms, but it is very difficult 
to interpret. The heart is, I guess, a simpler system. If we start to learn something 
there, then we can take the ideas to the brain. 

GLASS: Only somebody who studies the brain would say that the heart is simpler 
than the brain. 


