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Editorial

Arthur T. Winfree (1942–2002)
In this issue, 12 essays to honor the life and
achievements of Art Winfree, a friend and mentor to
all of us, and father to one, are collected. The essays
vary from personal reminiscences to opinionated re-
views to original research articles. Some essays deal with
problems derived directly from Art’s own work; others
with problems that surely would have captured his
attention and critical scrutiny. In this introduction we
summarize Art’s scientific career and provide an
extensive bibliography of his work. The essays that
follow will touch over and over again on the themes that
ran through Art’s research—biological oscillators,
synchronization, geometrical reasoning, phaseless
points, and a creative and playful approach to science.
All of us, in one way or another, owe a deep debt to Art
Winfree for defining a generation of important, challen-
ging, theory-rich problems and pointing the way to their
resolution.
1. Bubbles and blinkers

Art’s joyful, eccentric, creative and gadget-building
approach to science was evident already in his high
school science project: blowing enormous, long-lasting
soap bubbles (see Fig. 1). For this accomplishment he
won the first of many distinctions, a Westinghouse
Science Talent Search finalist in 1961 (Table 1). He went
on to study engineering physics at Cornell University,
and his senior thesis led to his first publication, which set
off a line of scientific inquiry that continues fruitfully to
this day.

Art became interested in the spontaneous synchroni-
zation of populations of biological oscillators. For
example, the pacemaker region of the heart consists of
thousands of cells that produce a regular, collective
rhythm of electrical signals. In some species of fireflies,
males congregate in a tree and flash in synchrony to the
presumed delight of their lady friends. Thousands of
slime mold cells secrete synchronous pulses of cyclic
AMP, a molecular signal that calls them to forego their
solitary existence and adopt a communal lifestyle.
Sidestepping the issue of the molecular, electrical or
e front matter r 2004 Elsevier Ltd. All rights reserved.
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neural bases of these rhythms, Winfree reasoned that, if
it were not for some sort of interaction between them,
each individual cell or organism would oscillate at its
own distinctive frequency and phase, and the output of
the population would be a non-periodic buzz of activity.
What rules bring the separate oscillations into lock step?

In a beautiful paper published in this journal (Win-
free, 1967), Art drew the world’s attention to a new way
of thinking about this problem. Engineers and applied
mathematicians had explored the case of a single
nonlinear oscillator (natural period=T) being driven
by an external periodic signal (period=To), and they
knew that, for |T-To| sufficiently small, the oscillator
would synchronize to the external signal (oscillator
period=To). Art considered the case of a large popula-
tion of weakly interacting oscillators. Each oscillator has
a period (Ti) chosen from a random distribution with a
certain mean and standard deviation.

For weak coupling, each oscillator runs at its natural
period and idiosyncratic phase, and the population as a
whole appears asynchronous and arrhythmic (Fig. 2A).
As the coupling strength increases past a certain
characteristic value (dependent on the variance of
natural periods), the population of oscillators undergoes
an abrupt transition to a synchronized state, where most
individuals oscillate with the same period. The popula-
tion shows a distribution of phases, with the naturally
faster oscillations being phase advanced, and the
naturally slower oscillations lagging behind (Fig. 2B).

This intriguing and insightful paper triggered a large
number of studies that deeply probed the interactions of
coupled oscillators in situations as diverse as the
propagation of chemical waves to the locomotion of
lampreys, led by Y. Kuramoto, N. Kopell, B. Ermentr-
out, S. Strogatz, and others. The field is nicely
summarized in Steven Strogatz’s popular book Sync,
published by Hyperion in 2003.
2. Flies and phaseless states

His interest in biological oscillators led Art to pursue
a Ph.D. at Princeton University, studying circadian
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Fig. 1. Arthur T. Winfree. (A) Bubble Master. From The Associated Newspapers, 1960. (B) Regents Professor.

Table 1

Brief curriculum vitae

1965 Bachelor of Engineering Physics, Cornell University

1970 Ph.D., Biology, Princeton University

1969–1972 Assistant Professor, University of Chicago

1972–1979 Associate Professor of Biological Sciences, Purdue University

1979–1986 Professor of Biological Sciences, Purdue University

1986–2002 Professor of Ecology and Evolutionary Biology, University of Arizona

1989–2002 Regents Professor, University of Arizona

Awards

1961 Westinghouse Science Talent Search Finalist

1982 John Simon Guggenheim Memorial Fellowship

1984 John D. and Catherine T. MacArthur Prize

1989 The Einthoven Award (Netherlands Royal Academy of Sciences, InterUniversity Cardiology Institute, and Einthoven Foundation)

2000 AMS-SIAM Norbert Wiener Prize in Applied Mathematics (shared with A. Chorin)

2001 Aisenstadt Chair Lecturer (Centre de Recherche Mathématiques, Université de Montréal)
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rhythms in fruit flies in the laboratory of a famous
physiologist, Colin Pittendrigh. By a brilliant analysis of
classical experiments on phase resetting, Art concluded
that the circadian oscillator, which everyone believed to
be extremely robust, could be silenced by a mild
perturbation applied at just the right time. His argument
was as compelling as it was unusual.

Circadian rhythms, such as our 24 h cycle of sleep
and wakefulness, persist under conditions of constant
darkness or low illumination. The rhythm can be
phase advanced or delayed by brief light pulses. This
property of circadian rhythms underlies recovery from
jet lag. Examining many such experiments, Art plotted
‘‘new phase’’ (after the light pulse) as a function of
‘‘old phase’’ (at the time of the light pulse). Depending
upon the intensity and/or duration of the light pulse,
Art found two characteristic patterns (Fig. 3). A weak
pulse causes only a small change in phase, so the line
of new phases bobbles above and below the dia-
gonal line, where new phase=old phase. For strong
perturbations, the oscillator is reset to a nearly
constant phase, regardless of the phase at the time
of the pulse. Hence, the line of new phases bobbles
above and below a horizontal line, where new phase=
constant.

Next Art pointed out that, since phase is a periodic
variable (0 and 2p are identical phases), the lines plotted
on Fig. 3A and B are more naturally plotted on the
surface of a torus, Fig. 3C and D. For a weak pulse, the
line relating new phase to old phase passes once through
the hole of the torus (hence, ‘‘Type 1’’ phase resetting);
whereas, for a strong pulse the line does not pass
through the hole (‘‘Type 0’’). Now, he reasoned, new
phase seems to be a function of old phase and strength
of the perturbing light pulse, new phase=F(old phase,
intensity), but it cannot be a continuous function. There
must be places on the (old phase, intensity) domain
where the function F is undefined (such places are called
singularities of the function). If F were a continuous
function of old phase and intensity, then the topological
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Fig. 3. Types 1 and 0 phase resetting. (A and B) After being perturbed trans
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Fig. 2. Populations of weakly coupled oscillators. (A) Unsynchronized

population. Each oscillator runs at its natural period, some being

faster than average and others slower (top). Also, the oscillators are

out of phase with one another, i.e., the phase distribution (bottom) is

uniform. (B) Synchronized population. All oscillators adopt the same

period (top), and each oscillator locks into the rhythm at a particular

phase (bottom), the naturally faster oscillators being phase advanced

and the naturally slower oscillators being phase delayed.

Editorial / Journal of Theoretical Biology 230 (2004) 433–439 435
invariant of the curve (the integer number of times it
passes through the center of the torus) could never jump
discontinuously from 1 to 0 as intensity increases.
Therefore, Art concluded, there must be at least one
combination of old phase and intensity for which F(old
phase*, intensity*) is undefined. In fact, he showed that
on a sufficiently small circle around the special point
(old phase*, intensity*) where the phase is undefined,
the function F must adopt all values from 0 to 2p. At the
critical combination of old phase* and intensity*, the
rhythm is phaseless, just like, at the North or South
Pole, one cannot say what time of day it is.

Art suspected that, if he could find this critical
combination of old phase and intensity, then he could
turn off the circadian oscillator, in the sense that a
population of treated organisms would have no
consistent sense of phase (i.e., time of day). To test
these abstract theoretical concepts in a real example, he
then designed and built an elegant ‘‘fly machine’’ to send
fruit flies into the phaseless state. Normally, after being
transferred from light to dark, fruit flies emerge from the
pupal stage at about (24n+18) hours, where n is an
integer between 3 and 7. By delivering short light pulses
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of precise timing and duration to populations of flies,
Art probed the three-dimensional surface that related
the new phase to the time of perturbation and the light
intensity and found the critical combination (old phase*,
intensity*) that desynchronizes the eclosion rhythm.
This work is beautifully described in Winfree (1970a,b).
Art’s insight that the topological properties of the
curves describing the resetting of nonlinear oscilla-
tors should be universal, and not depend on the
particular oscillator being studied, has stimulated a
large number of investigations by J. Jalife, M. Guevara,
A. Shrier, D. Paydarfar, C. Czeisler, R. Kronauer,
and others. Art’s Scientific American book, The

Timing of Biological Clocks (Winfree, 1986), provides
a popularized introduction to the concepts of bio-
logical clocks and how they manifest themselves in our
everyday lives.
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Fig. 4. The topology of spiral waves. (A) Snapshot of a two-

dimensional excitable medium containing a rotating spiral wave. Most

points in the domain (but not necessarily every point) undergo periodic

oscillations of the state variables with common period, To; hence, to

each oscillatory point we can assign a certain phase angle between 0

and 2p. (B and C) For circuits 1 and 0 in panel A, we plot the local

phase of oscillation (ordinate) against the phase angle of position on

the circuit (abscissa). Proceeding around circuit 1, we see all phases of

the oscillation from 0 to 2p. Proceeding around circuit 0, we see only

some phases, say from p to 3p/2. Let us introduce a parameter l that

continuously transforms circuit 1 (at l ¼ 1) into circuit 0 (at l ¼ 0).

The phase function F(phase angle, l) cannot be a continuous function

of its two arguments, because it has topological type 1 at l ¼ 1 and

topological type 0 at l ¼ 0. There must be at least one phaseless point,

where F(phase angle*, l*) is undefined. In the figure the phaseless

point is marked by a +. For a rigidly rotating spiral, the phaseless

point (+) stays fixed in space as time proceeds. But nothing in the

topological argument precludes the phaseless point from moving

continuously in space as time proceeds. This phenomenon, called

‘‘meander,’’ was clearly described by Winfree in observations of the

BZR and in computer simulations of excitable media.
3. Spirals and scrolls

Before completing his Ph.D. dissertation, Art was
offered an Assistant Professorship in the Program in
Theoretical Biology at the University of Chicago,
headed then by Jack Cowan. It was here that we
authors fell under the spell of Art Winfree and another
young Assistant Professor, Stuart Kauffman. Along
with his flies, Art brought to Chicago a new experi-
mental system: the Belousov–Zhabotinsky reaction
(BZR). The BZR is a relatively simple oxidation–reduc-
tion reaction (dicarboxylic acid+BrO3

�-CO2+Br2+-
other products). In a well-stirred beaker, as chemists are
wont to carry out their reactions, the BZR exhibits
unusual sustained oscillations in oxidation state (peri-
odic production and removal of HBrO2 and other
intermediate oxidation states).

Art realized that, if the reaction were carried out in a
thin layer of unstirred solution, then each local region of
space would function as an oscillator loosely coupled to
its neighbors by diffusion. Like his fly machine, the
unstirred BZR could function as a singularity trap. Art
reasoned that if the singular phaseless point of the
oscillator could somehow be trapped in space, it would
form the center of a rotating spiral wave (Fig. 4), and he
set out to find rotating spiral waves in thin layers of the
BZR. In fact, he rediscovered spiral waves (Winfree,
1972); Zhabotinsky first described them in a 1970
Russian report. Later, Zhabotinsky and Zaikin pub-
lished their first English description of spiral waves in
this journal in 1973.

Next, Art realized that a rotating two-dimensional
spiral wave is just a slice through a three-dimensional
spatiotemporal structure, which he called a scroll wave
(Winfree, 1973a). Just as a spiral wave rotates around a
phaseless point, a scroll wave rotates around a phaseless
filament. In a thin layer of BZR, the filament is a
straight-line segment standing upright in the solution
(perpendicular to the two interfaces). In a deeper
solution, Art wondered, what might become of the
filament? Might it break loose from the interfaces and
connect with itself to form a closed ring in the interior of
the solution? Might the filament tie itself in a knot
before closing?

Art looked for scroll rings in a most ingenious
fashion. After soaking filter papers in BZR, he stacked
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them like pancakes and initiated a rotating scroll
wave. To capture and dissect the ‘‘beast,’’ he quickly
unstacked the filter papers and dropped them into a
chemical fixative to stop the reaction. Then, by
examining the patterns of oxidized and reduced regions
in each slice of the reaction, he could reconstruct the
three-dimensional shape of the scroll wave. In this way
he proved the existence of scroll rings (Winfree, 1974).
As a side effect of these experiments, Art realized that he
could enliven his lectures by passing out small disks of
millipore filter soaked in BZR, so that everyone could
see with their own eyes the beautiful spiral waves that
rotate sedately in the immobilized reaction. For a fuller
description of the BZR on millipore filters, see The

Geometry of Biological Time (Winfree, 1980) p. 302, or
the Second Edition (2001) on p. 370, with references to
some more recent work.

At about this time, Art left Chicago for Purdue
University, where he put together his masterpiece, The

Geometry of Biological Time (Winfree, 1980), in which
he drew together all the ideas that had been fermenting
in his mind for 15 years. True to form, he did not write a
dry synopsis of well-established results but rather a
lively hodge–podge of questions, answers, puzzles,
partial solutions, and future directions.

In the early 1980s Art was joined at Purdue by a
talented young mathematician, Steven Strogatz, who
worked with Art briefly before embarking on a graduate
degree at Harvard. Together they published a series of
groundbreaking articles on the topological rules govern-
ing scroll wave filaments in three-dimensional oscilla-
tory and excitable media (Winfree and Strogatz, 1982,
1983, 1984a–c).
4. Flutter and fibrillation

Although rotating spiral and scroll waves in the BZR
were nothing more than curious distractions to the
majority of chemists, suitable mainly for classroom
wizardry, Art recognized that the same waves might
arise in heart muscle, where they would manifest
themselves as pernicious rapid heart beats. Although
this idea was not his own creation—as early as 1948
Wiener and Rosenblueth had expressed a similar notion,
and the analysis of spiral autowaves was undergoing
active development by Valentin Krinsky and colleagues
in the USSR—Art pursued it diligently from his
characteristic topological perspective. He wanted to
know how rotating waves could appear suddenly in a
heart that had hitherto been beating normally. He
showed that certain aberrant electrical stimuli, of just
the right strength at just the right time (or should we say
‘‘just the wrong strength and wrong time’’), could create
a pair of phase singularities, around which a pair of
counter-rotating spirals would spontaneously form
(Winfree, 1983, 1989). This brilliant prediction was
soon verified in many cardiology laboratories, and led
eventually to Art’s receipt of the Einthoven Award for
Cardiology in 1989.

One or two rotating scroll waves or spiral waves in
heart tissue would be recognized by a clinician as a fast
heart rate (rapid, inefficient heart contractions)—a
tachycardia. However, hearts also exhibit fibrillatory
rhythms that are associated with highly irregular
dynamics. Fibrillation can occur in the upper chambers
of the heart (the atria) leading to a non-fatal but
potentially disabling arrhythmia, or in the lower
chambers (the ventricles) leading to a fatal arrhythmia.
These fibrillatory rhythms might be associated with
multiple rotating waves that arise from the spontaneous
fractionation of regular waves into myriad small foci of
rotating scroll waves.

To understand the origins of fibrillation and potential
treatments, Art initiated several different lines of
enquiry. In careful numerical and experimental studies
of two-dimensional excitable media, Art demonstrated
that rotating spiral waves often meander in space—the
exact geometry of the meander depending on the
parameters of the differential equations or the experi-
mental preparation (Winfree, 1990a). Moreover, in
some instances, spiral waves spontaneously break up,
leading to many independently rotating spiral waves
(Courtemanche and Winfree, 1991).

In order to investigate the stability of the twisted
and knotted scroll waves that he and Steve Strogatz
predicted to exist and to determine initial condi-
tions that might lead to these waves, Art and his
students began an ambitious project of super-computer
calculations of three-dimensional scroll wave dyna-
mics (Nandapurkar and Winfree, 1987; Winfree,
1990b,1994; Henze and Winfree, 1991). To determine
the geometry of wave propagation in intact heart, Art
collaborated with the late Frank Witkowski, a brilliant
cardiologist who was building an optical mapping
apparatus to study wave propagation in heart during
fibrillatory rhythms by measuring the fluorescence of
heart tissue stained with voltage-sensitive dyes. This
work led to the observation of rotating spiral waves
from the surface of a sheep heart during ventricular
fibrillation (Witkowski, et al., 1998). Art’s ideas about
cardiac arrhythmias and their relationship to rotating
spiral and scroll waves are summarized in his book,
When Time Breaks Down (Winfree, 1987). This book
helped to shape experimental and theoretical work by
many investigators, including R. Ideker, J. Jalife, J.
Keener and A. Karma.

In 1987, Art moved from Purdue to the University of
Arizona, where he continued his research on chemical
reactions and cardiac muscle, somewhat incongruously,
in the Department of Ecology and Evolutionary
Biology.
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5. Back to BZ

Though good at it, Art was never truly comfortable
with computer simulations. To him they were guides to
his intuition, geometric vision, and experimental tinker-
ing. How would it be possible to confirm experimentally
the predicted existence of stable scroll rings and other
more exotic, three-dimensional, rotating structures?
Although it seemed likely that scroll rings could rotate
deep in the heart, optical studies of wave propagation in
heart tissue were only capable of imaging a thin surface
layer, so it was impossible to observe scroll rings
directly.

Hoping to find sound experimental evidence for the
subtle and spectacular patterns playing out in his
computer simulations, Art designed and built a system
to measure with high resolution the concentration
patterns of BZR intermediates in space and time. It
was essentially a high-tech version of his stacked filter
papers. By shining a light through the BZR and
scanning the absorption of light at different angles, he
used tomographic reconstruction techniques to deter-
mine the geometry of the three-dimensional rotating
structure. In Winfree et al. (1996), he described the
many technical hurdles that had to be overcome and
presented unequivocal evidence that the detailed anat-
omy of rotating scroll waves could in fact be observed in
real systems. In what we believe is Art’s last paper on
this problem, published post-humously, he addressed
some of these matters computationally (Sutcliffe and
Winfree, 2003). Unfortunately, following the demon-
stration of optical tomographic imaging of the BZR, the
projected use of this method to study a host of other
problems (such as the initial conditions needed to seed
various three-dimensional structures, and the dyna-
mics and stability of knotted and twisted scroll rings
in real systems) was never completed. Those problems,
many of which are sketched out in a recent review
(Winfree, 2001), remain a part of Art’s legacy to future
generations.
6. Scientist and visionary

Although many people regard Art Winfree primarily
as a theoretician, the essence of his science really
emerges from the lively way his theorizing led to
predictions that could be tested experimentally. His
experimental designs wove deep topological notions into
the thinking of circadian physiologists, physical che-
mists, and cardiologists. Before Winfree’s analysis,
many people had done experiments in which stimuli
were used to reset circadian clocks or perturb cardiac
rhythms. But the unexpected results found by Winfree
and others when his theoretical ideas were confirmed by
experimental observations remain landmark studies
elucidating the universal properties of biological
rhythms.

Art Winfree was perhaps the most self-sufficient
scientist we have known. In contrast to today’s
environment that often favors large research groups
and selects for scientists who are good managers, Art
preferred to work alone or at most with a small group of
select students. He developed the theory, built the
equipment (usually from his collections of miscellaneous
electrical and mechanical parts scavenged from dis-
carded equipment), managed the computers, wrote the
code, drew the figures, and composed the papers.
Although his research was usually funded, the amounts
requested were purposefully small, enough to pay the
bills for the next few years.

Art’s influence derives not only from his own work
but also from the way he interacted with colleagues,
friends, and strangers, urging them to dig deeper. In the
days before email, sending a draft of a paper to Art
would lead a few days later to a returned copy, filled
with markings in green felt-tipped pen, pointing out
where ideas were vague or where new directions could be
taken, as well as giving enthusiastic bravos for new
discoveries. The degree of care he took critiquing the
ideas of his colleagues is witnessed by a host of papers
that end with ‘‘Thanks to A. T. Winfree for helpful
conversations.’’

Art reveled in thinking about all aspects of nature.
Although we have focused on the work for which he is
best known, his curiosity extended in many directions.
What controls the spiral rings in Nectria (Winfree,
1973b), or the patterns in arthropod cuticles (Gordon
and Winfree, 1978), or the flowering of morning glories
(Winfree, 1976)? Each of these topics, having captured
his fancy for a time, was put aside in favor of
investigations into the dynamics of cardiac arrhythmias
in the 1980s and 1990s. Who knows what important new
science these passing fancies may lead to someday?

Art was a scientist who played in many fields of
science, wherever his deep geometric insights revealed
new and subtle properties of the spatial and temporal
organization of living and non-living systems. He has
had a strong influence on his friends and colleagues, and
he is sorely missed.
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