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Dynamics of Excitable Cells

Michael R. Guevara

4.1 Introduction

In this chapter, we describe a preparation – the giant axon of the squid
– that was instrumental in allowing the ionic basis of the action potential
to be elucidated. We also provide an introduction to the voltage-clamp
technique, the application of which to the squid axon culminated in the
Hodgkin–Huxley equations, which we introduce. Hodgkin and Huxley were
awarded the Nobel Prize in Physiology or Medicine in 1963 for this work.
We also provide a brief introduction to the FitzHugh–Nagumo equations,
a reduced form of the Hodgkin–Huxley equations.

4.2 The Giant Axon of the Squid

4.2.1 Anatomy of the Giant Axon of the Squid

The giant axon of the squid is one of a pair of axons that runs down
the length of the mantle of the squid in the stellate nerve (Figure 4.1).
When the squid wishes to move quickly (e.g., to avoid a predator), it sends
between one and eight action potentials down each of these axons to initiate
contraction of the muscles in its mantle. This causes a jet of water to be
squirted out, and the animal is suddenly propelled in the opposite direction.
The conduction velocity of the action potentials in this axon is very high
(on the order of 20 m/s), which is what one might expect for an escape
mechanism. This high conduction velocity is largely due to the fact that
the axon has a large diameter, a large cross-sectional area, and thus a
low resistance to the longitudinal flow of current in its cytoplasm. The
description of this large axon by Young in 1936 is the anatomical discovery
that permitted the use of this axon in the pioneering electrophysiological
work of Cole, Curtis, Marmont, Hodgkin, and Huxley in the 1940s and
1950s (see references in Cole 1968; Hodgkin 1964). The common North
Atlantic squid (Loligo pealei) is used in North America.
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Stellate nerve with giant axon

Stellate ganglion

Figure 4.1. Anatomical location of the giant axon of the squid. Drawing by Tom
Inoué.

4.2.2 Measurement of the Transmembrane Potential

The large diameter of the axon (as large as 1000 µm) makes it possible to
insert an axial electrode directly into the axon (Figure 4.2A). By placing
another electrode in the fluid in the bath outside of the axon (Figure 4.2B),
the voltage difference across the axonal membrane (the transmembrane
potential or transmembrane voltage) can be measured. One can also
stimulate the axon to fire by injecting a current pulse with another set of
extracellular electrodes (Figure 4.2B), producing an action potential that
will propagate down the axon. This action potential can then be recorded
with the intracellular electrode (Figure 4.2C). Note the afterhyperpolar-
ization following the action potential. One can even roll the cytoplasm out
of the axon, cannulate the axon, and replace the cytoplasm with fluid of
a known composition (Figure 4.3). When the fluid has an ionic composi-
tion close enough to that of the cytoplasm, the action potential resembles
that recorded in the intact axon (Figure 4.2D). The cannulated, internally
perfused axon is the basic preparation that allowed electrophysiologists to
sort out the ionic basis of the action potential fifty years ago.

The advantage of the large size of the invertebrate axon is appreciated
when one contrasts it with a mammalian neuron from the central nervous
system (Figure 4.4). These neurons have axons that are very small; indeed,
the soma of the neuron in Figure 4.4, which is much larger than the axon,
is only on the order of 10 µm in diameter.

4.3 Basic Electrophysiology

4.3.1 Ionic Basis of the Action Potential

Figure 4.5 shows an action potential in the Hodgkin–Huxley model of the
squid axon. This is a four-dimensional system of ordinary differential equa-
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Figure 4.2. (A) Giant axon of the squid with internal electrode. Panel A from
Hodgkin and Keynes (1956). (B) Axon with intracellularly placed electrode,
ground electrode, and pair of stimulus electrodes. Panel B from Hille (2001).
(C) Action potential recorded from intact axon. Panel C from Baker, Hodgkin,
and Shaw (1961). (D) Action potential recorded from perfused axon. Panel D
from Baker, Hodgkin, and Shaw (1961).
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Figure 4.3. Cannulated, perfused giant axon of the squid. From Nicholls, Martin,
Wallace, and Fuchs (2001).

tions that describes the three main currents underlying the action potential
in the squid axon. Figure 4.5 also shows the time course of the conductance
of the two major currents during the action potential. The fast inward
sodium current (INa) is the current responsible for generating the upstroke
of the action potential, while the potassium current (IK) repolarizes the
membrane. The leakage current (IL), which is not shown in Figure 4.5, is
much smaller than the two other currents. One should be aware that other
neurons can have many more currents than the three used in the classic
Hodgkin–Huxley description.

4.3.2 Single-Channel Recording

The two major currents mentioned above (INa and IK) are currents that
pass across the cellular membrane through two different types of channels
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Figure 4.4. Stellate cell from rat thalamus. From Alonso and Klink (1993).
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Figure 4.5. Action potential from Hodgkin–Huxley model and the conductances
of the two major currents underlying the action potential in the model. Adapted
from Hodgkin (1958).

lying in the membrane. The sodium channel is highly selective for sodium,
while the potassium channel is highly selective for potassium. In addition,
the manner in which these channels are controlled by the transmembrane
potential is very different, as we shall see later. Perhaps the most direct
evidence for the existence of single channels in the membranes of cells comes
from the patch-clamp technique (for which the Nobel prize in Physiology or
Medicine was awarded to Neher and Sakmann in 1991). In this technique,
a glass microelectrode with tip diameter on the order of 1 µm is brought
up against the membrane of a cell. If one is lucky, there will be only one
channel in the patch of membrane subtended by the rim of the electrode,
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Figure 4.6. A single-channel recording using the patch-clamp technique. From
Sánchez, Dani, Siemen, and Hille (1986).

and one will pick up a signal similar to that shown in Figure 4.6. The
channel opens and closes in an apparently random fashion, allowing a fixed
amount of current (on the order of picoamperes) to flow through it when
it is in the open state.

4.3.3 The Nernst Potential

The concentrations of the major ions inside and outside the cell are very
different. For example, the concentration of K+ is much higher inside the
squid axon than outside of it (400 mM versus 20 mM), while the reverse
is true of Na+ (50 mM versus 440 mM). These concentration gradients are
set up by the sodium–potassium pump, which works tirelessly to pump
sodium out of the cell and potassium into it.

A major consequence of the existence of the K+ gradient is that the
resting potential of the cell is negative. To understand this, one needs to
know that the cell membrane is very permeable to K+ at rest, and relatively
impermeable to Na+. Consider the thought experiment in Figure 4.7. One
has a bath that is divided into two chambers by a semipermeable membrane
that is very permeable to the cation K+ but impermeable to the anion A−.
One then adds a high concentration of the salt KA into the water in the left-
hand chamber, and a much lower concentration to the right-hand chamber
(Figure 4.7A). There will immediately be a diffusion of K+ ions through
the membrane from left to right, driven by the concentration gradient.
However, these ions will build up on the right, tending to electrically repel
other K+ ions wanting to diffuse from the left. Eventually, one will end up
in electrochemical equilibrium (Figure 4.7B), with the voltage across the
membrane in the steady state being given by the Nernst or equilibrium
potential EK,

EK =
RT

zF
ln

(

[K+]o
[K+]i

)

, (4.1)

where [K+]o and [K+]i are the external and internal concentrations of K+

respectively, R is the Rydberg gas constant, T is the temperature in degrees
Kelvin, z is the charge on the ion (+1 for K+), and F is Faraday’s constant.



92 Guevara

- +
E = EKE = 0

- +

K
+

K
+

A
-

A
-

K
+

K
+

A
-

A
-

- +
+-

-
-

-
-
-

+
+

+
+
+

Figure 4.7. Origin of the Nernst potential.

4.3.4 A Linear Membrane

Figure 4.8A shows a membrane with potassium channels inserted into it.
The membrane is a lipid bilayer with a very high resistance. Let us assume
that the density of the channels in the membrane, their single-channel con-
ductance, and their mean open time are such that they have a conductance
of gK millisiemens per square centimeter (mS cm−2). The current through
these channels will then be given by

IK = gK(V −EK). (4.2)

There will thus be zero current flow when the transmembrane potential is
at the Nernst potential, an inward flow of current when the transmembrane
potential is negative with respect to the Nernst potential, and an outward
flow of current when the transmembrane potential is positive with respect
to the Nernst potential (consider Figure 4.7B to try to understand why this
should be so). (An inward current occurs when there is a flow of positive
ions into the cell or a flow of negative ions out of the cell.) The electrical
equivalent circuit for equation (4.2) is given by the right-hand branch of
the circuit in Figure 4.8B.

Now consider the dynamics of the membrane potential when it is not at
its equilibrium value. When the voltage is changing, there will be a flow of
current through the capacitative branch of the circuit of Figure 4.8B. The
capacitance is due to the fact that the membrane is an insulator (since it is
largely made up of lipids), and is surrounded on both sides by conducting
fluid (the cytoplasm and the interstitial fluid). The equation of state of a
capacitor is

Q = −CV, (4.3)

where Q is the charge on the capacitance, C is the capacitance, and V is the
voltage across the capacitance. Differentiating both sides of this expression
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Figure 4.8. (A) Schematic view of potassium channels inserted into lipid bilayer.
Panel A from Hille (2001). (B) Electrical equivalent circuit of membrane and
channels.

with respect to time t, one obtains

dV

dt
= −IK

C
= −gK

C
(V −EK) = −V −EK

τ
, (4.4)

where τ = C/gK = RKC is the time constant of the membrane. Here,
we have also used the definition of current I = dQ/dt. The solution of this
one-dimensional linear ordinary differential equation is

V (t) = EK − (EK − V (0))e−t/τ . (4.5)

Unfortunately, the potassium current IK is not as simple as that postulated
in equation (4.2). This is because we have assumed that the probability
of the channel being open is a constant that is independent of time and
voltage, and thus gK is not a function of voltage and time. This is not the
case, as we shall see next.

4.4 Voltage-Clamping

4.4.1 The Voltage-Clamp Technique

While the large size of the squid axon was invaluable in allowing the
transmembrane potential to be easily measured, it was really the use of
this preparation in conjunction with the invention of the voltage-clamp
technique that revolutionized the field. The voltage-clamp technique was
pioneered by Cole, Curtis, Hodgkin, Huxley, Katz, and Marmont following
the hiatus provided by the Second World War (see references in Cole 1968;
Hodgkin 1964). Voltage-clamping involves placing two internal electrodes:
one to measure the transmembrane potential as before, and the other to
inject current (Figure 4.9). Using electronic feedback circuitry, one then
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Figure 4.9. Schematic diagram illustrating voltage-clamp technique.

injects current so that a predetermined fixed voltage is maintained across
the membrane. The current injected by the circuitry is then the mirror
image of the current generated by the cell membrane at that potential. In
addition, the effective length of the preparation is kept sufficiently short so
that effects due to intracellular spread of current are mitigated: One thus
transforms a problem inherently described by a partial differential equation
into one reasonably well described by an ordinary differential equation.

4.4.2 A Voltage-Clamp Experiment

Figure 4.10B shows the clamp current during a voltage-clamp step from
−65 mV to −9 mV (Figure 4.10A). This current can be broken down into
the sum of four different currents: a capacitative current (Figure 4.10C),
a leakage current (Figure 4.10C), a sodium current (Figure 4.10D), and
a potassium current (Figure 4.10E). The potassium current turns on (ac-
tivates) relatively slowly. In contrast, the sodium current activates very
quickly. In addition, unlike the potassium current, the sodium current then
turns off (inactivates), despite the fact that the voltage or transmembrane
potential, V , is held constant.

4.4.3 Separation of the Various Ionic Currents

How do we know that the trace of Figure 4.10B is actually composed of
the individual currents shown in the traces below it? This conclusion is
based largely on three different classes of experiments involving ion substi-
tution, specific blockers, and specific clamp protocols. Figure 4.11B shows
the clamp current in response to a step from −65 mV to −9 mV (Fig-
ure 4.11A). Also shown is the current when all but 10% of external Na+

is replaced with an impermeant ion. The difference current (Figure 4.11C)
is thus essentially the sodium current. Following addition of tetrodotoxin,
a specific blocker of the sodium current, only the outward IK component
remains, while following addition of tetraethylammonium, which blocks
potassium channels, only the inward INa component remains.
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Figure 4.10. Voltage-clamp experiment on squid axon. From Nicholls, Martin,
Wallace, and Fuchs (2001).

4.5 The Hodgkin–Huxley Formalism

4.5.1 Single-Channel Recording of the Potassium Current

Figure 4.12A shows a collection of repeated trials in which the voltage
is clamped from −100 mV to +50 mV. The potassium channel in the
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Figure 4.11. Effect of removal of extracellular sodium on voltage-clamp record.
Adapted from Hodgkin (1958).

patch opens after a variable delay and then tends to stay open. Thus, the
ensemble-averaged trace (Figure 4.12B) has a sigmoidal time course similar
to the macroscopic current recorded in the axon (e.g., Figure 4.10E). It is
thus clear that the macroscopic concept of the time course of activation is
connected with the microscopic concept of the latency to first opening of a
channel.

4.5.2 Kinetics of the Potassium Current IK

The equation developed by Hodgkin and Huxley to describe the potassium
current, IK, is

IK(V, t) = gK(V −EK) = ḡK[n(V, t)]4(V −EK), (4.6)

where ḡK is the maximal conductance, and where n is a “gating” variable
satisfying

dn

dt
= αn(1− n)− βnn.

Let us try to understand where this equation comes from.
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Figure 4.12. (A) Repeated voltage-clamp trials in single-channel recording mode
for IK. (B) Ensemble average of above recordings. Figure from F. Bezanilla.

Assume that there is one gate (the “n-gate”) controlling the opening and
closing of the potassium channel. Also assume that it follows a first-order
reaction scheme

C
αn

⇀↽
βn

O, (4.7)

where the rate constants αn and βn, which are functions of voltage (but are
constant at any given voltage), control the transitions between the closed
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(C) and open (O) states of the gate. The variable n can then be interpreted
as the fraction of gates that are open, or, equivalently, as the probability
that a given gate will be open. One then has

dn

dt
= αn(1− n)− βnn =

n∞ − n
τn

, (4.8)

where

n∞ =
αn

αn + βn
,

τn =
1

αn + βn
. (4.9)

The solution of the ordinary differential equation in (4.8), when V is
constant, is

n(t) = n∞ − (n∞ − n(0))e−t/τn . (4.10)

The formula for IK would then be

IK = ḡKn(V −EK), (4.11)

with

dn

dt
=
n∞ − n
τn

, (4.12)

where ḡK is the maximal conductance. However, Figure 4.13A shows that
gK has a waveform that is not simply an exponential rise, being more
sigmoidal in shape. Hodgkin and Huxley thus took n to the fourth power
in equation (4.11), resulting in

IK = ḡKn
4(V −EK) = gK(V −EK). (4.13)

Figure 4.13B shows the n∞ and τn curves, while Figure 4.14 shows the
calculated time courses of n and n4 during a voltage-clamp step.

4.5.3 Single-Channel Recording of the Sodium Current

Figure 4.15A shows individual recordings from repeated clamp steps from
−80 mV to −40 mV in a patch containing more than one sodium channel.
Note that there is a variable latency to the first opening of a channel,
which accounts for the time-dependent activation in the ensemble-averaged
recording (Figure 4.15B). The inactivation seen in the ensemble-averaged
recording is traceable to the fact that channels close, and eventually stay
closed, in the patch-clamp recording.



4. Dynamics of Excitable Cells 99

20

10

0

20

10

0

20

10

0

10

0

10

0

C
on

du
ct

an
ce

 (m
S

/c
m

2 )

2 4 60 8

t (ms)

44 mV

23 mV

-2 mV

-27 mV

-39 mV

K Conductance

-100 -50 0 50

10.0

5.0

0

1.0

0.5

0

Voltage (mV)

n∞
τn

(ms)

n∞

τn

A

B
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values of IK, V , and EK using equation (4.13). The curves are the fit using the
Hodgkin–Huxley formalism. Panel A from Hodgkin (1958). (B) n∞ and τn as
functions of V .

4.5.4 Kinetics of the Sodium Current INa

Again, fitting of the macroscopic currents led Hodgkin and Huxley to the
following equation for the sodium current, INa,

INa = ḡNam
3h(V −ENa) = gNa(V −ENa), (4.14)

where m is the activation variable, and h is the inactivation variable.
This implies that

gNa(V, t) = ḡNa[m(V, t)]3h(V, t) =
INa(V, t)

(V −ENa)
. (4.15)

Figure 4.16A shows that this equation fits the gNa data points very well.
The equations directing the movement of the m-gate are very similar to

those controlling the n-gate. Again, one assumes a kinetic scheme of the
form

C
αm

⇀↽
βm

O, (4.16)
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where the rate constants αm and βm are functions of voltage, but are
constant at any given voltage. Thus m satisfies

dm

dt
= αm(1−m)− βmm =

m∞ −m
τm

, (4.17)

where

m∞ =
αm

αm + βm
,

τm =
1

αm + βm
. (4.18)

The solution of equation (4.17) when V is constant is

m(t) = m∞ − (m∞ −m(0))e−t/τm . (4.19)

Similarly, one has for the h-gate

C
αh

⇀↽
βh

O, (4.20)

where the rate constants αh and βh are functions of voltage, but are
constant at any given voltage. Thus h satisfies

dh

dt
= αh(1− h)− βhh =

h∞ − h
τh

, (4.21)
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where

h∞ =
αh

αh + βh
,

τh =
1

αh + βh
. (4.22)

The solution of equation (4.21) when V is constant is

h(t) = h∞ − (h∞ − h(0))e−t/τh . (4.23)
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The general formula for INa is thus

INa = ḡNam
3h(V −ENa), (4.24)

with m satisfying equation (4.17) and h satisfying equation (4.21). Fig-
ure 4.16B showsm∞, τm, h∞, and τh, while Figure 4.17 shows the evolution
of m, m3, h, and m3h during a voltage-clamp step.

4.5.5 The Hodgkin–Huxley Equations

Putting together all the equations above, one obtains the Hodgkin–Huxley
equations appropriate to the standard squid temperature of 6.3 degrees Cel-
sius (Hodgkin and Huxley 1952). This is a system of four coupled nonlinear
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ordinary differential equations,

dV

dt
= − 1

C
[(ḡNam

3h(V −ENa) + ḡKn
4(V −EK)

+ ḡL(V −EL) + Istim],

dm

dt
= αm(1−m)− βmm, (4.25)

dh

dt
= αh(1− h)− βhh,

dn

dt
= αn(1− n)− βnn,

where

ḡNa = 120 mS cm−2, ḡK = 36 mS cm−2, ḡL = 0.3 mS cm−2,

and

ENa = +55 mV, EK = −72 mV, EL = −49.387 mV, C = 1 µF cm−2.

Here Istim is the total stimulus current, which might be a periodic pulse
train or a constant (“bias”) current. The voltage-dependent rate constants
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are given by

αm = 0.1(V + 35)/(1− exp(−(V + 35)/10)),

βm = 4 exp(−(V + 60)/18),

αh = 0.07 exp(−(V + 60)/20), (4.26)

βh = 1/(exp(−(V + 30)/10) + 1),

αn = 0.01(V + 50)/(1− exp(−(V + 50)/10)),

βn = 0.125 exp(−(V + 60)/80).

Note that these equations are not the same as in the original papers of
Hodgkin and Huxley, since the modern-day convention of the inside of
the membrane being negative to the outside of membrane during rest is
used above, and the voltage is the actual transmembrane potential, not its
deviation from the resting potential.

Figure 4.18 shows m, h, and n during the action potential. It is clear
that INa activates more quickly than IK, which is a consequence of τm
being smaller than τn (see Figures 4.13B and 4.16B).

4.5.6 The FitzHugh–Nagumo Equations

The full Hodgkin–Huxley equations are a four-dimensional system of ordi-
nary differential equations. It is thus difficult to obtain a visual picture of
trajectories in this system. In the 1940s, Bonhoeffer, who had been conduct-
ing experiments on the passivated iron wire analogue of nerve conduction,
realized that one could think of basic electrophysiological properties such
as excitability, refractoriness, accommodation, and automaticity in terms
of a simple two-dimensional system that had a phase portrait very simi-
lar to the van der Pol oscillator (see, e.g., Figures 8 and 9 in Bonhoeffer
1948). Later, FitzHugh wrote down a modified form of the van der Pol
equations to approximate Bonhoeffer’s system, calling these equations the
Bonhoeffer–van der Pol equations (FitzHugh 1961). FitzHugh also realized
that in the Hodgkin–Huxley equations, the variables V and m tracked each
other during an action potential, so that one could be expressed as an al-
gebraic function of the other (this also holds true for h and n). At about
the same time as this work of FitzHugh, Nagumo et al. were working on
electronic analogues of nerve transmission, and came up with essentially
the same equations. These equations thus tend to be currently known as
the FitzHugh–Nagumo equations and are given by

dx

dt
= c

(

x− x3

3
+ y + S(t)

)

,

dy

dt
= − (x− a+ by)

c
, (4.27)

where x is a variable (replacing variables V and m in the Hodgkin–Huxley
system) representing transmembrane potential and excitability, while y is
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Figure 4.18. Time course of m, h, and n in the Hodgkin–Huxley model during an
action potential.

a variable (replacing variables h and n in the Hodgkin–Huxley system)
responsible for refractoriness and accommodation. The function S(t) is
the stimulus, and a, b, and c are parameters. The computer exercises in
Section 4.8 explore the properties of the FitzHugh–Nagumo system in
considerable detail.

4.6 Conclusions

The Hodgkin–Huxley model has been a great success, replicating many of
the basic electrophysiological properties of the squid axon, e.g., excitability,
refractoriness, and conduction speed. However, there are several discrep-
ancies between experiment and model: For example injection of a constant
bias current in the squid axon does not lead to spontaneous firing, as it does
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in the equations. This has led to updated versions of the Hodgkin–Huxley
model being produced to account for these discrepancies (e.g., Clay 1998).

4.7 Computer Exercises: A Numerical Study on
the Hodgkin–Huxley Equations

We will use the Hodgkin–Huxley equations to explore annihilation and
triggering of limit-cycle oscillations, the existence of two resting potentials,
and other phenomena associated with bifurcations of fixed points and limit
cycles (see Chapter 3).

The Hodgkin–Huxley model, given in equation (4.25), consists of a four-
dimensional set of ordinary differential equations, with variables V,m, h, n.
The XPP file hh.ode contains the Hodgkin–Huxley equations.∗ The vari-
able V represents the transmembrane potential, which is generated by the
sodium current (curna in hh.ode), the potassium current (curk), and a
leak current (curleak). The variables m and h, together with V , control
the sodium current. The potassium current is controlled by the variables n
and V . The leak current depends only on V .

Ex. 4.7-1. Annihilation and Triggering in the Hodgkin–Huxley
Equations.
We shall show that one can annihilate bias-current induced firing in
the Hodgkin–Huxley (Hodgkin and Huxley 1952) equations by inject-
ing a single well-timed stimulus pulse (Guttman, Lewis, and Rinzel
1980). Once activity is so abolished, it can be restarted by injecting
a strong enough stimulus pulse.

(a) Nature of the Fixed Point. We first examine the response of
the system to a small perturbation, using direct numerical inte-
gration of the system equations. We will inject a small stimulus
pulse to deflect the state point away from its normal location at
the fixed point. The way in which the trajectory returns to the
fixed point will give us a clue as to the nature of the fixed point
(i.e., node, focus, saddle, etc.). We will then calculate eigenval-
ues of the point to confirm our suspicions.

Start up XPP using the source file hh.ode.

The initial conditions in hh.ode have been chosen to correspond
to the fixed point of the system when no stimulation is applied.
This can be verified by integrating the equations numerically

∗See Introduction to XPP in Appendix A.
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(select Initialconds and then Go from the main XPP window).
Note that the transmembrane potential (V ) rests at −60 mV,
which is termed the resting potential.

Let us now investigate the effect of injecting a stimulus pulse.
Click on the Param button at the top of the main XPP window.
In the Parameters window that pops up, the parameters
tstart, duration, and amplitude control the time at which the
current-pulse stimulus is turned on, the duration of the pulse,
and the amplitude of the pulse, respectively (use the ∨, ∨∨, ∧,
and ∧∧ buttons to move up and down in the parameter list).
When the amplitude is positive, this corresponds to a depolar-
izing pulse, i.e., one that tends to make V become more positive.
(Be careful: This convention as to sign of stimulus current is
reversed in some papers!) Conversely, a negative amplitude cor-
responds to a hyperpolarizing pulse.

Change amplitude to 10. Make an integration run by clicking
on Go in this window.

You will see a nice action potential, showing that the stimulus
pulse is suprathreshold.

Decrease amplitude to 5, rerun the integration, and notice the
subthreshold response of the membrane (change the scale on the
y-axis to see better if necessary, using Viewaxes from the main
XPP window). The damped oscillatory response of the membrane
is a clue to the type of fixed point present. Is it a node? a saddle?
a focus? (see Chapter 2).

Compute the eigenvalues of the fixed point by selecting Sing

Pts from the main XPP window, then Go, and clicking on YES

in response to Print eigenvalues? Since the system is four-
dimensional, there are four eigenvalues. In this instance, there
are two real eigenvalues and one complex-conjugate pair. What
is the significance of the fact that all eigenvalues have negative
real part? Does this calculation of the eigenvalues confirm your
guess above as to the nature of the fixed point? Do the nu-
merical values of the eigenvalues (printed in the main window
from which XPP was originally invoked) tell you anything about
the frequency of the damped subthreshold oscillation observed
earlier (see Chapter 2)? Estimate the period of the damped os-
cillation from the eigenvalues.
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Let us now investigate the effect of changing a parameter in the
equations.

Click on curbias in Parameters and change its value to −7.
This change now corresponds to injecting a constant hyperpo-
larizing current of 7 µA/cm2 into the membrane (see Chapter
4).
Run the integration and resize the plot window if necessary us-
ing Viewaxes.
After a short transient at the beginning of the trace, one can
see that the membrane is now resting at a more hyperpolarized
potential than its original resting potential of −60 mV.
How would you describe the change in the qualitative nature
of the subthreshold response to the current pulse delivered at
t = 20 ms?
Use Sing Pts to recalculate the eigenvalues and see how this
supports your answer.

Let us now see the effect of injecting a constant depolarizing
current.

Change curbias to 5, and make an integration run.
The membrane is now, of course, resting, depolarized to its usual
value of −60 mV.
What do you notice about the damped response following the
delivery of the current pulse?
Obtain the eigenvalues of the fixed point.
Try to understand how the change in the numerical values of
the complex pair explains what you have just seen in the voltage
trace.

(b) Single-Pulse Triggering. Now set curbias to 10 and remove
the stimulus pulse by setting amplitude to zero. Carry out an
integration run. You should see a dramatic change in the voltage
waveform. What has happened?

Recall that n is one of the four variables in the Hodgkin–
Huxley equations. Plot out the trajectory in the (V n)-plane:
Click on Viewaxes in the main XPP window and then on 2D; then
enter X-axis:V, Y-axis:n, Xmin:-80, Ymin:0.3, Xmax:40,

Ymax:0.8.
You will see that the limit cycle (or, more correctly, the pro-
jection of it onto the (V n)-plane) is asymptotically approached
by the trajectory. If we had chosen as our initial conditions a
point exactly on the limit cycle, there would have been no such
transient present. You might wish to examine the projection
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of the trajectory onto other two-variable planes or view it in
a three-dimensional plot (using Viewaxes and then 3D, change
the Z-axis variable to h, and enter 0 for Zmin and 1 for Zmax).
Do not be disturbed by the mess that now appears! Click on
Window/Zoom from the main XPP window and then on Fit. A
nice three-dimensional projection of the limit-cycle appears.

Let us check to see whether anything has happened to the fixed
point by our changing curbias to 10. Click on Sing pts, Go,
and then YES.
XPP confirms that a fixed point is still present, and moreover,
that it is still stable.
Therefore, if we carry out a numerical integration run with initial
conditions close enough to this fixed point, the trajectory should
approach it asymptotically in time.
To do this, click on Erase in the main XPP window, enter the
equilibrium values of the variables V,m, h, n as displayed in
the bottom of the Equilibria window into the Initial Data

menu, and carry out an integration run.
You will probably not notice a tiny point of light that has ap-
peared in the 3D plot. To make this more transparent, go back
and plot V vs. t, using Viewaxes and 2D.

Our calculation of the eigenvalues of the fixed point and our
numerical integration runs above show that the fixed point is
stable at a depolarizing bias current of 10 µA/cm2. However,
remember that our use of the word stable really means locally
stable; i.e., initial conditions in a sufficiently small neighborhood
around the fixed point will approach it. In fact, our simulations
already indicate that this point cannot be globally stable, since
there are initial conditions that lead to a limit cycle. One can
show this by injecting a current pulse.

Change amplitude from zero to 10, and run a simulation. The
result is the startup of spontaneous activity when the stimulus
pulse is injected at t = 20 ms (“single-pulse triggering”).
Contrast with the earlier situation with no bias current injected.

(c) Annihilation. The converse of single-pulse triggering is an-
nihilation. Starting on the limit cycle, it should be possible
to terminate spontaneous activity by injecting a stimulus that
would put the state point into the basin of attraction of the
fixed point. However, one must choose a correct combination of
stimulus “strength” (i.e., amplitude and duration) and timing.
Search for and find a correct combination (Figure 3.20 will give
you a hint as to what combination to use).
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(d) Supercritical Hopf Bifurcation. We have seen that injecting
a depolarizing bias current of 10 µA/cm2 allows annihilation
and single-pulse triggering to be seen.

Let us see what happens as this current is increased.
Put amplitude to zero and make repeated simulation runs,
changing curbias in steps of 20 starting at 20 and going up
to 200 µA/cm2.
What happens to the spontaneous activity? Is there a bifurca-
tion involved?

Pick one value of bias current in the range just investigated
where there is no spontaneous activity.
Find the fixed point and determine its stability using Sing pts.
Will it be possible to trigger into existence spontaneous activity
at this particular value of bias current?
Conduct a simulation (i.e., a numerical integration run) to back
up your conclusion.

(e) Auto at Last! It is clear from the numerical work thus far that
there appears to be no limit-cycle oscillation present for bias
current sufficiently small or sufficiently large, but that there is a
stable limit cycle present over some intermediate range of bias
current (our simulations so far would suggest somewhere be-
tween 10 and 160 µA/cm2). It would be very tedious to probe
this range finely by carrying out integration runs at many val-
ues of the parameter curbias, and in addition injecting pulses
of various amplitudes and polarities in an attempt to trigger or
annihilate activity. The thing to do here is to run Auto, man!

Open Auto by selecting File and then Auto from the main XPP

window. This opens the main Auto window (It’s Auto man!).
Select the Parameter option in this window and replace the de-
fault choice of Par1 (blockna) by curbias. In the Axes window
in the main Auto menu, select hI-lo, and then, in the resulting
AutoPlot window, change Xmin and Ymin to 0 and −80, respec-
tively, and Xmax and Ymax to 200 and 20, respectively.
These parameters control the length of the x- and y-axes of the
bifurcation diagram, with the former corresponding to the bifur-
cation variable (bias current), and the latter to one of the four
possible bifurcation variables V,m, n, h (we have chosen V ).
Invoke Numerics from the main Auto window, change Par Max

to 200 (this parameter, together with Par Min, which is set to
zero, sets the range of the bifurcation variable (curbias) that
will be investigated).
Also change Nmax, which gives the maximum number of points
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that Auto will compute along one bifurcation branch before stop-
ping, to 500.
Also set NPr to 500 to avoid having a lot of labeled points. Set
Norm Max to 150.
Leave the other parameters unchanged and return to the main
Auto window.
Click on the main XPP window (not the main Auto window),
select ICs to bring up the Initial Data window, and click on
default to restore our original initial conditions (V,m, h, and n
equal to −59.996, 0.052955, 0.59599, and 0.31773, respectively).
Also click on default in the Parameters window. Make an in-
tegration run.

Click on Run in the main Auto window (It’s Auto man!) and
then on Steady State. A branch of the bifurcation diagram
appears, with the numerical labels 1 to 4 identifying points of
interest on the diagram. In this case, the point with label LAB
= 1 is an endpoint (EP), since it is the starting point; the points
with LAB = 2 and LAB = 3 are Hopf-bifurcation points (HB),
and the point with LAB = 4 is the endpoint of this branch of
the bifurcation diagram (the branch ended since Par Max was
attained). The points lying on the parts of the branch between
LAB = 1 and 2 and between 3 and 4 are plotted as thick lines,
since they correspond to stable fixed points. The part of the
curve between 2 and 3 is plotted as a thin line, indicating that
the fixed point is unstable.

Click on Grab in the main Auto window. A new line of infor-
mation will appear along the bottom of the main Auto window.
Using the → key, move sequentially through the points on the
bifurcation diagram. Verify that the eigenvalues (plotted in the
lower left-hand corner of the main Auto window) all lie within
the unit circle for the first 47 points of the bifurcation diagram.
At point 48 a pair of eigenvalues crosses through the unit circle,
indicating that a Hopf bifurcation has occurred. A transforma-
tion has been applied to the eigenvalues here, so that eigenvalues
in the left-hand complex plane (i.e., those with negative real
part) now lie within the unit circle, while those with positive
real part lie outside the unit circle.

Let us now follow the limit cycle created at the Hopf bifurcation
point (Pt = 47, LAB = 2), which occurs at a bias current of
18.56 µA/cm2. Select this point with the → and ← keys. Then
press the <Enter> key and click on Run. Note that the menu
has changed. Click on Periodic. You will see a series of points
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(the second branch of the bifurcation diagram) gradually being
computed and then displayed as circles.
The open circles indicate an unstable limit cycle, while the filled
circles indicate a stable limit cycle. The set of circles lying above
the branch of fixed points gives the maximum of V on the pe-
riodic orbit at each value of the bias current, while the set of
points below the branch of fixed points gives the minimum. The
point with LAB = 5 at a bias current of 8.03 µA/cm2 is a limit
point (LP) where there is a saddle-node bifurcation of periodic
orbits (see Chapter 3).

Are the Hopf bifurcations sub- or supercritical (see Chapter 2)?

For the periodic branch of the bifurcation diagram, the Flo-
quet multipliers are plotted in the lower left-hand corner of the
screen. You can examine them by using Grab (use the <Tab>

key to move quickly between labeled points). Note that for the
stable limit cycle, all of the nontrivial multipliers lie within the
unit circle, while for the unstable cycle, there is one that lies
outside the unit circle. At the saddle-node bifurcation of peri-
odic orbits, you should verify that this multiplier passes through
+1 (see Chapter 3).

After all of this hard work, you may wish to keep a PostScript
copy of the bifurcation diagram (using file and Postscript

from the main Auto window). You can also keep a working copy
of the bifurcation diagram as a diskfile for possible future explo-
rations (using File and Save diagram). Most importantly, you
should sit down for a few minutes and make sure that you under-
stand how the bifurcation diagram computed by Auto explains
all of the phenomenology that you obtained from the pre-Auto
(i.e., numerical integration) part of the exercise.

(f) Other Hodgkin–Huxley Bifurcation Parameters. There
are many parameters in the Hodgkin–Huxley equations. You
might try constructing bifurcation diagrams for any one of these
parameters. The obvious ones to try are gna, gk, gleak, ena, ek,
and eleak (see equation (4.25)).

(g) Critical Slowing Down. When a system is close to a saddle-
node bifurcation of periodic orbits, the trajectory can spend an
arbitrarily long time traversing the region in a neighborhood
of where the semistable limit cycle will become established at
the bifurcation point. Try to find evidence of this in the system
studied here.
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Ex. 4.7-2. Two Stable Resting Potentials in the Hodgkin–Huxley
Equations. Under certain conditions, axons can demonstrate two
stable resting potentials (see Figure 3.1 of Chapter 3). We will com-
pute the bifurcation diagram of the fixed points using the modified
Hodgkin–Huxley equations in the XPP file hh2sss.ode. The bifurca-
tion parameter is now the external potassium concentration kout.

(a) Plotting the bifurcation diagram. This time, let us invoke
Auto as directly as possible, without doing a lot of preliminary
numerical integration runs.

Make a first integration run using the source file hh2sss.ode.
The transient at the beginning of the trace is due to the fact
that the initial conditions correspond to a bias current of zero,
and we are presently injecting a hyperpolarizing bias current of
−18 µA/cm2.
Make a second integration run using as initial conditions the
values at the end of the last run by clicking on Initialconds

and then Last. We must do this, since we want to invoke Auto,
which needs a fixed point to get going with the continuation
procedure used to generate a branch of the bifurcation diagram.
Start up the main Auto window. In the Parameterwindow enter
kout for Par1. In the Axes window, enter 10, −100, 400, and 50
for Xmin, Ymin, Xmax, and Ymax, respectively. Click on Numerics

to obtain the AutoNumwindow, and set Nmax:2000, NPr:2000, Par
Min:10, Par Max:400, and Norm Max:150. Start the computation
of the bifurcation diagram by clicking on Run and Steady state.

(b) Studying points of interest on the bifurcation diagram.
The point with label LAB = 1 is an endpoint (EP), since it is the
starting point; the points with LAB = 2 and LAB = 3 are limit
points (LP), which are points such as saddle-node and saddle-
saddle bifurcations, where a real eigenvalue passes through zero
(see Chapter 3).
The point with LAB = 4 is a Hopf-bifurcation (HB) point that
we will study further later. The endpoint of this branch of the bi-
furcation diagram is the point with LAB = 5 (the branch ended
since Par Max was attained).
The points lying on the parts of the branch between LAB =
1 and 2 and between 4 and 5 are plotted as thick lines, since
they correspond to stable fixed points. The parts of the curve
between 2 and 3 and between 3 and 4 are plotted as thin lines,
indicating that the fixed points are unstable.
Note that there is a range of kout over which there are two sta-
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ble fixed points (between the points labeled 4 and 2).

Let us now inspect the points on the curve.
Click on Grab.
Verify that the eigenvalues all lie within the unit circle for the
first 580 points of the bifurcation diagram. In fact, all eigenval-
ues are real, and so the point is a stable node.

At point 580 (LAB = 2) a single real eigenvalue crosses through
the unit circle at +1, indicating that a limit point or turning
point has occurred. In this case, there is a saddle-node bifurca-
tion of fixed points.

Between points 581 and 1086 (LAB = 2 and 3 respectively),
there is a saddle point with one positive eigenvalue. The stable
manifold of that point is thus of dimension three, and separates
the four-dimensional phase space into two disjoint halves.

At point 1086 (LAB = 3), a second eigenvalue crosses through
the unit circle at +1, producing a saddle point whose stable
manifold, being two-dimensional, no longer divides the four-
dimensional phase space into two halves. The two real positive
eigenvalues collide and coalesce somewhere between points 1088
and 1089, then split into a complex-conjugate pair.

Both of the eigenvalues of this complex pair cross and enter the
unit circle at point 1129 (LAB = 4). Thus, the fixed point be-
comes stable. A reverse Hopf bifurcation has occurred, since the
eigenvalue pair is purely imaginary at this point (see Chapter 2).
Press the <Esc> key to exit from the Grab function.

Keep a copy of the bifurcation diagram on file by click-
ing on File and Save Diagram and giving it the filename
hh2sss.ode.auto.

(c) Following Periodic Orbit Emanating from Hopf Bifur-
cation Point. A Hopf bifurcation (HB) point has been found
by Auto at point 1129 (LAB = 4). Let us now generate the pe-
riodic branch emanating from this HB point.
Load the bifurcation diagram just computed by clicking on File

and then on Load diagram in the main Auto window. The bi-
furcation diagram will appear in the plot window.
Reduce Nmax to 200 in Numerics, select the HB point (LAB =
4) on the diagram, and generate the periodic branch by clicking
on Run and then Periodic.
How does the periodic branch terminate? What sort of bifurca-
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tion is involved (see Chapter 3)?
Plotting the period of the orbit will help you in figuring this out.
Do this by clicking on Axes and then on Period. Enter 50, 0,
75, and 200 for Xmin, Ymin, Xmax, and Ymax.

(d) Testing the results obtained in Auto. Return to the main
XPP menu and, using direct numerical integration, try to see
whether the predictions made above by Auto (e.g., existence of
two stable resting potentials) are in fact true.
Compare your results with those obtained in the original
study (Aihara and Matsumoto 1983) on this problem (see e.g.,
Figure 3.7).

Ex. 4.7-3. Reduction to a Three-Dimensional System. It is difficult
to visualize what is happening in a four-dimensional system. The best
that the majority of us poor mortals can handle is a three-dimensional
system. It turns out that much of the phenomenology described above
will be seen by making an approximation that reduces the dimension
of the equations from four to three. This involves removing the time-
dependence of the variable m, making it depend only on voltage.

Exit XPP and copy the file hh.ode to a new file hhminf.ode. Then
edit the file hhminf.ode so that m3 is replaced by m∞

3 in the code
for the equation for curna: That is, replace the line,

curna(v) = blockna*gna*m∧3*h*(v-ena)
with

curna(v) = blockna*gna*minf(v)∧3*h*(v-ena)
Run XPP on the source file hhminf.ode and view trajectories in 3D.

4.8 Computer Exercises: A Numerical Study on
the FitzHugh–Nagumo Equations

In these computer exercises, we carry out numerical integration of the
FitzHugh–Nagumo equations, which are a two-dimensional system of ordi-
nary differential equations.

The objectives of the first exercise below are to examine the effect of
changing initial conditions on the time series of the two variables and on the
phase-plane trajectories, to examine nullclines and the direction field in the
phase-plane, to locate the stable fixed point graphically and numerically, to
determine the eigenvalues of the fixed point, and to explore the concept of
excitability. The remaining exercises explore a variety of phenomena char-
acteristic of an excitable system, using the FitzHugh–Nagumo equations
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as a prototype (e.g., refractoriness, anodal break excitation, recovery of la-
tency and action potential duration, strength–duration curve, the response
to periodic stimulation). While detailed keystroke-by-keystroke instructions
are given for the first exercise, detailed instructions are not given for the
rest of the exercises, which are of a more exploratory nature.

The FitzHugh–Nagumo Equations

We shall numerically integrate a simple two-dimensional system of ordinary
differential equations, the FitzHugh–Nagumo equations (FitzHugh 1961).
As described earlier on in this chapter, FitzHugh developed these equations
as a simplification of the much more complicated-looking four-dimensional
Hodgkin–Huxley equations (Hodgkin and Huxley 1952) that describe elec-
trical activity in the membrane of the axon of the giant squid. They have
now become the prototypical example of an excitable system, and have
been used as such by physiologists, chemists, physicists, mathematicians,
and other sorts studying everything from reentrant arrhythmia in the heart
to controlling chaos. The FitzHugh–Nagumo equations are discussed in Sec-
tion 4.5.6 in this chapter and given in equation (4.27). (See also Kaplan
and Glass 1995, pp. 245–248, for more discussion on the FitzHugh–Nagumo
equations.)

The file fhn.ode is the XPP file† containing the FitzHugh–Nagumo equa-
tions, the initial conditions, and some plotting and integrating instructions
for XPP. Start up XPP using the source file fhn.ode.

Ex. 4.8-1. Numerical Study of the FitzHugh–Nagumo equations.

(a) Time Series. Start a numerical integration run by clicking on
Initialconds and then Go. You will see a plot of the variable
x as a function of time.
Notice that x asymptotically approaches its equilibrium value of
about 1.2.

Examine the transient at the start of the trace: Using Viewaxes

and 2D, change the ranges of the axes by entering 0 for Xmin, 0
for Ymin, 10 for Xmax, 2.5 for Ymax. You will see that the range
of t is now from 0 to 10 on the plot.

Now let us look at what the other variable, y, is doing. Click
on Xi vs t and enter y in the box that appears at the top of
the XPP window. You will note that when y is plotted as a func-
tion of t, y is monotonically approaching its steady-state value

†See Introduction to XPP in Appendix A.
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of about −0.6.

We thus know that there is a stable fixed point in the system at
(x, y) ≈ (1.2,−0.6). You will be able to confirm this by doing a
bit of simple algebra with equation (4.27).

(b) Effect of Changing Initial Conditions. The question now
arises as to whether this is the only stable fixed point present
in the system. Using numerical integration, one can search for
multiple fixed points by investigating what happens as the ini-
tial condition is changed in a systematic manner.

Go back and replot x as a function of t.
Rescale the axes to 0 to 20 for t and 0 to 2.5 for x.
Click on the ICs button at the top of the XPP window. You will
see that x and y have initial conditions set to 2, as set up in the
file fhn.ode. Replace the the initial condition on x by −1.0.
When you integrate again, you will see a second trace appear
on the screen that eventually approaches the same asymptotic
or steady-state value as before.
Continue to modify the initial conditions until you have con-
vinced yourself that there is only one fixed point in the system
of equation (4.27).

Note: Remember that if the plot window gets too cluttered with
traces, you can erase them (Erase in main XPP window).

You might also wish to verify that the variable y is also ap-
proaching the same value as before (≈ −0.6) when the initial
conditions on x and y are changed.

Reset the initial conditions to their default values.
In finding the equilibria (by using Sing pts in XPP), you
will see that the fixed point is stable and lies at (x?, y?) =
(1.1994,−0.62426).
While XPP uses numerical methods to find the roots of dx/dt = 0
and dy/dt = 0 in equation (4.27), you can very easily verify this
from equation (4.27) with a bit of elementary algebra.

(c) Trajectory in the (xy) phase plane. We have examined the
time series for x and y. Let us now look at the trajectories in
the (xy) phase plane.

Change the axis settings to to X-axis:x, Y-axis:y, Xmin:-2.5,

Ymin:-2.5, Xmax:2.5, Ymax:2.5, and make another integra-
tion run. The path followed by the state-point of the system (the
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trajectory) will then be displayed.
The computation might proceed too quickly for you to see the
direction of movement of the trajectory: However, you can figure
this out, since you know the initial condition and the location
of the fixed point.
Try several different initial conditions (we suggest the (x, y) pairs
(−1,−1), (−1,2), (1,−1), (1,1.5)).
An easy way to set initial conditions is to use the Mouse key in
the Initialconds menu.
You have probably already noticed that by changing initial con-
ditions, the trajectory takes very different paths back to the
fixed point.

To make this clear graphically, carry out simulations with
the trajectory starting from an initial condition of (x0, y0) =
(1.0,−0.8) and then from (1.0,−0.9). In fact, it is instructive to
plot several trajectories starting on a line of initial conditions at
x = 1 (using Initialconds and then Range) with y changing
in steps of 0.1 between y = −1.5 and y = 0. Note that there is a
critical range of y0, in that for y0 > −0.8, the trajectory takes a
very short route to the fixed point, while for y0 < −0.9, it takes
a much longer route.
Use Flow in the Dir.field/flow menu to explore initial condi-
tions in a systematic way. What kind of fixed point is present
(e.g., node, focus, saddle)?

(d) Nullclines and the Direction Field. The above results show
that a small change in initial conditions can have a dramatic
effect on the resultant evolution of the system (do not confuse
this with “sensitive dependence on initial conditions”).

To understand this behavior, draw the nullclines and the direc-
tion fields (do this both algebraically and using XPP).
What is the sign of dx/dt in the region of the plane above the x-
nullcline? below the x-nullcline? How about for the y-nullcline?
You can figure this out from equation (4.27), or let XPP do it for
you.
By examining this direction field (the collection of tangent
vectors), you should be able to understand why trajectories have
the shape that they do.
Try running a few integrations from different initial condi-
tions set with the mouse, so that you have a few trajectories
superimposed on the vector field.

(e) Excitability. The fact that small changes in initial conditions
can have a large effect on the resultant trajectory is responsible
for the property of excitability possessed by the FitzHugh–
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Nagumo equations. Let us look at this directly.

Click on Viewaxes and then 2D. Set X-axis:t, Y-axis:x,

Xmin:0.0, Ymin:-2.5, Xmax:20.0, Ymax:2.5. Set x = 1.1994
and y = −0.62426 as the new initial conditions and start an in-
tegration run.
The trace is a horizontal line, since our initial conditions are
now at the fixed point itself: the transient previously present
has evaporated. Let us now inject a stimulus pulse.
In the Param(eter) window, enter
amplitude=-2.0, tstart=5.0, and duration=0.2.
We are thus now set up to inject a depolarizing stimulus pulse
of amplitude 2.0 and duration 0.2 time units at t = 5.0. We shall
look at the trace of the auxiliary variable v, which was defined
to be equal to −x in fhn.ode. We need to look at −x, since we
will now identify v with the transmembrane potential.

Using Xi vs t to plot v vs. t, you will see a “voltage waveform”
very reminiscent of that recorded experimentally from an ex-
citable cell, i.e., there is an action potential with a fast upstroke
phase, followed by a phase of repolarization, and a hyperpolar-
izing afterpotential.
Change the pulse amplitude to −1.0 and run a simulation. The
response is now subthreshold.
Make a phase-plane plot (with the nullclines) of the variables x
and y for both the sub- and suprathreshold responses, to try to
explain these two responses.
Explore the range of amplitude between 0.0 and −2.0. The con-
cept of an effective “threshold” should become clear.

Calculate the eigenvalues of the fixed point using the Sing pts

menu. The eigenvalues appear in the window from which XPP

was invoked.
Does the nature of the eigenvalues agree with the fact that the
subthreshold response resembled a damped oscillation?
Predict the period of the damped oscillation from the eigenvalues
and compare it with what was actually seen.

(f) Refractoriness. Modify the file fhn.ode so as to allow two suc-
cessive suprathreshold stimulus pulses to be given (it might be
wise to make a backup copy of the original file). Investigate how
the response to the second stimulus pulse changes as the interval
between the two pulses (the coupling interval) is changed. The
Heaviside step-function heav(t − t0), which is available in XPP,
is 0 for t < t0 and 1 for t > t0. Is there a coupling interval below
which one does not get an action potential?
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(g) Latency. The latency (time from onset of stimulus pulse to
upstroke of action potential) increases as the interval between
two pulses is decreased. Plot latency as a function of coupling
interval. Why does the latency increase with a decrease in the
coupling interval?

(h) Action Potential Duration. The action potential duration
(time between depolarization and repolarization of the action
potential) decreases as the coupling interval decreases. Why is
this so?

(i) Strength–Duration Curve: Rheobase and Chronaxie. It
is known from the earliest days of neurophysiology that a pulse
of shorter duration must be of higher amplitude to produce a
suprathreshold response of the membrane. Plot the threshold
pulse amplitude as a function of pulse duration. Try to explain
why this curve has the shape that it has. The minimum am-
plitude needed to provoke an action potential is termed the
rheobase, while the shortest possible pulse duration that can
elicit an action potential is called chronaxie.

(j) Anodal Break Response. Inject a hyperpolarizing pulse (i.e.,
one with a positive amplitude). Start with a pulse amplitude
of 5 and increase in increments of 5. Can you explain why an
action potential can be produced by a hyperpolarizing stimulus
(“anodal break response”)?

(k) Response to Periodic Stimulation. Investigate the various
rhythms seen in response to periodic stimulation with a train
of stimulus pulses delivered at different stimulation frequencies.
The response of the FitzHugh–Nagumo equations to a periodic
input is very complicated, and has not yet been completely
characterized.

(l) Automaticity. Another basic property of many excitable tis-
sues is automaticity: the ability to spontaneously generate action
potentials. Set a = 0 and tmax = 50 (click on Numerics and
then Total) and run fhn.ode. What has changing the param-
eter a done? What is the attractor now? What has happened
to the stability of the fixed point? What kind of bifurcation is
involved? Changing a systematically in the range from 0 to 2
might assist you in answering these questions. How does the
shape of the limit cycle change as a is changed?

(m) Phase-Locking. Explore the response of the FitzHugh–Nagumo
oscillator to periodic stimulation with a periodic train of current
pulses. Systematically change the frequency and amplitude of
the pulse train. In another exercise (Section 5.9), phase-locking
is studied in an oscillator that is simple enough to allow reduc-
tion of the dynamics to consideration of a one-dimensional map.
What is the dimension of the map that would result from re-
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duction of the FitzHugh–Nagumo case to a map? Can you find
instances where the response of the FitzHugh–Nagumo oscillator
is different from that of the simpler oscillator?

Ex. 4.8-2. Two Stable Fixed Points in the FitzHugh–Nagumo
Equations. In the standard version of the FitzHugh–Nagumo equa-
tions, there is only one fixed point present in the phase-space of the
system.
Since the x-isocline is cubic, the possibility exists for there to be three
fixed points in the FitzHugh–Nagumo equations.
Try to find combinations of the parameters a, b, and c such that two
stable fixed points coexist (“bistability”).
How would you have to change the FitzHugh–Nagumo equations to
obtain more than two stable fixed points (i.e., multistability)?


