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Bifurcations Involving Fixed
Points and Limit Cycles in
Biological Systems

Michael R. Guevara

3.1 Introduction

Biological systems display many sorts of dynamic behaviors including con-
stant behavior, simple or complex oscillations, and irregular fluctuating
dynamics. As parameters in systems change, the dynamics may also also
change. For example, changing the ionic composition of a medium bathing
nerve cells or cardiac cells can have marked effects on the behaviors of these
cells and may lead to the stabilization or destabilization of fixed points or
the initiation or termination of rhythmic behaviors. This chapter concerns
the ways that constant behavior and oscillating behavior can be stabilized
or destabilized in differential equations. We give a summary of the mathe-
matical analysis of bifurcations and biological examples that illustrate the
mathematical concepts. While the context in which these bifurcations will
be illustrated is that of low-dimensional systems of ordinary differential
equations, these bifurcations can also occur in more complicated systems,
such as partial differential equations and time-delay differential equations.

We first describe how fixed points can be created and destroyed as a
parameter in a system of differential equations is gradually changed, pro-
ducing a bifurcation. We shall focus on three different bifurcations: the
saddle-node bifurcation, the pitchfork bifurcation, and the transcritical bi-
furcation (Abraham and Shaw 1982; Thompson and Stewart 1986; Wiggins
1990; Strogatz 1994).

We then consider how oscillations are born and how they die or metamor-
phose. There are several bifurcations in which limit cycles are created or
destroyed. These include the Hopf bifurcation (see Chapter 2), the saddle-
node bifurcation, the period-doubling bifurcation, the torus bifurcation,
and the homoclinic bifurcation (Abraham and Shaw 1982; Thompson and
Stewart 1986; Wiggins 1990; Strogatz 1994).
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3.2 Saddle-Node Bifurcation of Fixed Points

3.2.1 Bistability in a Neural System

We now consider the case of “two stable resting potentials” as an example
of a biological situation in which the number of fixed points in the system
is changed as a parameter is varied. Normally, the voltage difference across
the membrane of a nerve cell (the transmembrane potential) has a value at
rest (i.e., when there is no input to the cell) of about −60 mV. Injecting
a brief depolarizing current pulse produces an action potential: There is
an excursion of the transmembrane potential, with the transmembrane po-
tential asymptotically returning to the resting potential. This shows that
there is a stable fixed point present in the system. However, it is possible
under some experimental conditions to obtain two stable resting poten-
tials. Figure 3.1 shows the effect of injection of a brief-duration stimulus
pulse in an experiment in which a nerve axon is bathed in a potassium-
rich medium: The transmembrane potential does not return to its resting
value in response to delivery of a depolarizing stimulus pulse (the second
stimulus pulse delivered in Figure 3.1); rather, it “hangs up” at a new de-
polarized potential, and rests there in a stable fashion (Tasaki 1959). This
implies the existence of a second stable fixed point in the phase space of the
system. Injection of a brief-duration current pulse of the opposite polarity
(a hyperpolarizing stimulus pulse) can then return the membrane back to
its initial resting potential (Tasaki 1959). In either case, the stimulus pulse
must be large enough in amplitude for the flip to the other stable fixed
point to occur; e.g., in Figure 3.1, the first stimulus pulse delivered was too
small in amplitude to result in a flip to the other stable resting potential.

The phase space of the system of Figure 3.1 must also contain some
sort of divider that separates the basins of attraction of the two stable
fixed points (the basin of attraction of a fixed point is the set of initial
conditions that asymptotically lead to that point). Figure 3.2 shows how
this can occur in the simple one-dimensional system of ordinary differential
equations dx/dt = x − x3. In addition to the two stable fixed points at
x = ±1, there is an unstable fixed point present at the origin, which itself
acts to separate the basins of attraction of the two stable fixed points:
trajectories starting from initial conditions to the left of the unstable fixed
point at the origin (i.e., x(t = 0) < 0) go to the stable fixed point at
x = −1, while trajectories starting from initial conditions to the right of
that point (i.e., x(t = 0) > 0) go to the stable fixed point at x = +1.

The simplest way that the coexistence of two stable fixed points can
occur in a two-dimensional system is shown in Figure 3.3, in which there
is a saddle point in addition to the two stable nodes. Remember that the
stable manifold of the saddle fixed point (the set of initial conditions that
lead to it) is composed of a pair of separatrices (dashed lines in Figure
3.3), which divide the plane into two halves, forming the basins of attraction
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Figure 3.1. The phenomenon of two stable resting potentials in the membrane
of a myelinated toad axon bathed in a potassium-rich medium. A steady hyper-
polarizing bias current is injected throughout the experiment. Stimulation with
a brief depolarizing current pulse that is large enough in amplitude causes the
axon to go to a new level of resting potential. The top trace is the transmembrane
potential; the bottom trace is the stimulus current. Adapted from Tasaki (1959).
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Figure 3.2. Coexistence of two stable fixed points in the one-dimensional ordinary
differential equation dx/dt = x − x3.

of the two stable fixed points. In Figure 3.3 the thick lines give the pair
of trajectories that form the unstable manifold of the saddle point. From
this phase-plane picture, can one explain why the pulse amplitude must be
sufficiently large in Figure 3.1 for the transition from one resting potential
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to the other to occur? Can one explain why a hyperpolarizing, and not
depolarizing, stimulus pulse was used to flip the voltage back to the initial
resting potential once it had been initially flipped to the more depolarized
resting potential in Figure 3.1 by a depolarizing pulse?

XX X

y

x

Figure 3.3. Coexistence of two stable nodes in a two-dimensional ordinary
differential equation.

When the potassium concentration is normal, injection of a stimulus
pulse into a nerve axon results in the asymptotic return of the membrane
potential to the resting potential. There is thus normally only one fixed
point present in the phase space of the system. It is clear from Figure 3.1
that elevating the external potassium concentration has produced a change
in the number of stable fixed points present in the system. Let us now
consider our first bifurcation involving fixed points: the saddle-node bi-
furcation. This bifurcation is almost certainly involved in producing the
phenomenon of two stable resting potentials shown in Figure 3.1.

3.2.2 Saddle-Node Bifurcation of Fixed Points in a
One-Dimensional System

In a one-dimensional system of ordinary differential equations, a saddle-
node bifurcation results in the creation of two new fixed points, one
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stable, the other unstable. This can be seen in the simple equation

dx

dt
= µ− x2, (3.1)

where x is the bifurcation variable and µ is the bifurcation param-
eter. Figure 3.4 illustrates the situation. For µ < 0, there are no fixed
points present in the system (µ = −0.5 in Figure 3.4A). For µ = 0
(the bifurcation value) there is one fixed point (at the origin), which
is semistable (Figure 3.4B). For µ > 0 there are two fixed points, one of
which (x? =

√
µ) is stable, while the other (x? = −√µ) is unstable (µ = 0.5

in Figure 3.4C). For obvious reasons, this bifurcation is also often called a
tangent bifurcation.

x x x

m = -0.5 m = 0 m = 0.5

A B C
dx

dt

dx

dt

dx

dt

Figure 3.4. Saddle-node bifurcation in the one-dimensional ordinary differential
equation of equation (3.1). (A) µ = −0.5, (B) µ = 0, (C) µ = 0.5.

Figure 3.5 shows the corresponding bifurcation diagram, in which the
equilibrium value (x?) of the bifurcation variable x is plotted as a function
of the bifurcation parameter µ. The convention used is that stable points are
shown as solid lines, while unstable points are denoted by dashed lines. In
such a diagram, the point on the curve at which the saddle-node bifurcation
occurs is often referred to as a knee, limit point, or turning point.
This bifurcation is also called a fold bifurcation and is associated with
one of the elementary catastrophes, the fold catastrophe (Arnold 1986;
Woodcock and Davis 1978).
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Figure 3.5. Bifurcation diagram for the saddle-node bifurcation occurring in
equation (3.1).

3.2.3 Saddle-Node Bifurcation of Fixed Points in a
Two-Dimensional System

Figure 3.6 shows the phase-plane portrait of the saddle-node bifurcation in
a simple two-dimensional system of ordinary differential equations

dx

dt
= µ− x2, (3.2a)

dy

dt
= −y. (3.2b)

Again, for µ < 0, there are no fixed points present in the system (µ = −0.5
in Figure 3.6A); for µ = 0 there is one, which is a saddle-node (Figure 3.6B);
while for µ > 0 there are two, which are a node and a saddle (µ = 0.5 in
Figure 3.6C), hence the name of the bifurcation. While in the particular
example shown in Figure 3.6 the node is stable, the bifurcation can also be
such that the node is unstable. This is in contrast to the one-dimensional
case, where one cannot obtain two unstable fixed points as a result of
this bifurcation. The bifurcation diagram for the two-dimensional case of
Figure 3.6 is the same as that shown in Figure 3.5, which was for the
one-dimensional case (Figure 3.4).

At the bifurcation point itself (µ = 0), there is a special kind of fixed
point, a saddle-node. This point has one eigenvalue at zero, the other nec-
essarily being real (if negative, a stable node is the result of the bifurcation;
if positive, an unstable node). In fact, this is the algebraic criterion for a
saddle-node bifurcation: A single real eigenvalue passes through the origin
in the root-locus diagram as a parameter is changed (Figures 3.4, 3.6). Note
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Figure 3.6. Phase-plane portrait of the saddle-node bifurcation in the
two-dimensional ordinary differential equation of equation (3.2). (A) µ = −0.5,
(B) µ = 0, (C) µ = 0.5.
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that the system is not structurally stable at the bifurcation value of the
parameter; i.e., small changes in µ away from zero will cause qualitative
changes in the phase-portrait of the system. In this particular case, such a
change in parameter away from µ = 0 would lead to the disappearance of
the saddle-node (µ < 0) or its splitting up into two fixed points (µ > 0).

3.2.4 Bistability in a Neural System (Revisited)

After our brief excursion into the world of the saddle-node bifurcation, we
now return to the question as to how the situation in Figure 3.1, with
two stable resting potentials, arose from the normal situation in which
there is only one resting potential. To investigate this further, we study
the Hodgkin–Huxley model of the squid giant axon (Hodgkin and Huxley
1952).

Figure 3.7 gives the bifurcation diagram for the fixed points in the
Hodgkin–Huxley model with the transmembrane voltage (V) being the bi-
furcation variable and the external potassium concentration (Kout) acting
as the bifurcation parameter (Aihara and Matsumoto 1983). The model
here is not one- or two-dimensional, as in Figures 3.2 to 3.6, but rather four-
dimensional. The curve in Figure 3.7 gives the locus of the V-coordinate
of the fixed points. As earlier, a solid curve indicates that the point is sta-
ble, while a dashed curve indicates that it is unstable. As Kout is increased
in Figure 3.7, there is first a saddle-saddle bifurcation at the upper limit
point (LPu) at Kout ≈ 51.8 mM that produces two saddle points (which,
by definition, are inherently unstable). There is a second bifurcation at the
lower limit point (LPl) at Kout ≈ 417.0 mM, which is a reverse saddle-node
bifurcation that results in the coalescence and disappearance of a node and
a saddle point. There is also a Hopf bifurcation (HB) at Kout ≈ 66.0 mM
that converts the stability of the fixed point created at LPu from unstable
to stable. There is thus quite a large range of Kout (66–417 mM) over which
the phenomenon of two stable resting potentials can be seen. Remember
that a fixed point in an N -dimensional system has N eigenvalues, which
can be calculated numerically (e.g., using the Auto option in XPP∗). At
each of the two limit points or turning points in Figure 3.7, one of these
eigenvalues, which is real, crosses the imaginary axis through the origin on
the root-locus diagram.

3.2.5 Bistability in Visual Perception

Bistability, the coexistence in the phase space of the system of two asymp-
totically locally stable (“attracting”) objects, is a phenomenon not limited

∗See Appendix A for an introduction to XPP.
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Figure 3.7. Bifurcation diagram for Hodgkin–Huxley model. The transmembrane
voltage is the bifurcation variable, while the external potassium concentration
(Kout) is the bifurcation parameter. As in the experimental work (Figure 3.1),
a steady hyperpolarizing bias current (20 µA/cm2 here) is injected throughout.
Adapted from Aihara and Matsumoto (1983).

to fixed points. As we shall see later in this chapter, one can have bista-
bility between a fixed point and a limit-cycle oscillator, which leads to
the phenomena of single-pulse triggering and annihilation. In addition, one
can have bistability between two stable periodic orbits (e.g., Abraham and
Shaw 1982; Goldbeter and Martiel 1985; Guevara, Shrier, and Glass 1990;
Yehia, Jeandupeux, Alonso, and Guevara 1999). Thus, many other phenom-
ena in which two stable behaviors are seen in experimental work are almost
certainly due to the coexistence of two stable attractors of some sort. The
most appealing example of this is perhaps in the field of visual perception,
where one can have bistable images. Figure 3.8 shows a nice example, in
which the relative size of the basins of attraction for the perception of the
two figures gradually changes as one moves from left to right.

Figure 3.8. Bistability in visual perception. Adapted from Chialvo and Apkarian
(1993).
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At the extreme ends of the sequence of images in Figure 3.8, only one
figure is perceived, while in the middle the eye perceives one of two figures
at a given time (“ambiguous figure”). Thus, Figure 3.9 shows a candidate
bifurcation diagram, in which there are two saddle-node bifurcations, so
that one perceives only one figure or the other at the two extremes of
the diagram. The phenomenon of hysteresis also occurs: Scan the sequence
of images in Figure 3.8 from left to right and note at which image the
transition from the male face to the female form is perceived. Then repeat,
reversing the direction of scanning, so that one now scans from right to
left. Is there a difference? How does the schematic bifurcation diagram of
Figure 3.9 explain this?

Figure 3.9. Candidate bifurcation diagram for hysteresis in visual perception.

3.3 Pitchfork Bifurcation of Fixed Points

3.3.1 Pitchfork Bifurcation of Fixed Points in a
One-Dimensional System

In the pitchfork bifurcation, a fixed point reverses its stability, and two
new fixed points are born. A pitchfork bifurcation occurs at µ = 0 in the
one-dimensional ordinary differential equation

dx

dt
= x(µ− x2). (3.3)

For µ < 0, there is one fixed point at zero, which is stable (µ = −0.5 in
Figure 3.10A); at µ = 0 there is still one fixed point at zero, which is still



3. Bifurcations Involving Fixed Points and Limit Cycles in Biological Systems 51

stable (Figure 3.10B); for µ > 0, there are three fixed points, with the orig-
inal fixed point at zero now being unstable, and the two new symmetrically
placed points being stable (µ = 0.5 in Figure 3.10C).

x x x

m = -0.5 m = 0 m = 0.5

dx

dt

dx

dt

dx

dt

Figure 3.10. Pitchfork bifurcation in the one-dimensional system of equation (3.3).
(A) µ = −0.5, (B) µ = 0, (C) µ = 0.5.

Figure 3.11 shows the bifurcation diagram for the pitchfork bifurcation.
The bifurcation of Figures 3.10, 3.11 is supercritical pitchfork bifur-
cation, since there are stable fixed points to either side of the bifurcation
point. Replacing the minus sign with a plus sign in equation (3.3) results
in a subcritical pitchfork bifurcation.
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Figure 3.11. Bifurcation diagram for the pitchfork bifurcation.
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3.3.2 Pitchfork Bifurcation of Fixed Points in a Two-
Dimensional System

There is a pitchfork bifurcation at µ = 0 for the two-dimensional system
of ordinary differential equations

dx

dt
= x(µ− x2), (3.4a)

dy

dt
= −y. (3.4b)

For µ < 0, there is one fixed point, which is a stable node (µ = −0.5 in
Figure 3.12A); at µ = 0 there is still only one fixed point, which remains
a stable node (Figure 3.12B); for µ > 0, there are three fixed points, with
the original fixed point at zero now being a saddle point, and the two new
symmetrically placed points being stable nodes (µ = 0.5 in Figure 3.12C).
The bifurcation diagram is the same as that shown in Figure 3.11.

3.3.3 The Cusp Catastrophe

So far, we have generally considered one-parameter bifurcations, in which
we have changed a single bifurcation parameter µ. Let us now intro-
duce a second bifurcation parameter ε into the one-dimensional equation
producing the pitchfork bifurcation, equation (3.3), studying instead

dx

dt
= x(µ− x2) + ε. (3.5)

Figure 3.13 gives the resultant two-parameter bifurcation diagram, in which
the vertical axis gives the equilibrium value (x?) of the bifurcation variable
x, while the other two axes represent the two bifurcation parameters (µ and
ε). Thus, at a given combination of µ and ε, x? is given by the point(s) lying
in the surface directly above that combination. There are therefore values
of (µ, ε) where there are three fixed points present. These combinations are
found within the cusp-shaped cross-hatched region illustrated in the (µ, ε)
parameter plane. For (µ, ε) combinations outside of this region, there is only
one fixed point. Choosing a bifurcation route (i.e., a curve lying in the (µ, ε)
parameter plane) that runs through either of the curves forming the cusp
in that plane results in a saddle-node bifurcation. Choosing a bifurcation
route that runs through the cusp itself results in a pitchfork bifurcation. It
is now clear why, if there is a pitchfork bifurcation as µ is changed for ε = 0,
there will be a saddle-node bifurcation when µ is changed for ε 6= 0. Viewed
as a one-parameter bifurcation, the pitchfork bifurcation in one dimension
is thus unstable with respect to small perturbations.

There has been much speculation on the role of the cusp catastrophe
in phenomena encountered in many areas of life, including psychiatry,
economics, sociology, and politics (see, e.g., Woodcock and Davis 1978).
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Figure 3.12. Phase-plane portrait of the pitchfork bifurcation in the
two-dimensional ordinary differential equation of equation (3.4). (A) µ = −0.5,
(B) µ = 0, (C) µ = 0.5.

3.4 Transcritical Bifurcation of Fixed Points

3.4.1 Transcritical Bifurcation of Fixed Points in a
One-Dimensional System

In the transcritical bifurcation there is an exchange of stability between
two fixed points. In the one-dimensional ordinary differential equation

dx

dt
= x(µ − x), (3.6)
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Figure 3.13. The pitchfork bifurcation in the two-parameter unfolding of
equation (3.5). Adapted from Strogatz (1994).

there is a transcritical bifurcation at µ = 0 (Figure 3.14). The fixed point
at x? = 0 starts out being stable for µ < 0 (µ = −0.5 in Figure 3.14A),
becomes semistable at µ = 0 (Figure 3.14B), and is then unstable for µ > 0
(µ = −0.5 in Figure 3.14C). The sequence of changes is the opposite for
the other fixed point (x? = µ). Figure 3.15 gives the bifurcation diagram.

x x x

m = -0.5 m = 0 m = 0.5

dx

dt

dx

dt

dx

dt

A B C

Figure 3.14. Transcritical bifurcation in the one-dimensional ordinary differential
equation of equation (3.6). (A) µ = −0.5, (B) µ = 0, (C) µ = 0.5.
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Figure 3.15. The bifurcation diagram for the transcritical bifurcation of
equation (3.6).

As in the case of the pitchfork bifurcation, the transcritical bifurcation in
a one-dimensional system (Figure 3.14) is not stable to small perturbations,
in that should a term ε be added to the right-hand side of equation (3.6),
the transcritical bifurcation (ε = 0) is replaced by either no bifurcation at
all (ε > 0) or by a pair of saddle-node bifurcations (ε < 0) (Wiggins 1990).

3.4.2 Transcritical Bifurcation of Fixed Points in a
Two-Dimensional System

The two-dimensional ordinary differential equation

dx

dt
= x(µ − x), (3.7a)

dy

dt
= −y, (3.7b)

also has a transcritical bifurcation at µ = 0 (Figure 3.16). The fixed point
at x? = 0 starts out being a stable node for µ < 0 (µ = −0.5 in Figure
3.16A), becomes a semistable saddle-node at µ = 0 (Figure 3.16B), and is
then an unstable saddle point for µ > 0 (µ = 0.5 in Figure 3.16C). The
sequence of changes is the opposite for the other fixed point (x? = µ). As
with the saddle-node bifurcation (Figure 3.6), the fixed point present at
the bifurcation point (µ = 0) is a saddle-node.
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Figure 3.16. Phase-plane portrait of the transcritical bifurcation for the
two-dimensional ordinary differential equation of equation (3.7). (A) µ = −0.5,
(B) µ = 0, (C) µ = 0.5.
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3.5 Saddle-Node Bifurcation of Limit Cycles

3.5.1 Annihilation and Single-Pulse Triggering

The sinoatrial node is the pacemaker that normally sets the rate of the
heart. Figure 3.17 shows the transmembrane potential recorded from a cell
within the sinoatrial node. At the arrow, a subthreshold pulse of current is
delivered to the node, and spontaneous activity ceases. This phenomenon is
termed annihilation. Injection of a suprathreshold current pulse will then
restart activity (“single-pulse triggering”). Both of these phenomena
can be seen in an ionic model of the sinoatrial node: Figure 3.18A shows
annihilation, while Figure 3.18B shows single-pulse triggering.

1 s

 0

 mV

-70

Figure 3.17. Annihilation in tissue taken from the sinoatrial node. From Jalife
and Antzelevitch (1979).

20

-80

V
 (

m
V

)

0 20

t (s)

20

-80

V
 (

m
V

)

A

B

Figure 3.18. (A) Annihilation and (B) single-pulse triggering in an ionic model
of the sinoatrial node. A constant hyperpolarizing bias current is injected to slow
the beat rate. From Guevara and Jongsma (1992).

Annihilation has been described in several other biological oscillators,
including the eclosion rhythm of fruit flies, the circadian rhythm of biolumi-
nescence in marine algae, and biochemical oscillators (see Winfree 2000 for a
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synopsis). Figure 3.19 shows another example taken from electrophysiology.
When a constant (“bias”) current is injected into a squid axon, the axon
will start to spontaneously generate action potentials (Figure 3.19A). In-
jection of a well-timed pulse of current of the correct amplitude annihilates
this spontaneous activity (Figure 3.19B).

I

V

A

I

V

B

Figure 3.19. (A) Induction of periodic firing of action potentials in the giant
axon of the squid by injection of a depolarizing bias current. (B) Annihilation of
that bias-current-induced activity by a brief stimulus pulse. V = transmembrane
voltage, I = injected current. From Guttman, Lewis, and Rinzel (1980).

Annihilation can also be seen in the Hodgkin–Huxley equations (Hodgkin
and Huxley 1952), which are a four-dimensional system of ordinary differ-
ential equations modeling electrical activity in the membrane of the giant
axon of the squid (see Chapter 4). Note that the phase of the cycle at
which annihilation can be obtained depends on the polarity of the stimulus
(Figure 3.20A vs. Figure 3.20B).

3.5.2 Topology of Annihilation and Single-Pulse Triggering

The fact that one can initiate or terminate spontaneous activity by in-
jection of a brief stimulus pulse means that there is the coexistence of
two stable attractors in the system. One is a stable fixed point, corre-
sponding to rest or quiescence; the other is a stable limit-cycle oscillator,
corresponding to spontaneous activity. The simplest topology that is con-
sistent with this requirement is shown in Figure 3.21A. Starting from initial
condition a or b, the state point asymptotically approaches the stable limit
cycle (solid curve), while starting from initial condition c, the stable fixed
point is approached. The unstable limit cycle (dashed curve) in this two-
dimensional system is thus a separatrix that divides the plane into the
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Figure 3.20. Annihilation of bias-current-induced spontaneous activity in the
Hodgkin–Huxley equations by a current-pulse stimulus. (A) Hyperpolarizing, (B)
depolarizing current pulse. The convention that the resting membrane potential
is 0 mV is taken. From Guttman, Lewis, and Rinzel (1980).

basins of attraction of the stable fixed point and the stable limit cycle.
In a higher-dimensional system, it is the stable manifold of the unstable
limit cycle that can act as a separatrix, since the limit cycle itself, being a
one-dimensional object, can act as a separatrix only in a two-dimensional
phase space.

In Figure 3.21B, the state point is initially sitting at the stable fixed
point, producing quiescence in the system. Injecting a brief stimulus of
large enough amplitude will knock the state point to the point d, allow-
ing it to escape from the basin of attraction of the fixed point and enter
into the basin of attraction of the stable limit cycle. Periodic activity will
then be seen. Figure 3.21B thus explains why the stimulus pulse must be
of some minimum amplitude to trigger spontaneous activity. Figure 3.21C
shows the phenomenon of annihilation. During spontaneous activity, at the
point in the cycle when the state point is at e, a stimulus is injected that
takes the state point of the system to point f, which is within the basin
of attraction of the stable fixed point (black hole in the terminology of
Winfree 1987). Spontaneous activity is then asymptotically extinguished.
One can appreciate from this figure that for annihilation to be successful,
the stimulus must be delivered within a critical window of timing, and that
the location of this window will change should the polarity, amplitude, or
duration of the stimulus pulse be changed. One can also see that the stim-
ulus pulse must be of some intermediate amplitude to permit annihilation
of spontaneous activity.

The phenomena of annihilation and single-pulse triggering are not seen
in all biological oscillators. For example, one would think that it might
not be a good idea for one’s sinoatrial node to be subject to annihilation.
Indeed, there are other experiments on the sinoatrial node that indicate
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Figure 3.21. (A) System with coexisting stable fixed point (x) and stable limit cy-
cle oscillation (solid closed curve). Dashed closed curve is an unstable limit-cycle
oscillation. (B) Single-pulse triggering. (C) Annihilation. From Guevara and
Jongsma (1992).

that there is only one fixed point present, and that this point is unstable
(Figure 3.22). Thus, these other experiments suggest that the sinoatrial
node belongs to the class of oscillators with the simplest possible topology:
There is a single limit cycle, which is stable, and a single fixed point, which
is unstable. This topology does not allow triggering and annihilation. The
question thus naturally arises as to how the topology of Figure 3.21A can
originate. There are several such ways, one of which involves a saddle-node
bifurcation of periodic orbits, which we shall now discuss.
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Figure 3.22. Clamping the transmembrane potential of a spontaneously beating
piece of tissue taken from the sinoatrial node to its equilibrium value (first arrow)
and then releasing the clamp (second arrow) results in the startup of spontaneous
activity, indicating that the fixed point is unstable. From Noma and Irisawa
(1975).

3.5.3 Saddle-Node Bifurcation of Limit Cycles

In a saddle-node bifurcation of limit cycles, there is the creation
of a pair of limit cycles, one stable, the other unstable. Figure 3.23 illus-
trates this bifurcation in the two-dimensional system of ordinary differential
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equations, written in polar coordinates (Strogatz 1994)

dr

dt
= µr + r3 − r5, (3.8a)

dθ

dt
= ω + br3. (3.8b)

The first equation above can be rewritten as dr/dt = r(µ+ r2 − r4), which
has roots at r? = 0 and at r? = [(1±(1+4µ)1/2)/2]1/2. The solution r? = 0
corresponds to a fixed point. For µ < − 1

4 , the two other roots are complex,
and there are no limit cycles present (Figure 3.23A). At the bifurcation
point (µ = − 1

4 ), there is the sudden appearance of a limit cycle of large

(i.e., nonzero) amplitude with r? = 1/
√

2 (Figure 3.23B). This limit cycle
is semistable, since it attracts trajectories starting from initial conditions
exterior to its orbit, but repels trajectories starting from initial conditions
lying in the interior of its orbit. For µ > − 1

4 (Figure 3.23C), there are two

limit cycles present, one stable (at r? = [(1 + (1 + 4µ)1/2)/2]1/2) and the
other unstable (at r? = [(1− (1− 4µ)1/2)/2]1/2).

Figure 3.24 gives the bifurcation diagram for the saddle-node bifurcation
of periodic orbits. When plotting such a diagram, one plots some character-
istic of the limit cycle (such as the peak-to-peak amplitude of one variable,
or the maximum and/or minimum values of that variable) as a function
of the bifurcation parameter. In Figure 3.24, the diameter of the circular
limit cycles of Figure 3.23 (which amounts to the peak-to-peak amplitude)
is plotted as a function of the bifurcation parameter.

3.5.4 Saddle-Node Bifurcation in the Hodgkin–Huxley
Equations

Let us now return to our example involving annihilation in the Hodgkin–
Huxley equations (Figure 3.20). Figure 3.25 shows the projection on the
V n-plane of trajectories in the system (V and n are two of the variables
in the four-dimensional system). With no bias current (Ibias), there is a
stable fixed point present. In this situation, injection of a single stimu-
lus pulse produces an action potential. As a bias current is injected, one
has a saddle-node bifurcation at Ibias ≈ 8.03 µA/cm2. Just beyond this
saddle-node bifurcation (Figure 3.25A), there are two stable structures
present, a stable fixed point and a stable limit cycle (the outer closed curve)
that produces spontaneous firing of the membrane, as well as one unstable
structure, an unstable limit cycle (the inner closed curve). As Ibias is in-
creased, the unstable limit cycle shrinks in size (Figure 3.25B,C,D), until

at Ibias ≈ 18.56 µA/cm
2
, there is a subcritical Hopf bifurcation (see Chap-

ter 2) in which the unstable limit cycle disappears and the stable fixed
point becomes unstable. Still further increase of Ibias leads to a shrinkage
in the size of the stable limit cycle. Eventually, another Hopf bifurcation,
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µ = -0.1

Figure 3.23. The saddle-node bifurcation of limit cycles in the two-dimensional
system of ordinary differential equations given by equation 3.8. (A) µ = −0.4,
(B) µ = −0.25, (C) µ = −0.1.

which is supercritical, occurs at Ibias ≈ 154.5 µA/cm
2
, resulting in the

disappearance of the stable limit cycle and the conversion of the unstable
fixed point into a stable fixed point. Beyond this point, there is no periodic
activity.

Figure 3.26 gives the bifurcation diagram for the behavior shown in Fig-
ure 3.25, computed with XPP.† One consequence of this diagram is that
single-pulse triggering will occur only over an intermediate range of Ibias

(8.03 µA/cm
2
< Ibias < 18.56 µA/cm

2
). This is due to the fact that for

†See Appendix A for an introduction to XPP.
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Figure 3.24. Bifurcation diagram for limit cycles in the saddle-node bifurcation
of periodic orbits shown in Figure 3.23.

Ibias < 8.03 µA/cm
2

there are no limit cycles present in the system, while

for 18.56 µA/cm2 < Ibias < 154.5 µA/cm2 the fixed point is unstable, and

for Ibias > 154.5 µA/cm
2
, there are again no limit cycles present. There

are thus, in this example, two routes by which the topology allowing anni-
hilation and single-pulse triggering (8.03 µA/cm

2
< Ibias < 18.56 µA/cm

2
)

can be produced: (i) As Ibias is increased from a very low value, there is
a single saddle-node bifurcation; (ii) as Ibias is reduced from a very high
value, there are two Hopf bifurcations, the first supercritical, the second
subcritical.

3.5.5 Hysteresis and Hard Oscillators

Another consequence of the bifurcation diagram of Figure 3.26 is that there
will be hysteresis in the response to injection of a bias current. This has
been investigated experimentally in the squid axon. When a ramp of current
is injected into the squid axon, firing will start at a value of bias current
that is higher than the value at which firing will stop as the current is
ramped down (Figure 3.27). Oscillators such as that shown in Figure 3.27
that start up at large amplitude as a parameter is slowly changed are said
to be “hard,” whereas those that start up at zero amplitude (i.e., via a
supercritical Hopf bifurcation) are said to be “soft.”
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Figure 3.25. Phase-plane portrait of Hodgkin–Huxley equations as bias current
Ibias is changed. The convention that the normal resting potential is 0 mV is
taken. Adapted from Guttman, Lewis, and Rinzel (1980).

3.5.6 Floquet Multipliers at the Saddle-Node Bifurcation

Let us now analyze the saddle-node bifurcation of Figure 3.23 by tak-
ing Poincaré sections and examining the resultant Poincaré first-return
maps. In this case, since the system is two-dimensional, the Poincaré sur-
face of section (Π) is a one-dimensional curve, and the Poincaré map is
one-dimensional. At the bifurcation point, where a semistable orbit ex-
ists, one can see that there is a tangent or saddle-node bifurcation on the
Poincaré map (Figure 3.28A). Beyond the bifurcation point, there is a sta-
ble fixed point on the map, corresponding to the stable limit cycle, and
an unstable fixed point on the map, corresponding to the unstable limit
cycle (Figure 3.28B). Remembering that the slope of the map at the fixed
point gives the Floquet multiplier, one can appreciate that a saddle-node
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Figure 3.26. Bifurcation diagram for response of Hodgkin–Huxley equations to a
bias current (Ibias), computed using XPP. Thick curve: stable fixed points; thin

curve: unstable fixed points; filled circles: stable limit cycles; unfilled circles:
unstable limit cycles.
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Figure 3.27. Hysteresis in the response of the squid axon to injection of a ramp
of bias current. V = transmembrane potential, I = injected bias current. From
Guttman, Lewis, and Rinzel (1980).

bifurcation occurs when a real Floquet multiplier moves through +1 on the
unit circle.

When the saddle-node bifurcation of limit cycles occurs in a three-
dimensional system, the stable limit cycle is a nodal cycle and the unstable
limit cycle is a saddle cycle (Figure 3.29). The Poincaré plane of section
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Figure 3.28. Saddle-node bifurcation in a two-dimensional system. Poincaré sec-
tion (surface of section indicated by Π) and Poincaré return map: (A) at the
bifurcation point, (B) beyond the bifurcation point.

and the Poincaré map are then both two-dimensional. As the bifurcation
point is approached, moving in the reverse direction, the two limit cycles
in Figure 3.29 approach one another, eventually coalescing into a saddle-
nodal cycle, which then disappears, hence the name of the bifurcation. In
the Poincaré sections, this corresponds to the nodal fixed point coalescing
with the saddle point, producing a saddle-node fixed point. The result is a
saddle-node bifurcation of fixed points. Examining the Floquet multipliers
associated with the two cycles in Figure 3.29, one can see that the bifurca-
tion again occurs when a Floquet multiplier moves through +1 on the unit
circle. Just as a saddle-node bifurcation of fixed points can also produce
an unstable node and a saddle point, the saddle-node bifurcation of limit
cycles can also result in the appearance of an unstable nodal cycle and a
saddle cycle.

3.5.7 Bistability of Periodic Orbits

We have previously considered situations in which two stable fixed points
can coexist. It is also possible to have coexistence of two stable limit cycles.
An example of this is shown in Figure 3.30A, in which a single cell isolated
from the rabbit ventricle is driven with a train of current pulse stimuli
delivered at a relatively fast rate. At the beginning of the trace, there is
1:1 synchronization between the train of stimulus pulses and the action
potentials. This periodic behavior corresponds to a limit cycle in the phase
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Figure 3.29. Saddle (top) and nodal (bottom) limit cycles produced by sad-
dle-node bifurcation in a three-dimensional system. Adapted from Abraham and
Shaw (1982).

space of the system. At the arrow, a single extra stimulus pulse is delivered.
This extra stimulus flips the 1:1 rhythm to a 2:1 rhythm, in which every
second stimulus produces only a subthreshold response. Similar behavior
can be seen in an ionic model of ventricular membrane (Figure 3.30B).

There are thus two stable rhythms that coexist, with one or the other
being seen, depending on initial conditions. It is also possible to flip from the
1:1 to the 2:1 rhythm by dropping pulses from the basic drive train, as well
as to flip from the 2:1 rhythm back to the 1:1 rhythm by inserting an extra
stimulus with the correct timing (Yehia, Jeandupeux, Alonso, and Guevara
1999). Similar results have also been described in the quiescent dog ventricle
(Mines 1913) and in aggregates of spontaneously beating embryonic chick
ventricular cells (Guevara, Shrier, and Glass 1990).

The existence of bistability means that hysteresis can be seen: The tran-
sition from 1:1 to 2:1 rhythm does not occur at the same driving frequency
as the reverse transition from 2:1 to 1:1 rhythm. A systematic study of
this phenomenon has been carried out in dog ventricle (Mines 1913),
aggregates of spontaneously beating embryonic chick ventricular cells (Gue-
vara, Shrier, and Glass 1990), frog ventricle (Hall, Bahar, and Gauthier
1999), and single rabbit ventricular cells (Yehia, Jeandupeux, Alonso, and
Guevara 1999).

The bistability of Figure 3.30 implies that there are two stable limit
cycles present in the phase space of the system. The simplest way in which
this can occur is if there is an unstable limit cycle also present, with its
stable manifold (vase-shaped surface in Figure 3.31) acting as the separatrix
between the basins of attraction of the two stable limit cycles. Suppose
that as a parameter is changed, there is a reverse saddle-node bifurcation
of periodic cycles, destroying the unstable saddle limit cycle and one of
the two stable nodal limit cycles. In that case, bistability would no longer
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Figure 3.30. Bistability between 1:1 and 2:1 rhythms in (A) a periodically driven
single cardiac cell isolated from the rabbit ventricle, (B) an ionic model of
ventricular membrane. From Yehia, Jeandupeux, Alonso, and Guevara (1999).

be present, since there would be only a single limit cycle left in the phase
space of the system, which would be stable, resulting in monostability.

Figure 3.31. Coexistence of two stable (nodal) limit cycles, producing bistability
of periodic orbits. Cycle in middle of picture is unstable (saddle) limit cycle. From
Abraham and Shaw (1982).
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3.6 Period-Doubling Bifurcation of Limit Cycles

3.6.1 Physiological Examples of Period-Doubling Bifurcations

Figure 3.32 shows an example of a period-doubling bifurcation in a single
cell isolated from the rabbit ventricle that is subjected to periodic driving
with a train of current pulses. As the interval between stimuli is decreased,
the 1:1 rhythm (Figure 3.32A), in which each stimulus pulse produces an
identical action potential, is replaced with an alternans or 2:2 rhythm (Fig-
ure 3.32B), in which two different morphologies of action potential are
produced, which alternate in a beat-to-beat fashion. Figure 3.33 shows
similar behavior in an ionic model of ventricular membrane.

500 ms

A

B

 0

 mV

-50

Figure 3.32. Periodic stimulation of a single rabbit ventricular cell results in (A)
1:1 or (B) 2:2 rhythm. From Guevara et al. (1989).

Another example from electrophysiology involves periodic driving of the
membrane of the squid giant axon with a train of subthreshold current
pulses (Figure 3.34). As the interval between pulses is increased, there is
a direct transition from a 1:0 rhythm, in which there is a stereotypical
subthreshold response of the membrane to each stimulus pulse, to a 2:0
response, in which the morphology of the subthreshold response alternates
from stimulus to stimulus. One can also obtain responses similar to those
seen in the experiments on the squid (Figure 3.34) in a reduced two-variable
model, the FitzHugh–Nagumo equations (Kaplan et al. 1996).
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Figure 3.33. (A) 1:1 and (B) 2:2 rhythms in an ionic model of ventricular
membrane. From Guevara et al. (1989).
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Figure 3.34. (A) 1:0 and (B) 2:0 subthreshold responses of the giant axon of the
squid. From Kaplan et al. (1996).

3.6.2 Theory of Period-Doubling Bifurcations of Limit Cycles

In the two examples shown just above, as a parameter is changed, a periodic
rhythm is replaced by another periodic rhythm of about twice the period
of the original rhythm. In fact, a period-doubling bifurcation has taken
place in both cases. When a period-doubling bifurcation occurs, a limit
cycle reverses its stability, and in addition, a new limit cycle appears in its
immediate neighborhood (Figure 3.35). This new cycle has a period that is
twice as long as that of the original cycle. We have previously encountered
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the period-doubling bifurcation in the setting of a one-dimensional finite-
difference equation (Chapter 2). In that case, a period-1 orbit is destabilized
and a stable period-2 orbit produced.

Note that a period-doubled orbit cannot exist in an ordinary differential
equation of dimension less than three, since otherwise, the trajectory would
have to cross itself, thus violating uniqueness of solution. The trajectories
and orbits shown in Figure 3.35 are thus projections onto the plane of
trajectories in a three- or higher-dimensional system.

Figure 3.35. Period-doubling bifurcation of a limit cycle. From Guevara and
Jongsma (1992).

A period-doubling bifurcation can be supercritical, as shown in Fig-
ure 3.35, or subcritical. Figure 3.36 gives the two corresponding bifurcation
diagrams.
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Figure 3.36. Bifurcation diagram of period-doubling bifurcation: (A) Supercritical
bifurcation, (B) Subcritical bifurcation.
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3.6.3 Floquet Multipliers at the Period-Doubling Bifurcation

A limit cycle undergoes a period-doubling bifurcation when one of its real
Floquet multipliers passes through −1 on the unit circle (Figure 3.37A).
To appreciate this fact, we must first understand how it is possible to have
a negative Floquet multiplier. A negative Floquet multiplier implies, for a
limit cycle in a two-dimensional system, that the slope of the return map
must be negative. This means that a trajectory that has just intersected
the Poincaré plane of section must next pierce the plane of section, which
is a one-dimensional curve in a two-dimensional system, at a point on the
other side of the limit cycle (Figure 3.37B). This cannot happen for a two-
dimensional system defined in the plane, since to do so the trajectory would
have to cross the limit cycle itself, thus violating uniqueness of solution.
One way that this can happen in a two-dimensional system is if the orbit is
a twisted orbit lying in a Möbius band. If the orbit is stable, the multiplier
lies in the range (−1, 0) (Figure 3.37C), while if it is unstable, it is more
negative than −1 (Figure 3.37D).

Figure 3.38 shows a period-doubled cycle in a three-dimensional system.
Also illustrated is the destabilized original cycle, which is a saddle cycle.
In contrast to the case of bistability of periodic orbits (Figure 3.31), the
stable manifold of the saddle cycle is twisted.

Perhaps the most interesting fact about the period-doubling bifurcation
is that a cascade of such bifurcations can lead to chaotic dynamics. We
have already encountered this in the setting of finite-difference equations
(see Chapter 2). Figure 3.39 shows an example of this route to chaos in the
much-studied Rössler equations:

dx

dt
= −y − z, (3.9a)

dy

dt
= x+ ay, (3.9b)

dz

dt
= b+ xz − cz. (3.9c)

As the parameter c in this system of three-dimensional ordinary dif-
ferential equations is changed, the limit cycle (Figure 3.39A-A)undergoes
a sequence of successive period-doublings (Figures 3.39A-B-D) that even-
tually results in the production of several chaotic strange attractors
(Figures 3.39A-E-H show 8-, 4-, 2- and 1-banded attractors). Figure 3.39B
gives the largest Lyapunov exponent as a function of c. Remember that a
positive Lyapunov exponent is evidence for the existence of chaotic dynam-
ics (see Chapter 2). Figure 3.39C gives a return map extracted by plotting
successive maxima of the variable x for c = 5.0. This map is remarkably
similar to the quadratic map encountered earlier (see Chapter 2).
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Figure 3.37. (A) Floquet diagram for period-doubling bifurcation. (B) Poincaré
section of twisted cycle. (C) Stable twisted cycle. (D) Unstable twisted cycle.
Panels A and B from Seydel (1994). Panels C and D adapted from Abraham and
Shaw (1982).

Figure 3.38. Period-doubled limit cycle in a three-dimensional system. Cycle in
middle of picture is the original limit cycle, which has become destabilized. From
Abraham and Shaw (1982).
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Figure 3.39. (A) Phase portraits (projections onto xy-plane) of Rössler equations
(Equation 3.9), showing the cascade of period-doubling bifurcations culminating
in chaotic dynamics. The power spectrum is shown below each phase portrait.
(B) The largest Lyapunov number (λ1) is given as a function of the bifurcation
parameter, c. (C) Return map for strange attractor existing at c = 5.0. Adapted
from Crutchfield et al. (1980) and Olsen and Degn (1985).

3.7 Torus Bifurcation

In a torus bifurcation, a spiral limit cycle reverses its stability and spawns
a zero-amplitude torus in its immediate neighborhood, to which trajecto-
ries in the system are asymptotically attracted or repelled. The amplitude
of the torus grows as the bifurcation parameter is pushed further beyond
the bifurcation point. Figure 3.40 shows a supercritical torus bifurcation
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in a three-dimensional system. One starts off with a stable spiral limit cy-
cle, whose Floquet multipliers are therefore a complex-conjugate pair lying
within the unit circle (Figure 3.40A). Beyond the bifurcation point (Figure
3.40B), the trajectories in the system are now asymptotically attracted to
orbits on the two-dimensional surface of a torus. These orbits can be either
periodic or quasiperiodic. Note that the original limit cycle still exists, but
that it has become an unstable spiral cycle, with a complex-conjugate pair
of Floquet multipliers now lying outside of the unit circle (Figure 3.40B).
A torus bifurcation thus occurs when a complex-conjugate pair of Floquet
multipliers crosses the unit circle (Figure 3.40C). Figure 3.41 gives the
bifurcation diagram.

B

C

A

Figure 3.40. The torus bifurcation in a three-dimensional system. (A) A stable
spiral limit cycle and its Floquet diagram. (B) Unstable limit cycle produced as
a result of torus bifurcation. (C) Floquet multipliers crossing through unit circle
at torus bifurcation point. Panels A (left) and B (left) adapted from Abraham
and Shaw (1982). Panels A (right), B (right) and C adapted from Seydel (1994).

To understand why at a torus bifurcation a pair of complex-conjugate
Floquet multipliers goes through the unit circle (Figure 3.40C), we must
consider the significance of a Floquet multiplier being a complex number.
Before the torus bifurcation occurs, when we have a stable spiral cycle (Fig-
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Figure 3.41. Bifurcation diagram of supercritical torus bifurcation. Solid curve:
stable limit cycle, dashed curve: unstable limit cycle, filled circles: attracting
torus.

ure 3.40A), the presence of a complex pair of multipliers within the unit
circle means that the fixed point in the two-dimensional Poincaré return
map is a stable spiral point (Figure 3.42A). The torus bifurcation of the
orbit corresponds to a Hopf bifurcation in the map, which converts the sta-
ble spiral fixed point of the map into an unstable spiral point, spawning an
invariant circle in its neighborhood (Figure 3.42B). This invariant circle
corresponds to the piercing of the Poincaré plane of section by a quasiperi-
odic orbit lying in the surface of the torus that asymptotically visits all
points on the circle. Because of its association with a Hopf bifurcation on
the return map, the torus bifurcation is also called a Hopf bifurcation of
periodic orbits or a secondary Hopf bifurcation. It is also referred to
as the Hopf–Neimark or Neimark bifurcation. (Note: This description
of a torus bifurcation in terms of bifurcations involving its return map is
a bit simplistic, since one can have periodic as well as quasiperiodic orbits
generated on the torus.) While we have illustrated the supercritical torus
bifurcation above, subcritical torus bifurcations, in which an unstable limit
cycle stabilizes and a repelling torus is born, also exist.

Several examples of quasiperiodic behavior have been found in biological
systems. In particular, quasiperiodicity occurs naturally when one considers
the weak forcing of an oscillator (see Chapter 5) or the weak interaction
of two or more oscillators. In these cases, the quasiperiodic behavior arises
out of a torus bifurcation (Schreiber, Dolnik, Choc, and Marek 1988).
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Figure 3.42. (A) Stable spiral point on Poincaré return map of original stable
spiral limit cycle. (B) Invariant circle of Poincaré return map produced by Hopf
bifurcation.

3.8 Homoclinic Bifurcation

A limit cycle is stable if all of its nontrivial Floquet multipliers lie within
the unit circle. If a parameter is gradually changed, the limit cycle can
lose its stability in a “local” bifurcation if and only if one or more of
these multipliers crosses through the unit circle. This can happen in one
of only three generic ways as a single bifurcation parameter is changed: A
single real multiplier goes through +1 (saddle-node bifurcation); a single
real multiplier goes through −1 (period-doubling bifurcation); or a pair
of complex-conjugate multipliers crosses through the unit circle (torus bi-
furcation). However, there are other (nonlocal) bifurcations in which limit
cycles can be created or destroyed. We now turn to consideration of one of
these “global” bifurcations: the homoclinic bifurcation.

A heteroclinic connection is a trajectory connecting two different
fixed points (thick horizontal line in Figure 3.43A). It takes an infinite
amount of time to traverse the connection: The amount of time taken to
leave the starting point of the connection grows without limit as one starts
closer to it, while the amount of time taken to approach more closely the
terminal point of the connection also grows without limit. A heteroclinic
cycle is a closed curve made up of two or more heteroclinic connections
(e.g., Figure 3.43B). To cause confusion, the term heteroclinic orbit has
been used to denote either a heteroclinic connection or a heteroclinic cycle.
We shall not use it further.

A homoclinic orbit is a closed curve that has a single fixed point lying
somewhere along its course. Perhaps the simplest example is the case in
a two-dimensional system in which the homoclinic orbit involves a saddle
point (Figure 3.44A). The homoclinic orbit is formed when one of the pair
of separatrices associated with the stable manifold of the saddle point co-
incides with one of the pair of trajectories forming its unstable manifold
(Figure 3.44B). As with the heteroclinic cycle, the homoclinic orbit is of
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Figure 3.43. (A) Heteroclinic connection. (B) Heteroclinic cycle.

infinite period. (By continuity, it is clear that there must be some other
fixed point(s) and/or limit cycle(s) present within the interior of the ho-
moclinic orbit of Figure 3.44B.) Another type of homoclinic orbit that can
occur in higher-dimensional systems is illustrated in Figure 3.44C. Here, in
a three-dimensional system, the fixed point is a saddle-focus, having a pair
of complex eigenvalues with positive real part, and a single real negative
eigenvalue. Homoclinic orbits are not structurally stable: i.e., an infinites-
imally small change in any system parameter will generally lead to their
destruction, which can then result in the appearance of a periodic orbit
(the homoclinic bifurcation that we shall now discuss) or chaotic dynamics
(e.g., Shil’nikov chaos; see Guevara 1987; Guevara and Jongsma 1992;
Wiggins 1988; Wiggins 1990).

A B C

Figure 3.44. (A) Saddle point in a two-dimensional ordinary differential equa-
tion. (B) Homoclinic orbit involving a saddle point in a two-dimensional
ordinary differential equation. (C) Homoclinic orbit involving a saddle focus in
a three-dimensional ordinary differential equation. Panel C from Guevara and
Jongsma 1992.

In one example of the homoclinic bifurcation in a two-dimensional sys-
tem, there are initially two fixed points, one of which is a saddle point,
and the other an unstable spiral point. There are no limit cycles present.
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As a bifurcation parameter is changed, the curved trajectory associated
with one of the separatrices of the unstable manifold of the saddle point
approaches the trajectory associated with its stable manifold that spirals
out of the unstable spiral point. At the bifurcation point, these two tra-
jectories coincide, producing a homoclinic orbit (the closed curve starting
and terminating on the saddle point). Just beyond the bifurcation point,
the homoclinic orbit disappears, and is replaced by a stable limit cycle.
Thus, the net result of the bifurcation is to produce a stable limit cycle,
since the two preexisting fixed points remain. A homoclinic bifurcation can
also result in the appearance of an unstable limit cycle (simply reverse the
direction of all the arrows on the trajectories in the case described above).

There are several examples of homoclinic bifurcations in biological sys-
tems. Figure 3.45 is an example drawn from an ionic model of the sinoatrial
node. As an increasingly large hyperpolarizing (positive) bias current is
injected, the period of the limit cycle (T ), which corresponds to the inter-
val between spontaneously generated action potentials, gradually prolongs
from its normal value of about 300 ms. At Ibias ≈ 0.39µA/cm

2
, there is

a homoclinic bifurcation, where T →∞. This bifurcation is heralded by
a pronounced increase in the rate of growth of the period of the orbit as
the bifurcation point is approached. This is a feature that distinguishes the
homoclinic bifurcation from the other bifurcations we have studied so far
involving periodic orbits (Hopf, saddle-node, period-doubling, and torus
bifurcations). Another characteristic of the homoclinic bifurcation is that
the periodic orbit appears at large (i.e., finite) amplitude. Of the other bi-
furcations of periodic orbits considered thus far, this feature is shared only
with the saddle-node bifurcation.

3.9 Conclusions

A mathematical appreciation of physiological dynamics must deal with the
analysis of the ways in which fixed points and oscillations can become sta-
bilized or destabilized as parameters in physiological systems are changed.
Over the years, there have been a vast number of purely experimental stud-
ies that document these sorts of dynamic changes. Many such studies are
phenomenological and contain descriptions of remarkable dynamical behav-
iors. These papers now lie buried in dusty libraries, perhaps permanently
lost to the explosion of new information technologies that has left many
classical papers “off-line.”

In this chapter we have illustrated some of the simplest types of bi-
furcations and shown biological examples to illustrate these phenomena.
We have discussed three elementary one-parameter bifurcations involving
fixed points alone (saddle-node, pitchfork, transcritical) as well as one two-
parameter bifurcation (cusp catastrophe). We have also studied the three
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Figure 3.45. Bifurcation diagram giving period of limit cycle when a homoclinic
bifurcation occurs in an ionic model of the sinoatrial node. From Guevara and
Jongsma (1992).

local bifurcations of a limit cycle (saddle-node, period-doubling, torus) as
well as one global bifurcation (homoclinic). Most work in physiology has
centered on the local bifurcations. While there has been relatively little
work on global bifurcations, one can anticipate that this will change in the
future. Several other bifurcations are known to exist (Wiggins 1990), but
have not yet generally shown up in modeling work on biological systems.

3.10 Problems

1. In a negative-feedback system, control mechanisms are present that
act to reduce deviations from a set-point. For example, in a synthetic
pathway with end-product inhibition, each substance is converted
into a new substance, but the rate of synthesis of the initial product
is a sigmoidally decreasing function of the concentration of the last
product in the pathway. This problem illustrates the basic concept
that an oscillation can be produced in a negative-feedback system
by either increasing the gain of the negative feedback (the higher the
value ofm in equation (3.10), the higher the gain) or by increasing the
time delay; see, for example, Goodwin (1963). The oscillation arises as
a consequence of a pair of complex-conjugate eigenvalues crossing the
imaginary axis (a Hopf bifurcation; see Chapter 2). In this context,
the multiple steps of the synthetic pathway induce a delay in the
feedback. However, in other circumstances, such as the control of
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blood-cell production (see Chapter 8) or the control of pupil diameter
(see Chapter 9), it may be more appropriate to represent the time
delay in a negative-feedback system using a time-delay differential
equation.
To illustrate the properties of negative-feedback systems, we consider
a simple model equation

dx1

dt
=

0.5m

0.5m + xm
N

− x1,

dxi

dt
= xi−1 − xi, i = 2, 3, . . . , N, (3.10)

where m is a parameter (often called the Hill coefficient) controlling
the steepness of the negative feedback, N is the number of steps in
the pathway, and x and y are nonnegative.
Determine the conditions for the fixed point at xi = 0.5, i = 1−N
to be stable as a function of m and N . In this problem if you carry
through the computations until N = 7, the mathematics indicates
the possibility for a second pair of complex eigenvalues crossing the
imaginary axis as m is increased. Based on your theoretical under-
standing of the stability of fixed points, do you expect this second
bifurcation to have an effect on the observed dynamics?
An interesting project is to carry out numerical integration of this
equation to compare the theoretically predicted boundaries for sta-
bility of the fixed points with the numerically computed values. Write
a program in Matlab or XPP to numerically study the behavior of
equation (3.10), and determine whether there is any effect on the dy-
namics when the second pair of eigenvalues crosses the unit circle for
N = 7 as m increases.

2. The “Brusselator” is a toy chemical reaction scheme (Prigogine and
Lefever 1968) given by

A −→ X,

2X + Y −→ 3X,

B +X −→ Y +D,

X −→ E.

Given some assumptions, the dynamic equations governing these
reactions are given by

dx

dt
= A+Kx2y −Bx− x = f(x, y),

dy

dt
= −Kx2y +Bx = g(x, y),

where x, y, A, B, and K are nonnegative. Pick K = 1.

(a) Determine the fixed points of the Brusselator.
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(b) Characterize the nature of the fixed points and their stability as
the parameter B is varied. Does a Hopf bifurcation ever occur?
If so, at what value of B? What is the Hopf period at this value
of B?

(c) Sketch the phase portrait of the Brusselator for various regions
of the B versus A parameter space (don’t forget that A and B
are nonnegative).

(d) Write a Matlab or XPP program to numerically investigate the
Brusselator and see how well your analytic predictions match
what is seen experimentally.

3. (This problem is based on the paper by Lengyel and Epstein 1991.)
Assume that two Brusselators are connected by a semipermeable
membrane (that allows both x and y to diffuse down their concentra-
tion gradients), so that the dynamics in each compartment [1 and 2]
are governed by

dx1

dt
= f(x1, y1) +Dx(x2 − x1),

dy1
dt

= g(x1, y1) +Dy(y2 − y1),
dx2

dt
= f(x2, y2) +Dx(x1 − x2),

dy2
dt

= g(x2, y2) +Dy(y1 − y2).

(a) Are there parameter values such that each Brusselator is stable,
but coupling them together produces an instability?

(b) Characterize the nature of the instability as completely as
possible.

(c) Modify the program you wrote for the previous problem to
numerically investigate the behavior of the diffusively coupled
Brusselators. How well do your analytic predictions match what
you observe numerically?

3.11 Computer Exercises: Numerical Analysis of
Bifurcations Involving Fixed Points

In these computer exercises, which involve the use of the Auto feature
of XPP,‡ we will carry out bifurcation analysis on three different simple
one-dimensional ordinary differential equations.

‡See Introduction to XPP in Appendix A.
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Ex. 3.11-1. Bifurcation Analysis of the Transcritical Bifurcation

The first equation we study is

dx

dt
= x(µ− x). (3.11)

The object of this exercise is to construct the bifurcation diagram of
equation (3.11), with x being the bifurcation variable, and µ the
bifurcation parameter. The file xcrit.ode is the XPP file containing
the instructions for integrating the above equation.

(a) Finding the Fixed Points. Start XPP and select the main XPP

window (titled XPP >> xcrit.ode). After turning the bell off
(in the File menu), start the numerical integration. You will
then see a plot of the variable x as a function of time. There
appears to be a stable fixed point at x = 0.

To investigate this further, make runs from a range of initial
conditions. In the Range Integrate menu, change Steps to 40,
Start to −2, End to 2. In the plot window, one now sees the re-
sult of starting at 40 different initial conditions x0 evenly spaced
between x = −2 and x = 2.

The runs starting with x0 = 0 and x0 = −1 show that both of
these points are fixed points. All initial conditions on the interval
(−1, 2] (in fact, (−1,∞)) are attracted to the stable fixed point
at x = 0, while those starting from x < −1 go off to −∞. Thus,
x = −1 is an unstable fixed point.

(b) Effect of changing µ. Now investigate the effect of changing
the bifurcation parameter µ from −1 (the default value assigned
in xcrit.ode) to +1.
Has anything happened to the location of the fixed points or to
their stability?
Repeat the above for µ = 0.
How many fixed points are now present and what can you say
about their stability?

The above method of finding fixed points and their stability
using brute-force numerical integration, visual inspection of the
many traces that result, and repeated change of parameter is
very tedious. It makes far more sense to determine the location
of a fixed point at one value of the parameter and then to follow
it as the parameter is changed using some sort of continuation
technique (Seydel 1988). This is exactly what Auto does.

(c) Plotting the bifurcation diagram with Auto. When you
have opened the Auto window, change Xmin and Ymin to −12,
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and Xmax and Ymax to 12. In the AutoNum window that pops up,
change Par Min to −10 and Par Max to 10 (this sets the range
of µ that will be investigated). Also change NPr to 200 and Norm

max to 20.

We now have to give Auto a seed from which to start. Set
µ = −10.0 in the XPP window Parameters, and set x = −10.0
in the Initial Data window. Now go back to the It’s Auto

man! window and select Run and click on Steady state.

A bifurcation curve with two branches, consisting of two inter-
secting straight lines, will now appear on the plot.
One can save a copy of the bifurcation diagram as a PostScript
file to be printed out later.

(d) Studying points of interest on the bifurcation diagram.
The numerical labels 1 to 5 appear on the plot, identifying points
of interest on the diagram. In addition, Auto prints some rele-
vant information about these labels in the xterm window from
which XPP was invoked.

In this case, the point with label LAB = 1 is an endpoint (EP),
since it is the starting point; the point with LAB = 2 is a branch-
point (BP), and the points with LAB = 3, 4, and 5 are endpoints
of the branches of the diagram. The points lying on the parts of
the branches between LAB = 2 and 5 and betwen LAB = 2 and
3 are stable, and thus are indicated by a thick line. In contrast,
the other two segments between 1 and 2 and between 2 and 4
are plotted as thin lines, since they correspond to unstable fixed
points. Inspect the points on the bifurcation curve by clicking
on Grab in the main Auto window.

Verify that the eigenvalue lies outside of the unit circle for the
first 34 points on Branch 1 of the bifurcation diagram. At point
34, the eigenvalue crosses into the unit circle, and the point
becomes stable.

Ex. 3.11-2. Bifurcation Analysis of the Saddle-Node and Pitch-
fork Bifurcations. You can now invoke XPP again, carry out
a few integration runs over a range of initial conditions, and ob-
tain the bifurcation diagrams for two other files, suggestively named
saddnode.ode and pitchfork.ode. The former is for the equation

dx

dt
= µ− x2, (3.12)
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while the latter is for

dx

dt
= x(µ − x2). (3.13)

Remember that before you run Auto, you must specify a valid starting
point for the continuation: Calculate and enter the steady-state value
of x (in the Initial Data window) appropriate to the particular
value of µ being used (in the Parameters window). If “X out of
bounds” error occurs, this means that x has become too large or too
small. Use Data Viewer window to see whether x is heading toward
+∞ or −∞.

3.12 Additional Computer Exercises

Additional computer exercises involving the material presented in this
chapter appear at the end of Chapter 4, Dynamics of Excitable Cells, in
the context of models of excitable membrane.
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