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BIFURCATION A N D  C H A O S  IN A PERIODICALLY S T I M U L A T E D  CARDIAC 
O S C I L L A T O R  
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and 
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Periodic stimulation of an aggregate of spontaneously beating cultured cardiac cells displays phase locking, period-doubling 
bifurcations and aperiodic "chaotic" dynamics at different values of the stimulation parameters. This behavior is analyzed by 
considering an experimentally determined one-dimensional Poincar6 or first return map. A simplified version of the 
experimentally determined Poincar6 map is proposed, and several features of the bifurcations of this map are described. 

1. Introduction 

Cardiac dysrhythmias are abnormal cardiac 
rhythms that often occur in diseased hearts. In what 
follows, we analyze biological and theoretical mod- 
els for the generation of cardiac dysrhythmias that 
are associated with a lack of synchronization be- 
tween autonomous pacemaker sites in the heart. 
The theoretical techniques are also applicable to a 
broader range of problems dealing with the syn- 
chronization of nonlinear oscillators to a periodic 
input. 

In the normal human heart, the primary pace- 
making site is located in the sinoatrial node (SAN). 
From the SAN the cardiac impulse spreads se- 
quentially through the atrial musculature, the atrio- 
ventricular node (AVN), and specialized conduc- 
ting tissues to the ventricles [1 ]. Electrical excitation 
of the atria is followed 0.08-0.12 sec later by ex- 
citation of the ventricles. The electrochemical 
events responsible for the spread of excitation can 
be monitored noninvasively by the electro- 
cardiogram (ECG) which is a record of the poten- 
tial differences between different points on the sur- 
face of the body. On the ECG, the P wave is 

associated with the excitation of the atria, the QRS 
complex with excitation of the ventricles, and the T 
wave with recovery of the excitability of the ventri- 
cles. Normally, excitation of cardiac tissue is associ- 
ated with mechanical contraction. Fig. IA shows a 
normal ECG. In a class of disorders called the 
atrioventricular (AV) heart blocks, there are abnor- 
malities in the relative timing of the atrial and 
ventricular contractions. In first degree AV block 
the delay between the atrial and ventricular con- 
tractions is elevated above its normal maximal 
value. In second degree AV block, atrial con- 
tractions are not always followed by ventricular 
contractions. The second degree AV blocks are 
often periodic and are characterized by a ratio 
which gives the relative frequencies of atrial to ven- 
tricular contractions. Fig. 1B shows an example in 
which one cycle of 3:2 AV block (i.e. 3 atrial to 2 
ventricular contractions) is followed by five cycles 
of 2:1 AV block. As well, second degree AV 
block can show extremely irregular or fluctuating 
rhythms (fig. 1C). In third degree AV block, 
there is an apparent lack of correlation between the 
atrial and ventricular rhythms, with separate pace- 
makers for each rhythm (fig. 1D). Finally, electro- 
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Fig. I. Electrocardiograms illustrating normal and pathological cardiac rhythms. (A) Normal sinus rhythm. Each P wave is followed 
a fixed time later (the PR interval) by a QRS complex (1 : 1 ratio in atrioventricular conduction). (B) Second degree AV block with 
one 3:2 Wenckebach cycle followed by five consecutive 2:1 cycles. In the Wenckebach phenomenon, the PR interval following a 
dropped ventricular beat gradually increases until a P wave is not followed by a QRS complex (i.e. a ventricular beat is dropped). 
(C) Second degree AV block showing segments with 2: 1, 4: 3, and 3:2 conduction ratios. (D) Third degree heart block, Note the 
dissociation of the atrial and ventricular rhythms. (E) Sinus rhythm with alternating PR intervals (2:2 conduction). The laddergrams 
below the tracings of (B?(D) schematically show the path of impulse formation and conduction. The small dots in these diagrams 
show sites of impulse generation, arrows show the spread of excitation, while short dark bars show regions of block of conduction. 
The sinoatrial node is at the top of the laddergram~ the ventricles at the bottom. The time between the heavier vertical lines on the 
electrocardiographic paper is 0.20 sec. while the voltage difference between adjacent heavier horizontal lines is 0.5 inV. Time intervals 
in seconds are marked on some panels. (A~(D) show human electrocardiograms reproduced with permission from [1], while (E) is 
from a cat reproduced with permission from [2]. 

c a r d i o g r a m s  with a l t e r n a t i n g  P R  in te rva ls  (2: 2 a n d  

4 : 2  AV block)  have been  observed  in a n i ma l s  [2] 

and  in m a n  [3, 4]. Fig. I E shows an  ins tance  of  

2 :2  AV block  pub l i shed  in 1910. 

A f u n d a m e n t a l  hypo thes i s  u n d e r l y i n g  o u r  work  

is tha t  changes  in the card iac  r h y t h m  can  be 

associa ted with b i fu r ca t i ons  in the qua l i t a t ive  dy-  

namics  of  m a t h e m a t i c a l  mode l s  desc r ib ing  gener-  

a t ion  and  c o n d u c t i o n  of  the ca rd iac  impulse .  The  

e q u a t i o n s  desc r ib ing  the electrical  act ivi ty  of  the 

hear t  are complex  a n d  p r e s u m a b l y  vary  f rom 

ind iv idua l  to ind iv idua l .  However ,  the qua l i t a t ive  

features  of  the d y n a m i c s  of  these e q u a t i o n s  for the 

hear t ,  a n d  in pa r t i cu la r  their  b i fu r ca t i on  s t ruc ture ,  

m a y  well be s imi lar  in different  ind iv idua l s .  Indeed ,  

card iac  d y s r h y t h m i a s  have been  classified by n o n -  

m a t h e m a t i c i a n s  (i.e. cardiologis ts )  on  the basis  of 

their  qua l i t a t ive  d y n a m i c s  [1]. 
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An early theoretical study of cardiac dys- 
rhythmias was made by van der Pol and van der 
Mark in 1928 [5]. They showed that when three 
nonlinear oscillators (representing pacemaker sites 
of the heart) are coupled together, many different 
rhythms similar to the AV blocks can be observed 
as the relative frequencies and coupling parameters 
of the oscillators are varied. This pioneering work 
has since been extended by other researchers using 
analogue and digital models [6, 7]. As well, phys- 
iological studies have provided additional evidence 
that the canine heart contains a subsidiary pace- 
maker situated just below the AVN [8, 9]. How- 
ever, most cardiac electrophysiologists ascribe the 
AV heart blocks to blocked conduction in the 
region of AVN [1], where there is assumed to be 
impulse conduction but no impulse generation. 
Mathematical models for this situation show corre- 
spondences with the AV heart blocks but do not 
show patterns with alternating PR intervals 
[10-12]. Our emphasis in the current work is on the 
effects of periodic stimulation of an autonomous 
cardiac oscillator. This situation may be applicable 
to the AV heart blocks, and also is relevant to a 
wide range of other situations, such as the artificial 
pacing of the heart and dysrhythmias such as 
parasystole. 

Analysis of the effect of periodic forcing on 
relaxation oscillations of the van der Pol type have 
had a major impact on mathematics. Early studies 
demonstrated bistability (in which one of two 
different stable oscillating patterns is possible, de- 
pending on the initial conditions) as well as aperi- 
odic dynamics [13, 14]. This observation of aperi- 
odic dynamics in the 1940s played a role in the 
subsequent formulation of the horseshoe map by 
Smale (see the account in [i 5]). More recent studies 
of periodic forcing of nonlinear oscillators have 
shown that multistability and aperiodic dynamics 
can be accounted for by consideration of 
1-dimensional maps of the circle into itself [ 16-18]. 
It has also been shown that such maps can display 
aperiodic dynamics that result from a cascade of 
period-doubling bifurcations [19-23]. 

Recent experimental studies on hydrodynamic 

[24-26], chemical [27, 28] and electronic [29-31] 
systems have shown the presence of complex dy- 
namic behavior such as quasiperiodicity, period- 
doubling bifurcations, intermittency, and chaos. 
There is great interest in analyzing in detail the 
"universal" features of the transitions from peri- 
odic to chaotic dynamics [32-36]. 

In our research we have tried to develop biolog- 
ical models for cardiac dysrhythmias and to ana- 
lyze experimentally observed dynamics. In section 
2 we show that, under certain assumptions, the 
periodic stimulation of a cardiac oscillator by brief 
current pulses can be reduced to the analysis of a 
I-dimensional map. In section 3 we consider the 
effects of periodic stimulation of spontaneously 
beating aggregates of cells obtained from em- 
bryonic chick heart [37]. In this work a current 
pulse generator is analogous to the SAN, whereas 
the heart cell aggregate is analogous to the sub- 
sidiary pacemaker located below the AVN. As the 
period of the stimulation changes, complex bifur- 
cations including period-doubling bifurcations can 
be observed. In section 4 we investigate a 
1-dimensional map that has been proposed as a 
simple model for periodic forcing of nonlinear 
oscillators. This map depends on 2 parameters 
corresponding to the strength and frequency of the 
periodic forcing. 

2. Pulsatile stimulation of a cardiac oscillator: 
theory 

In order to analyze the bifurcations of period- 
ically stimulated cardiac oscillations mathe- 
matically, a number of assumptions are needed. In 
this section the main assumptions are explicitly 
stated. As well, the resulting properties of the 
dynamics are briefly discussed. Similar approaches 
have been previously employed [38-40]. More de- 
tails on the mathematical aspects can be found in 
[41-43]. 

Assumpt ion  (i). A cardiac oscillator under normal 
conditions can be described by a system of ordi- 
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nary differential equations with a single unstable 
steady state and displaying an asymptotically sta- 
ble limit cycle oscillation which is globally attrac- 
ting except for a set of singular points of measure 
zero. 

Assume the limit cycle has period To and that we 
start with initial conditions x(t = O)= xo, with x0 
being an arbitrary point on the limit cycle. Set the 
phase of x0 to be zero. Then the phase of the point 
x(t) is defined to be t/To (mod 1). Thus, a phase 
q~(0 ~ ~ < 1) can be assigned to every point on the 
limit cycle. The eventual phase of points in the 
basin of attraction of the cycle can now be defined. 
Let x(t = 0) and x'(t = 0) be the initial conditions 
of a point on the cycle and a point not on the cycle 
respectively, and x(t), x'(t), be the coordinates of 
the trajectories at time t. If lim,+~+d(x(t), 
x'(t)) = 0, where d is the Euclidean distance, then 
the eventual phase of x ' ( t  = 0) is the same as the 
phase of x(t = 0). A locus of points all with the 
same eventual phase is called an isochron. If the 
equations describing the system are of  dimension 2, 
then there must be at least one singular point at 
which the eventual phase is not defined (fig. 2). If 
the system of equations is of order greater than 2, 
then there must exist a set of dimension />1 
consisting of points where the eventual phase is not 
defined [41-43]. 

Consider the effect of delivering a stimulus start- 
ing at a time when the oscillator is at some (old) 
phase ~b (0 ~< ~b < i). In general, at the end of the 
perturbation, the orbit will lie on a different iso- 
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Fig. 2. Phase space of a 2-dimensional nonlinear oscillator. The 
solid oriented closed curve is the limit cycle, while the dashed 
curves represent isochrons. The point in the center is an 
equilibrium point, and therefore is phaseless and does not lie on 
any isochron. 

chron of (new) phase 0. Then 

0 = g(~),  (1) 

where the function g depends on the stimulus 
amplitude and duration. The function g is often 
called the phase transition curve (PTC) [42]. Note 
that there can also be a stimulus which will perturb 
the oscillator to a phaseless point. 

Assumption (ii). Following a short perturbation, 
the time course of the return to the limit cycle is 
much shorter than the spontaneous period of 
oscillation or the time between periodic pulses. 

This assumption allows one to measure the PTC 
for the cardiac preparation and use the experi- 
mentally measured PTC to compute the effects of 
periodic stimulation. Assume that one of the vari- 
ables in the system is experimentally measurable. 
Define a reference or marker event to be a partic- 
ular point on the waveform (e.g. the maximum 
value attained). The time between two consecutive 
marker events of the spontaneous cycle is the 
period To of the oscillation. Fig. 3A shows the 
situation schematically. A stimulus (which we as- 
sume is a delta function) is delivered at a time 6 
following the preceding spontaneous event. The 
duration T of the perturbed cycle is the time from 
the event preceding the stimulus to the event 
immediately subsequent to the stimulus. Note that 
due to fast relaxation back to the limit cycle, the 
post-stimulus cycles are approximately of duration 
T0. Thus, essentially all of  the eventual phase shift 
occurs within the perturbed cycle. Therefore 

TIT o = 1 + 4) -- 0, (2) 

where q~ = 6/To (fig. 3B). Since T can be experi- 
mentally measured for a given q~, and T O is known, 
the PTC can be determined (fig. 3C). 

Now consider the effects of periodic stimulation 
with a time z between successive stimuli. Calling ~b i 
(mod i) the phase of the oscillator immediately 
before the ith stimulus we obtain 
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Fig. 3. (A) Schematic diagrams illustrating the effect of per- 
turbation of a limit cycle oscillator by a single impulse. The 
vertical lines represent the occurrence of a marker event (see 
text). The spontaneous time between marker events (the period 
of the limit cycle) is denoted by T 0. A stimulus is delivered at 
a time 6 after a marker event, causing a change in the cycle 
length from T O to T. The durations of the cycles following the 
perturbed cycle are all very close to T 0. (B) The normalized 
perturbed interbeat interval T/To plotted as a function of the 
old phase ~b = 6/T o. (C) The new phase-old phase curve (phase 
transition curve or PTC) computed from (B) using eq. (2). In 
part (i) of (B) and (C), the stimulus is weak enough to produce 
type 1 phase resetting, while in (ii) it is sufficiently strong to 
result in type 0 behavior. The curves of (B) and (C) are taken 
from a very simple limit cycle model [19]. 

q~*, ~b* . . . . .  q~*-i is a cycle o f  period N. The cycle 
is stable if 

( ~ f v ) ¢ i  = 4~ ~ = N- I I  / 61f \  J 
(5) 

I f  an extremum of  the function f is a point  on a 

cycle, the slope computed  from eq. (5) equals zero, 
and the cycle is called a superstable cycle. A stable 

cycle o f  period N corresponds to stable N :  M phase 
locking with 

N 

M = ~ [g (~b *) - ~b* + T / To]. (6) 
i = 1  

The rotat ion number  is defined as 

p = lim q~' - q~o (7) 
i~oo i 

For  stable N : M  phase locking the rotat ion num- 

ber is rational, p =,M/N. In section 3 we use eq. 

(3) to predict the properties o f  the periodically 
stimulated cardiac preparation.  The observation o f  

good  agreement between the theoretical predic- 
tions and experimental observations provides a 
posteriori justification for assumption (ii). How-  

ever, a careful experimental and theoretical anal- 

ysis o f  the consequences o f  the breakdown of  

assumption (ii) has not yet been performed. 

¢,+, = f ( ~ , )  = g(ck,) + ~ lTo, (3) 

where g(~b) is the experimentally determined PTC 
for that  stimulus strength and g ( ~  + j )  = g(4)) + j  

f o r j  an integer. Eq. (3) represents a first return or  
Poincar6 map. Starting f rom an initial phase ~b 0, 

one can iterate eq. (3) to generate a sequence ~b 0, 

(~1 =f(~b0) . . . . .  ~bs =f(q~N-1)=fN(~b0). If  

~ * ( m o d  1 )=  ~b*(mod l), 
q~*(mod 1) # ~b*(mod 1), 1 ~< i < N ,  (4) 

then q~' is said to be a fixed point  o f  period N and 

Assumption (iii). The topological characteristics o f  
the PTC change in stereotyped ways as the stimu- 
lus strength increases. 

As a consequence o f  assumption (i) the PTC is 
a cont inuous map  o f  the unit circle into itself 
g : S ~ S  I. The topological degree (or winding 

number)  o f g  is the number  o f  times 0 traverses the 
unit circle as ~b traverses the unit circle once. At 
zero per turbat ion strength 0 = ~b so that by con- 
tinuity the PTC is a mono ton ic  map  o f  degree 1 for 
sufficiently small per turbat ion (fig. 3C(i)). As the 
stimulus strength increases f rom zero, our  experi- 
mental studies seem to indicate that the PTC 
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remains of degree l, but undergoes a transition 
from a monotonic to a non-monotonic function. 
Winfree [43] has given evidence that at high stim- 
ulus strength the PTCs for neural and cardiac 
oscillators can be of degree zero and therefore 
non-monotonic (fig. 3C(ii)). We conjecture that as 
stimulus strength increases the PTC for biological 
oscillators will, provided assumption (i) is satisfied, 
in general undergo the sequence of transitions 

degree 1 (monotonic)~degree I (nonmono- 
tonic)--,degree 0. 

We have previously considered the case of a model 
oscillator in which, as the stimulus strength is 
increased, the PTC undergoes a direct transition 
from degree 1 (monotonic) to degree 0 [19]. In 
section 4 we consider the properties of a simple 
model of phase locking in which the PTC under- 
goes a transition from degree 1 (monotonic) to 
degree 1 (non-monotonic). 

3. Pulsatile stimulation of a cardiac oscillator: 
experiment [37] 

As an application of the theory presented in 
section 2, we consider the effects of single and 
periodic stimulation of spontaneously beating ag- 
gregates of cells taken from the ventricles of 
7-day-old embryonic chick heart. Spheroidal ag- 
gregates (100-200 #m in diameter) of electrically 
coupled cells were maintained in tissue culture [44, 
45]. Each aggregate beats spontaneously with a 
period between 0.4 and 1.3 sec. Cells within a single 
aggregate are very nearly isopotential [46]. The 
voltage difference across the cell membrane is 
measured using a glass microelectrode filled with 
KCI, inserted into one cell of a beating aggregate. 
Current pulses are delivered through the same 
microelectrode. 

In Fig. 4 are shown the effects of brief injection 
of current at different phases (q~ = 6/To) of the 
cardiac cycle (for two different current strengths). 
Note that at the higher current strength there is a 
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Fig. 4. Transmembrane voltage recorded from an aggregate. 
The uppermost tracings each show one cycle of spontaneous 
activity. The left and fight panels show the effects of  delivering 
5 nA and 8 nA constant current pulses (20 msec duration) at 
different coupling intervals. The coupling interval 6 is the time 
to the beginning of the stimulus from the upstroke of the 
immediately preceding action potential. The perturbed inter- 
beat interval is denoted by T. Note that as the stimulus intensity 
is increased from 5nA to 8hA,  the transition from pro- 
longation to shortening of the perturbed cycle becomes more 
abrupt and occurs at a shorter coupling interval. The interbeat 
interval of the cycle following the perturbed cycle is almost 
equal to the control interbeat interval in the three traces of the 
right-hand panel that show such cycles. 

very rapid change in the perturbed interbeat inter- 
val T for stimuli delivered at times from 150 ms to 
170ms into the cycle. One expects, based on 
theoretical considerations that the plot of T versus 
q~ can be discontinuous for sufficiently high current 
strengths [42]. From experiments, it is difficult (and 
perhaps impossible) to establish whether such 
curves are indeed discontinuous. 

Using the T/To data obtained from the single 
pulse perturbation experiments (fig. 5C) and eq. 
(2), it is possible to construct the return map given 
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Fig. 5. (A) Transmembrane potential from an aggregate as a 
function of time, showing spontaneous electrical activity and 
the effect of a 20 msec, 9 nA depolarizing pulse delivered at an 
interval of 160 msec following the action potential upstroke. In 
(B to D), parts (ii) show results from this aggregate (aggregate 
2), while parts (i) are from aggregate 1, taken from a different 
culture. (B) Membrane voltage as a function of phase 46, 
0 ~< 4' < 1. (C) Phase-resetting data, showing the normalized 
length TIT o of the perturbed cycle as a function of q$. (i) Pulse 
duration 40msec, pulse amplitude 5 nA; (ii) pulse duration 
20 msec, pulse amplitude 9 nA. For approximately 
0.4 < 4' < 1.0 the action potential upstroke occurs during the 
stimulus artifact and hence the perturbed cycle length cannot be 
exactly determined. The dashed line represents a linear inter- 
polation that approximates the data. During collection of these 
data, the average control interbeat intervals (_+1 standard 
deviation) were (i) F 0 = 515 +_ 5.7 msec and (ii) 
F 0 = 434 _+ 5.5 msec. (D) Poincar~ maps computed from eq. (3) 
and the data in fig. 5C; (i) r = 250 msec, (ii) ~ = 480 msec. The 
dashed line represents a linear interpolation used in iterating the 
Poincarb map; the solid line through the data points is a quartic 
fit for 0.22 < 4', < 0.37. Reprinted from [37] with permission. 

by eq. (3). Examples  o f  re turn  maps  f rom two 

different aggregates  are shown in fig. 5D. Using  

eqs. (3~F(5), the exper imenta l ly  der ived re turn  

maps  can be i tera ted to compu te  the response to 

per iodic  s t imulat ion.  The numerica l ly  predic ted  

phase locking regions (fig. 6B) are c o m p a r e d  with 

exper imenta l  obse rva t ions  (fig. 6A). In fig. 6C are 

shown the stable phases  in the pe r iod -doub l ing  

zone. 

Representa t ive  traces o f  microe lec t rode  record-  

ings at different s t imula t ion  frequencies are shown 

in fig. 7. Regula r  and i r regular  dynamics  the- 

oret ical ly predic ted  in fig. 6 were observed.  Not ice  

that  in fig. 7C(i) (aggregate  1) there is a spontane-  

ous change  f rom 1:1 to 2 :2  phase locking at a 

s t imula t ion  per iod  o f  550 ms. S t imula t ion  o f  the 

second aggregate  at  a per iod  of  490 ms p roduced  

both  4 :4  and i r regular  pa t te rns  (fig. 7C(ii) and  

fig. 7C(iii) respectively).  C o m p u t a t i o n s  show that  

2 :2  and 4 :4  phase- lock ing  as well as chaot ic  

dynamics  are predic ted  in the range 460-490 ms for 

this aggregate  (fig. 6C). 

There  are several reasons  to expect  discrepancies  

between the theoret ica l ly  predic ted  and experi-  

menta l ly  observed dynamics .  Firs t ,  a s sumpt ion  (ii) 

in section 2 is not  strictly satisfied since there can 

be slight changes in the rate  o f  the p r epa ra t i on  for 

several beats  fol lowing the inject ion o f  a single 

stimulus.  The fol lowing two addi t iona l  phys-  

iological  cons idera t ions  are also impor tan t :  

i) There is biological "'noise" intrinsic to the experi -  

menta l  preparat ion as well  as environmental  "no i se"  

which is not  accounted  f o r  in the theory. Al though  

the f luctuat ions in in terbeat  interval  in the absence 

o f  s t imula t ion  are compara t ive ly  small ,  some o f  the 

exper imenta l ly  observed i r regular  pa t te rns  may  

not  be due to intr insic aper iodic i ty  in the dynam-  

ical system itself, but  ra ther  to the effects o f  

biological  "no i se"  genera ted  within the p repara -  

t ion or  env i ronmenta l  "no i se"  ar is ing from 

fluctuat ing ambien t  condi t ions .  In addi t ion ,  some 

o f  the i r regular i ty  in de terminis t ica l ly  aper iodic  

pa t te rns  (such as that  shown in fig. 7C (iii) which 

is ascr ibed to " chao t i c "  dynamics  arising out  o f  a 

cascade o f  pe r iod -doub l ing  bifurcat ions)  m a y  well 

be accounted  for by "no ise" .  Add i t i ona l  analysis  is 

needed to de termine  the effect o f  "no i se"  on 
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Fig. 6. Experimentally determined and theoretically computed responses to periodic stimulation of period z with the same pulse 
durations and amplitudes as in fig. 5C. Parts (i) refer to aggregate 1, parts (ii) to aggregate 2. (A) Experimentally determined dynamics: 
there are three major phase-locking regions (2: 1, 1:1, 2:3) and three zones of complicated dynamics labelled :q /~ and 7. (B) 
Theoretically predicted dynamics; note agreement with (A). (C) Theoretically predicted dynamics in zone/3: curves give phase or phases 
in the cycle at which the stimuli fall during 1:1, 2:2 and 4:4 locking; stippled regions show the range of phases in which the stimulus 
falls during irregular dynamics. Reprinted from [37] with permission. 

"chaos" and thus to determine the extent to which 
"noise" is implicated in generating the irregular 
dynamics experimentally observed. 

ii) Prolonged periodic stimulation of the aggregate 
changes the properties of the aggregate. Following 
a long period of periodic stimulation with 1:1 
synchronization at frequencies higher than the 
intrinsic aggregate beating frequency, the cessation 
of stimulation leads to a transient slowing of the 
beat rate below the control value ("overdrive sup- 
pression"). Conversely, after a period of "under- 
drive", "underdrive acceleration" occurs during 
the post stimulation recovery period [47]. The 
spontaneous transition from 1:1 to 2:2 phase 
locking observed in fig. 7C(i) during stimulation at 
a fixed frequency could arise from an increase in 

the intrinsic frequency of the aggregate secondary 
to underdrive. 

Despite these considerations, there is good 
agreement between theory and experiment. How- 
ever, probably as a consequence of "noise", we 
have not been able to observe phase locking pat- 
terns which are theoretically computed to extend 
over small regions of parameter space [48-50]. 
Consequently, experimental observation of the 
Feigenbaum constant, such as has been performed 
in periodically forced electronic oscillators [30, 31] 
and in experiments on turbulence [25] will be 
exceedingly difficult in this and other biological 
preparations. On the other hand, biological prepa- 
rations may be ideal systems to analyze the effects 
of "noise" in systems which would be predicted to 
be deterministically "chaotic" in the absence of 
noise [51]. 
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Fig. 7. Representive transmembrane recordings from both 
aggregates showing the effects of  periodic stimulation with the 
same pulse durations and amplitudes as in fig. 5C. (A) Stable 
phase-locked patterns: (i) 2:1 (aggregate 1, r = 210 ms); (ii) 1 : 1 
(aggregate 2, ~ = 240 ms); (iii) 2:3 (aggregate 2, r = 600 ms). 
(B) Dynamics in zone ct: irregular dynamics displaying the 
Wenckebach phenomenon (aggregate 1, z = 280 ms). (C) Dy- 
namics in zone r :  (i) 1 : 1 phase locking spontaneously changing 
to 2:2 phase locking (aggregate 1, r = 550ms). During 2:2 
phase locking there are two distinct phases of  the cycle at which 
the stimuli fall. (ii) 4"4 phase locking (aggregate, 2, 
T = 490 ms). There are four distinct phases of  the cycle at which 
the stimuli fall. (iii) Irregular dynamics with one action poten- 
tial in each stimulus cycle (aggregate 2, z = 490 ms). There is a 
narrow range of  phases in which the stimuli fall. (D) Dynamics 
in zone 7 : irregular dynamics displaying escape or interpolated 
beats (aggregate 2, z = 560ms). Reprinted from [37] with 
permission. 

4. A model map [22, 23] 

Numerical computation of phase locking using 
the experimentally determined Poincar6 map has 

shown complex bifurcations. In this section we 
discuss the possibility that a large topological class 
of maps might display the same bifurcation struc- 
ture as the experimentally determined maps. Such 
behavior may be anticipated since the bifurcations 
for the one parameter map of the interval into itself 
with a single maximum are largely independent of 
the functional form of the map [32, 33]. 

Consider the map given in eq. (3) where g(4~) is 
a continuous function defined on the real line and 
deg[g(~b) (mod 1)] = 1. Assume there is a single 
maximum a t  (])max and a single minimum at ~b~, in 
the interval [0, 1] (fig. 5D(i)). Let ~b~ = H~(r) where 
the H~(z) are functions found by iterating eq. (3) 
from ~b 0 = ~bma x. For j an integer, g(x +j)  = 
g(x) +j, and 

Hu(j) - HN(] -- l) = N. (8) 

There will be a superstable cycle for each value of 
for which 4)0 (mod I ) =  Hu(r) (rood 1). Since 

Hu(z) (mod 1) equals any fixed value between 0 and 1 
at least N times as r varies f romj  - 1 to j, there will 
be a minimum of N superstable cycles associated 
with N different rotation numbers occurring at N 
distinct values of z. The iterates of the minimum 
also give rise to superstable cycles. Consequently, 
there will be at least two values of z at which there 
exist superstable cycles for each rational rotation 
number [22]. This fixed point theorem does not 
depend on the functional form of g. 

The l-dimensional, two parameter map 

~b,+ l =f(~b~) = ~b~ + b sin 2rcq)~ + z, (9) 

where b is a real number has recently been dis- 
cussed by several workers as a model for period- 
ically forced nonlinear oscillators [22, 23, 35, 36, 
40]. For b < 1/21t, f(q$i) is a monotonic function 
and it is known from early studies that the rotation 
number is a monotonic function of ~ and that only 
periodic and quasiperiodic dynamics exist [52]. In 
addition, recent studies have described the applica- 
tion of renormalization methods to analyze the 
dynamics for 0 < b ~< l/2rc [35, 36]. We primarily 
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consider the dynamics for b > 1/2= [20--23]. In this 
region f(qS;) is not monotonic. 

For eq. (9) it is straightforward to show that 
there exists a stable fixed point of  period 1 at 

IO 

~b* = ~  sin I (10) os 

(corresponding to 1:1 phase locking) for 

(1 __ .C)2 < b2 < (1 .t.)2 q_ 7~ 2. (ll) 

The stable period 1 orbit appears via a tangent 
bifurcation (~f/Ogp)~, = 1 at b = 1 - r and loses its 
stability via a period-doubling bifurcation 
(?f/8(o)~, = - 1 at b = [(1 - z) 2 + x 211"2. In addi- 

tion, for z = 1 it is easy to compute that there is a 
further bifurcation to two stable period 2 orbits 
with rotation number 1 (2:2 phase locking) at 
b = 0.5 and a bifurcation to two stable period 4 
orbits (4:4 phase locking) at b = (0.25 + 1/27t2) ~/2. 
For r = 1.5 there is a period-doubling bifurcation 
from a period 2 cycle (2:3 phase locking) to a 
period 4 cycle (4:6 phase locking) at b = rt ~2 ~,'2. 

Further results on the boundaries of  the phase 
locking zones were obtained by numerical analysis. 
The Poincar6 map in eq. (9) was numerically 
iterated from different 4~0 at many points in the 
(b, z) parameter space. The results are shown in fig. 
8. For many regions in the parameter  space there 
is bistability in that one of two stable cycles is 
asymptotically reached depending on the initial 
condition q~0. In addition, evidence for chaotic 
dynamics (a positive Lyapunov number) was 
found [23]. 

The I: 1 phase locking region arises by a tangent 
bifurcation along one boundary and is lost via a 
period doubling bifurcation along the other 
boundary. Consequently, since the slope of the 
period 1 cycle is a continuous function of b and ~, 
there must be a locus of  points with period 1 along 
which the slope is equal to zero. Along the locus, 
the maximum (or minimum) of the Poincar6 map 
will be on the cycle and the cycle is called a 
superstable cycle. This will occur for 

o 
i o  15 2 0  

T 

Fig. 8. Locally stable phase locking regions for eq. (9). The line 
at b = 1/2x separates the regions in which eq. (9) is a monotonic 
function on the unit circle (b < 1/2x) and a nonmonotonic 
function (b > l/2x). The widths of some of the phase locking 
zones (e.g. 3:4, 2:3) become so narrow as b increases that the 
boundaries have been collapsed into a single line in the drafting 
of the figure. In the non-labelled regions are phase-locked, 
quasiperiodic and chaotic dynamics. Slightly modified from [23] 
with permission. 

(! - -  Z) 2 q- 1/4/l: 2 = /92 ,  (12) 

where for ~ < i the points defined by eq. (12) are 
derived from the maximum and for z > 1  the 
points defined by eq. (12) are derived from the 
minimum. 

The loci of the superstable cycles are called the 
skeleton [22]. In fig. 9 are shown the boundaries of 
the N : M  phase locking zones (1 ~<N ~< 5) for 
0 < b  < 1/27t and the associated skeleton for 
b > 1/2m Fig. l0 shows the skeleton derived from 
the maximum ~b ..... for N ~< 3. 

A branch of the skeleton extending downwards 
to b = 1/2It is called a primary branch, and all 
other branches are called secondary. (This termi- 
nology is due to S. Shenker who has independently 
observed the following properties). Since no two 
branches of  the skeleton derived from the max- 
imum can intersect, and the skeleton of the 1:1 
phase locking asymptotically approaches the line 
b = 1 - r the slope of all branches of the skeleton 
derived from the maximum must be asymptotically 
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Fig. 9. The N : M  phase locking regions for 1 ~< N ~< 5 for 
b < 1/2zt and the associated superstable cycles for b > l/2rt for 
eq. (9). From [22] with permission. 

equal to - 1  for sufficiently large values of b. 
Further, all primary branches derived from the 
maximum must maintain the ordering given by 
monotonically increasing rotation numbers for 
fixed b as ~ increases (fig. 10). Finally, in fig. 11, we 
show the skeleton of  the phase locking zones up to 
period 4 with p = 1. Limited numerical analysis 
indicates a topologically equivalent skeleton ap- 
pears in other V-shaped regions formed by the 
primary branches of the skeleton for each rational 
rotation number. 

On the basis of these numerical and analytical 
results we have proposed the following structure 
for the skeleton and phase locking zones of  eq. (9) 
[22]. Each zone of stable phase locking for 
b < 1/2zt extends through b = 1/2zt and then splits 
into two branches (figs. 8 and 9). In the V-shaped 
region of the extensions of each "Arnold tongue" 

,o  

o 
IO 

25 
, \  '\ \ , \  \ \  37 

~ 36 
~ ~ j  24 

[.5 20 

Fig. 10. The period N superstable cycles for 1 ~< N ~< 3 derived 
from q~ma~ for eq. (9). There is a symmetrically located set of  
superstable cycles found from iteration of (~min" 

0.6 . 4;44 4:4 

33 313 
b ~ 4~4 ~414 

II 

o 
0.7 1.0 1.3 

7- 

Fig. 11. Superstable cycles associated with N : N phase locking 
patterns, 1 ~< N ~ 4 (rotation number p = 1). From [22] with 
permission. 

are period-doubling bifurcations. The skeleton of 
the phase locking zones in each one of  these 
V-shaped regions is topologically equivalent to the 
skeleton for p = 1 (fig. 11), but with a different 
rotation number. 

There is considerable interest in the transition 
from quasiperiodic to chaotic dynamics in physical 
systems and mathematical models [35, 36, 53]. In 
the current context one question is, "What hap- 
pens to the quasiperiodic orbits (i.e. those with 
irrational rotation number) known to exist when 
b < 1/2~ as b passes through the value b = 1/2zt?" 
For a map of  the circle into itself, for a set of 
parameters for which there is bistability with two 
different rotation numbers, there will be initial 
conditions which give all intermediate rotation 
numbers [17]. A consequence of  the bistability of 
the sine map for b > l / 2 n  is that for b > l / 2 n  
orbits with a given irrational rotation number will 
be present in a wedge shaped region whose tip is 
on the line b = 1/2zt. It should be possible to 
describe the aperiodic orbits associated with an 
irrational rotation number using techniques devel- 
oped in symbolic dynamics and kneading theory 
[16, 17]. However, if there is bistability it is still not 
known if almost all points will attract to one of the 
two stable periodic orbits. Finally, this discussion 
has been concerned with analysis of l-dimensional 
maps. A careful analysis of the breakdown of 
quasiperiodic dynamics in 2-dimensional maps has 
shown an overlapping of Arnold tongues similar to 
that shown in figs. 8 and 9 [53]. 
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5. Conclusions 

We have shown that the effects of periodic 
pulsatile stimulation of a cardiac oscillator can be 
analyzed by consideration of a 1-dimensional map 
which is obtained from experimental meas- 
urements. The dynamics in response to periodic 
stimulation are predicted by iterating this experi- 
mentally derived map and bear a close correspon- 
dence to the experimentally observed dynamics. In 
particular, stable phase locking, period-doubling 
bifurcations and aperiodic dynamics are all the- 
oretically computed and experimentally observed. 
The experimentally observed dynamics show pat- 
terns similar to many commonly observed cardiac 
dysrhythmias. Furthermore, this work gives a 
novel perspective to some of the aperiodic cardiac 
dynamics clinically observed as well as uncommon 
phase locked rhythms such as 2:2 and 4:2 AV 
block. We have also analyzed the dynamics for a 
simple Poincar6 map (the sine map in eq. (9)) and 
discussed period-doubling bifurcations, bistability 
and chaos in this model system. 

Experimentally observed transitions from peri- 
odic to chaotic dynamics in physical systems can 
often be accounted for, at least qualitatively, by the 
bifurcations in simple 1- and 2-dimensional maps 
under parametric changes [26-29]. Unfortunately, 
in this work, it is not yet possible to compute from 
first principles the underlying maps which give a 
phenomenological correspondence with theory. 
Consequently, the study of periodic forcing of 
oscillations by short pulsatile inputs has advan- 
tages over other experimental techniques and may 
be useful in other physical systems. There are many 
similarities between the experimentally measured 
1-dimensional map for the cardiac oscillator and 
the maps derived from other experimental systems 
[26-29]. Clearly, further work is needed to carefully 
probe experimentally observed dynamics in phys- 
ical and biological systems and to clarify the 
bifurcation structure of maps which display quasi- 
periodic, periodic and aperiodic dynamics. 

Analysis of the mathematics describing cardiac 
dysrhythmias has potentially rich rewards in the 

diagnosis and treatment of heart disease. We hope 
that our work will help stimulate interest in these 
problems by mathematicians and physicists. 
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