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Two qualitatively different unstable dynamical behaviours are shown to 
arise from the application of a periodic input to a simple mathematical 
model of an oscillator in the presence of noise. Rhythms similar to 
quasiperiodic dynamics may arise when there is a low amplitude periodic 
input, while with high amplitude inputs, patterns with irregular skipped or 
intercalated beats are found. These two qualitatively different types of 
unstable dynamics are similar to those observed in the respiratory activity 
of mechanically ventilated cats. A number of numerical simulations are 
performed to illustrate the quantitative properties of the two unstable 
patterns and to show how the quantitative properties can be compared with 
experimental data. 

1. Introdoction 

Often a biological rhythm in an organism may be affected by other rhythms 
in the same organism or by external rhythms imposed from the outside. 
Interaction between the rhythms may lead to entrainment or phase locking, 
so that for every N cycles of one rhythm there are M cycles of the second 
rhythm, where N and M are (typically small) integers. Moreover, the two 
rhythms may phase lock with fixed phase relations. Representative exam- 
ples of phase locking include: synchronization of circadian activity cycles to 
light-dark cycles of 24 hours (Bunning, 1967; Swade, 1969; Pavlidis, 1973); 
synchronization of limbs during locomotion (Van Holst, 1973; Stein, 1976, 
1978); synchronization of the heart beat to periodic stimulation (Moulo- 
poulos, Kardaras & Sideris, 1965; Reid, 1969; van der Tweel, Meijler & van 
Capelle, 1973), synchronization of pacemaker neurons in sea slugs to 
periodic stimulation of inhibitory interneurons (Moore, Segundo & Perkel, 
1963; Perkel et al., 1964; Pinsker, 1977), and synchronization of glycolysis 
to periodic addition of substrate (Boiteux, Goldbeter & Hess, 1975). 
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In preparations in which phase locking has been found, there are some- 
times circumstances in which phase locking does not occur and the resulting 
rhythms are not periodic in time (Ayers & Selverston, 1979; Boiteux, 
Goldbeter & Hess, 1975; Moulopoulos, Kardaras & Sideris, 1965; Pavlidis, 
1973; Perkel et al., 1964; Pilkington, 1976; Reid, 1969; Swade, 1969; van 
der Tweel, Meijler & van Capelle, 1973; von Holst, 1973; Wendler, 1974; 
Wilkens & Young, 1975). These rhythms have been called “oscillatory free 
runs” in the circadian literature (Swade, 1969; Pavlidis, 1973), and are often 
referred to as a type of “relative co-ordination” in the neural oscillator 
literature (von Holst, 1973; Ayers & Selverston, 1979). A related 
phenomenon, the periodic respiratory modulation of cardiac frequency is 
called “respiratory sinus arrhythmia” (Watanabe & Dreifus, 1977). Most 
theoretical and experimental work has concentrated on the analysis of stable 
phase locked patterns, and relatively little attention has been given to the 
mechanisms underlying the generation of unstable patterns of oscillator 
interactions (see, however, Moore, Segundo & Perkel, 1963; Swade, 1969; 
Pavlidis, 1973). Here, a unified, simple mechanism for the generation of 
phase locking phenomenon and unstable patterns from the interaction of 
biological oscillators is described. 

Our interest in these unstable patterns has been stimulated by experi- 
mental work, currently under way in our laboratory, examining the phase 
locking of the phrenic nerve activity of a paralyzed, anesthetized cat to a 
ventilator. The phrenic nerve innervates the diaphragm and phrenic nerve 
activity causes the diaphragm to contract and descend, promoting inspira- 
tion. In the paralyzed cat, the neuromuscular junctions at the diaphragm are 
blocked and phrenic activity does not cause inspiration. However, lung 
inflation nevertheless serves to modulate the respiratory rhythm generated 
in the brainstem by the Hering-Breuer reflexes (Clark & von Euler, 1972; 
Wyman, 1977). These reflexes shorten inspiratory time (the interval during 
which the phrenic nerve is active) and lengthen expiratory time (the interval 
during which the phrenic nerve is silent) during lung inflation. By changing 
the frequency and amplitude of the ventilator, a variety of different phase 
locking patterns (e.g. ventilator frequency/phrenic frequency = l/2, Z/3, 
l/l, 3/2,2/l, 3/l) can be elicited (Petrillo, Glass & Trippenbach, 1980). In 
addition to these phase locked patterns, there are also patterns which are not 
phase locked. Two typical examples taken from recordings of about 50 
ventilation periods are shown in Fig. 1. 

In Fig. l(a) there is a continuous phase shift of the phrenic activity so 
each subsequent phrenic onset occurs later in the ventilation cycle. This is 
similar to “oscillatory free runs” (Swade, 1969; Pavlidis, 1973), to unstable 
patterns often observed in coupled neural oscillators (Ayers & Selverston, 
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FIG. 1. Examples of non-phase locked respiratory behaviour in anesthetized, paralyzed, 
artificially ventilated cats. Records (a) and (b) are from different animals. (a) “Quasi-periodic” 
behaviour showing a progressive phase shift between pump cycle and phrenic activity. Pump 
frequency = 30 min- , r inflation volume = 18 ml, end-tidal CO2 = 6-O%, end tidal 0s = 15%. 
(b) Asynchronous behaviour between pump cycle and phrenic activity. Pump frequency= 
14.3 min-‘, inflation volume = 30 ml, end-tidal CO2 = 6.8%, end tidal O2 = 16%. 

1979; Pilkington, 1976; von Holst, 1973; Wendler, 1974; Wilkens & 
Yound, 1975) and to unstable patterns observed from periodic input to the 
heart (Moulopoulos, Kardaras & Sideris, 1965; Reid, 1969; van der Tweel, 
Meijler & van Capelle, 1973). 

The pattern in Fig. l(b) is quite different from l(a). During some ventila- 
tor cycles there is one phrenic burst and during others there are two. 
However, we have not found a way to predict whether one or two phrenic 
bursts will occur in any given ventilator cycle. Although patterns similar to 
Fig. l(b) have not, to our knowledge, been previously described in the 
experimental literature, some cardiac arrhythmias display skipped (or extra, 
or different) beats occurring at unpredictable intervals (Brooks & Lu, 1973; 
Pick, Langendorf & Jedlicka, 1973; Watanabe & Dreifus, 1977). 

A major motivation for this work is the observation that the two types of 
experimentally observed dynamics displayed in Fig. 1 appear to be related to 
two possible types of unstable dynamics in a deterministic model for phase 
locking which has recently been proposed (Glass & Mackey, 1979). In this 
model, described in section 2, long and complex phase locking patterns were 
observed. In section 3, we show by computer simulation that the addition of 
noise to the deterministic model destroys these complex phase locking 
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patterns. Moreover, there is a striking qualitative similarity between the 
patterns in the mathematical model and the experimentally observed 
unstable coupling patterns (cf. Fig. 1 and Fig. 2). In section 4 the implications 
of this work for experimental biologists, mathematicians, and clinicians are 
discussed. The Appendix contains an algorithm for computing phase locking 
patterns for the model in the absence of noise. 
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FIG. 2. Representative examples showing’unstable coupling patterns for the model described 
in section 3. The long, heavy bars mark successive periods of the periodic sinusoidal input, 
whereas the short, lighter bars mark the firing times of the model oscillator with 5% noise. The 
qualitative behaviour corresponds closely to the experimentally observed ctiupling patterns 
shown in Fig. 1. The parameters (see sections 2 and 3 for definition) are: (a) k = 0.05, 
A-’ = l-23; and (b) k = 0.4, A-’ = 0.72. 

2. A Simple Model for Phase Locking (Glass & Mackey, 1979) 

In the respiratory system, lung inflation shortens inspiratory time. The 
precise mechanism underlying this phenomenon is not fully understood. 
However, there is evidence that activity from stretch receptors in the lungs 
(carried through vagal fibres), summates with activity from inspiratory 
neurons in the brain stem. When the summated activity reaches a certain 
critical value, the “off-switch threshold” inspiration is terminated (Bradley 
et al., 1975; Cohen & Feldman, 1977). From a mathematical perspective, 
this mechanism is equivalent to a periodic modulation of a fixed threshold by 
lung inflation. 

In our model for phase locking we have considered the effects of sinusoi- 
dal modulation of the threshold for the simple “integrate and fire” model. 
Although this model was motivated by a consideration of the respiratory 
control system, it is not completely suitable to describe control of respiration 
since the timing of expiration has been neglected. However, as shown below 
there are striking similarities between the dynamics of the simple model and 
phase locking in the respiratory system. 

Assume that an activity X(T) is zero at T = To and increases linearly at a 
rate A, 

X(T)=A(T-To), (1) 
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O(T)=Oo+KsinwT, OIK<Oo, (2) 

where CQ is the mean value of the threshold, K is the amplitude of the 
perturbation and w  is the angular frequency of the perturbation. On 
reaching threshold, the activity resets to zero, and immediately starts 
increasing linearly until it again reaches threshold, and so forth. 

The model equations can be rewritten in terms of dimensionless variables. 
Set 

t = wT/ 21r 

x(t) =X(T)/@,, 

so (1) and (2) become 

e(t) = O(T)/@ 

k = K/C&, 

A = 2?rA/WO~ 

(3) 

x(t) = A (t - to) (4) 

d(t) = 1 + k sin 2rt, O<k<l. (5) 

Note that in (4) and (5), as in (1) and (2), the ratio of the frequency of the 
sinusoidal threshold modulation to the frequency of the autonomous oscil- 
lator(K=k=O)ish-‘. 

The properties of the model for phase locking can be numerically deter- 
mined by solving (4) and (5) for the minimal root t1 > to, where tl represents 
the first firing time (the time when the activity reaches threshold for the first 
time). In a similar fashion the nth firing time (t,) can be determined by 
solving 

x(t)=h(t-t,-t) (6) 

and (5) for the minimal root t,, > r,-,. This thus defines an algorithm for 
determining the sequence of firing times, tl, t2, . . . , t,,, which can also be 
represented by a function g, given by 

We will also write 
ht1 = g(tA. (7) 

t,+l(mod 1) = G(t,) = g(t,)(mod 1). (8) 

Since the threshold curve is periodic with period 1, phase locking will occur if 

lim [m+,&mod 1) - t,(mod l)] = 0. (9) “-CO 
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If (9) is satisfied we say that there is N/M phase locking where N is the 
integer defined by 

N = ,‘\ir (tn+,v - tn) (10) 

and M is the smallest integer for which (9) is satisfied. 
Numerical and analytical methods have been used to study the regions of 

N/M phase locking and the stability of the coupling patterns (Glass & 
Mackey, 1979; Keener, Hoppensteadt & Rinzel, 1980). The results of 
these computations are summarized in Fig. 3, which shows the principal 
phase locking regions. In addition to the regions indicated, other regions of 
higher periodicity are found. Thus in the regions intermediate to the l/l and 
2/3 regions there are a variety of other patterns, including 6/7, 13/16,3/4, 
5/7, and 7/10, and indeed there are an infinite number of stable phase 
locking patterns in regions of (A, k) parameter space between any two stable 
phase-locking patterns (Glass & Mackey, 1979; Keener, 1980). Numerical 
studies indicate that the firing patterns in the stable phase locked zones are 
independent of the initial conditions. 
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FIG. 3. Phase locking patterns in (A, k) parameter space for the deterministic system of 
section 2. The heavy horizontal line separates region A (beneath the line) from region E (above 
the line). The borders of N/l locking patterns (analytically computed) are indicated by thin 
solid lines. Other N/M locking patterns, computed numerically, are shown by dashed lines. All 
phase locked regions extend to k = 0. Reproduced with slight modification from Glass & 
Mackey (1979) with permission. 
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In addition to these stable phase locked patterns, there are also patterns 
which are not phase locked. There are two such qualitatively different types 
of behaviour which occur in different regions of (A, k) parameter space 
separated by the heavy horizontal line (A = 27rk) in Fig. 3. Region A (below 
the line) in which A > 2& and region B (above the line) in which A < 2rrk 
are discussed below. 

In region A the unstable patterns are called quasi-periodic?. For quasi- 
periodic dynamics the map G(t,), in equation (8), is topologically equivalent 
to the map 

GO,,) = t, +p(mod l), (11) 

where p is an irrational number. If the sequence of points tl, t2, . . . , t, (mod 
1) is mapped to the unit circle, then in the limit II -P 00, the unit circle will be 
densely covered with points in the sequence (Coddington & Levinson, 
1955). Quasi-periodic dynamics in region A are expected to occur on a set of 
positive measure (Herman, 1977), so a randomly chosen point in (A, k) 
parameter space has a finite probability of being quasi-periodic. Quasi- 
periodic dynamics in the simple model occurs for weak coupling (k small) 
between the autonomous oscillator and the threshold perturbation. 

The unstable dynamics found in region B are of a different type, and have 
only recently been analytically described (Keener, 1980). In contrast to the 
quasi-periodic case, if the sequence of times defined by (8) is mapped to the 
unit circle, the resulting (Cantor) set is nowhere dense on the unit circle 
(Keener, 1980). The set of (A, k) in region B for which unstable dynamics 
occur is of measure zero, which means that a randomly chosen point (A, k) 
has zero probability of being in the set of parameter values leading to 
unstable dynamics. Consequently, if a physical or biological system could be 
described by the simple model (or one topologically equivalent), unstable 
patterns should not be seen in the strong coupling regions of parameter 
space corresponding to region B, Fig. 3. 

However, in our experimental studies unstable coupling patterns, not of a 
quasi-periodic nature [Fig. l(b)], have been observed. In the next section, 
the addition of noise to the simple model is demonstrated to give unstable 
patterns qualitatively similar to that observed in Fig. l(b). 

t The term ergodic may be used to characterize the dynamics in this case (Coddington & 
Levinson, 1955). However, the term quasi-periodic (Moser, 1973) seems preferable since it is 
more descriptive of the particular sort of ergodic dynamics found. An example of quasi-periodic 
dynamics is a sine wave whose amphtude is sinusoidally modulated where the ratio of the 
frequencies of the two sine waves is irrational. It would be inappropriate to call such dynamics 
“chaotic”. 
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3. The Effects of Noise 

In any physical system there are small stochastic fluctuations due to 
thermal noise. In oscillating biological systems, stochastic fluctuations in 
period and amplitude are expected due to fluctuations in inputs to the 
oscillating system. For example, in “integrate and fire” models a more 
realistic model would be a fluctuating biased random walk towards a fixed or 
perhaps fluctuating threshold (Moore, Segundo & Perkel, 1963). In the 
computations which follow, noise is incorporated in a straightforward way 
suggested to us by A. Lasota. 

Assume that to the deterministic equation (7) is added a stochastic 
perturbation &, so 

tn+1= go”) +sn, (12) 

where & is uniformly distributed on an interval fv. Here, the noise will be 
expressed as a percentage, e.g. 5% noise for Y = O-05. In the strictly 
deterministic case (V = 0) the sequence tl, f2, . . . , f, is determined using the 
algorithm described in section 2, where the sinusoidal threshold is approx- 
imated as a piecewise linear function interpolated at 100 points in one 
period. With noise, ti is the sum of two numbers, the deterministic 
component plus a stochastic component found using a quasi-random 
number generator (RSTART in Fortran IV). 

Figure 2 shows representative firing patterns for the stochastic model with 
5% noise. The parameters were chosen to give qualitative agreement with 
the coupling patterns shown in Fig. 1. In Fig. 2(a) (k = 0.05, A-’ = l-23) the 
firing of the oscillator occurs at successively later phases of the sinusoidal 
oscillator and for approximately every fifth cycle there is no firing [cf. Fig. 
l(a)]. In Fig. 2(a) (k = 0.4, A-’ = 0*72), the firing occurs at preferred phases 
of the sinusoidal oscillator. However, whether 1 or 2 firings will occur in any 
period cannot be predicted [cf. Fig. l(b)]. 

One objective of this work is to show how statistical methods can be used 
to compare quantitative properties of unstable coupling patterns with 
similar qualitative behaviour. To illustrate these techniques, the transition 
from the l/2 to l/l patterns of (12) for the dynamics in region A (k = 0.1) 
and region B ( k = 0.4) was numerically investigated. We show how varying 
amounts of noise can perturb parameters which can be used to characterize 
the dynamics. Four complementary quantitative measures of the coupling 
patterns are considered. Although the simple model proposed in section 2 
does not capture the complete complexity of the interaction between the 
respiratory system and the artificial ventilator, the qualitative (topological) 
properties of the simple model may in fact be preserved in more realistic 
mathematical models of the respiratory system (see Discussion). For this 
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reason, and also to give a focus to the numerical simulation, the results of the 
numerical simulation are compared with the observed dynamics in the data 
of Fig. 1. We emphasize that the comparison of the model with experimental 
data is for illustrative purposes only. 

(A) COUPLING RATIO 

The ratio R between the frequency of the sinusoidal stimulus and the 
average firing frequency will be called the coupling ratio. For the model, the 
frequency of the sinusoidal oscillator is equal to one and the coupling ratio is 
approximated by 

R -Gl+PlI-~~ 
03) 

m 

where the ti are computed using (12). The coupling ratio was numerically 
computed using (13) with II = 25, m = 400 for 50 equally spaced points in 
the range 0,5OSA -’ 5 l-00, both for the deterministic case and with 5% 
noise. 

Figure 4(a) shows the coupling ratio vs. A -’ for k = 0.1. Results are 
indicated by circles for no noise, and triangles for 5% noise. If the coupling 
ratio is constant to within 0.03% (or less) over two or more consecutive 
values of A -’ , the coupling ratio is given by a straight line. From theoretical 
results in the deterministic case it is known that the coupling ratio should be 
piecewise constant over finite intervals (Peixoto, 1962; Glass & Mackey, 
1979). The numerical simulation shows that the size of these intervals, over 

I I 
I ,oo ’ (a) b 

FIG. 4. The coupling ratio R as a function of A-‘. Circles show the case with no noise and 
triangles the case with 5% noise. (a) k = 0.1. (b) k = 0.4. 
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much of the parameter space, is comparatively small. Using a 50-point grid 
in the indicated range, only for 0.91 IA-’ 5 1.00 was a constant coupling 
ratio over two or more consecutive points found. The coupling ratios with 
5% noise are virtually superimposable on those with no noise. Only in the 
neighbourhood of the transition to the region in which R = 1 was there any 
discrepancy. Thus, for A-i = 0.91, R = 0.978 for 5% noise but R = 1.000 
for no noise. For all the points sampled (except for those for which R = 1) it 
was impossible to determine a stable phase locking pattern (see Appendix) 
and if such patterns did exist they have a very long periodicity. 

For k = 0.4, the situation is very different: for all points sampled with no 
noise, a stable phase locking pattern could be identified. These results are 
shown in Fig. 4(b) by the open circles, where a solid horizontal line indicates 
the cases for which the coupling ratio is constant over two or more consecu- 
tive values of A -’ . The preponderance of points sampled displayed “simple” 
locking patterns. Thus, 46 of the 5 1 sampled points gave coupling ratios of 
the form N/M where N, MI 5 (l/2,3/5,2/3,3/4,4/5, l/l). The coupling 
ratios at the remaining points were 6/11,4/7, 15/22,8/11, lO/ll. For 5% 
noise with k = 0.4 the coupling ratios are shown by triangles. Here the 
coupling ratios are piecewise constant only over limited ranges, R = l/2 for 
0*50sA-‘r0*53 and R = 1 for 0.801A-‘<l~OO. 

The results in Fig. 4 are in qualitative agreement with numerical results 
found for similar deterministic (Keener, Hoppensteadt & Rinzel, 1980) and 
stochastic (Moore, Segundo & Perkel, 1963) models. 

It is clear that coupling ratios are a very crude measure of the observed 
dynamics when there is noise. Even though the coupling ratios of a system 
with and without noise may be identical, the qualitative features of the 
dynamics in both cases may be very different. To illustrate this, other 
measures of the observed dynamics are required. 

(B) FIRING SEQUENCE 

The firing sequence is a sequence of non-negative integers which gives the 
number of firing times of an autonomous oscillator in consecutive cycles of 
the perturbing oscillator. Thus, the firing sequence ula2 . . . a, represents a 
coupling pattern in which the autonomous oscillator fires ai times during the 
ith cycle of the perturbing oscillator. The firing sequence can be determined 
from experimental data. For example, the data in Fig. l(b) are a segment of a 
record of 50 ventilator cycles in length. The firing sequence for the entire 50 
consecutive cycles is 

1111112112121121121112112 
(14) 

1211121121212111111211212. 
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The coupling ratio for this sequence is 50/65 = 0.770. In the Appendix a 
heuristic method is given for determining the firing sequences for stable 
phase locked patterns of the deterministic model. In this section we give 
some statistical features of the firing sequence and show how these depend 
on noise. The case for k = O-4 in the neighbourhood of A-’ = 0.72 (R = 
O-75) is examined in detail. For A-’ = 0.72 there is a close correspondence 
between the statistical features of the firing sequence in the simple model, 
for certain noise values, and the firing sequence in (14). The technique is 
appropriate for the firing sequence in (14), and similar methods could be 
used for other firing sequences. 

The firing sequence contains a sparse distribution of twos. To characterize 
such a firing sequence of length L, let N1 be the number of times 212 
appears, NZ be the number of times 2112 appears, and so forth. Define 

Ni ni=-, 
L 

i = 0, 1,2, . . . (15) 

The values of ni for (14) are given in Table 1. 

TABLE 1 
A comparison of the statistical features of the coupling sequence for Fig. l(b), 
equation (14) and the simple model with A -* = 0.72, k = O-4 and 8% noise 

(values in parentheses are the s.d.). The definition of ni is given in (15) 

R n0 n1 n2 n3 

Experiment 0,770 0.000 0.100 0.120 0.040 
Simulation 0.765 0.000 0.104 0.111 0.052 

(0.011) (0.028) (0.028) (0.026) (0.026) 
-- 

114 4 n6 n7 n8 

Experiment 0.000 0.000 0.000 0.000 0.000 
Simulation 0.024 0.010 0.008 0.001 0.001 

(0.014) (0.009) (0.010) (0.003) (0.003) 

We have computed the values of ni for the stochastic model for A -’ = 
O-70, 0.72, O-74 and k = 0.4 at ten noise levels. The computation was 
performed for 100 consecutive periods of the sinusoidal oscillator starting 
after a transient of seven periods of the sinusoidal oscillator. Since there is 
great variability from run to run, the mean and standard deviation, averaged 
over 10 runs at each parameter value, are given. The values for ni, i = 1,2,3, 
which show large changes as a function of noise and A -l, are shown in Fig. 5. 
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FIG. 5. An analysis of the firing sequences, using ni defined in (15), as a function of noise in 
an interval f  Y. Throughout, k = 0.4, and A-’ = 0.70 in al, a2, a3, A-’ = O-72 in bl, b2, b3, 
A-’ = 0.74 in cl, c2, c3. 

In Table 1 computed values for the model are compared with those observed 
in (14), and we find good agreement between statistical features of the 
experimentally observed firing sequence and the model for approximately 
8% noise. For comparison, the effects of noise on the model in region A, 
where k = 0.1 and A -’ = O-72, are shown in Fig. 6. 

In addition to the coupling ratio and firing sequence other quantitative 
measures can be used to characterize the nature of the coupling. Two 

n,$q ::_::Gj ;-,:D 
0 0.05 0.10 0 0.05 0.10 0 0.05 0.10 

v 

FIG. 6. As in Fig. 5, with k = 0.1 and A-’ = 0.72. 
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additional experimentally accessible measures readily derived from a 
knowledge of the precise firing times are described below. 

(C) PHASE DENSITY 

In a phase locked deterministic system there are a finite number of values 
of ti (mod 1). In stochastic systems, and in deterministic systems which are 
not phase locked, the number of firing times (mod 1) is infinite. 

0.3 
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0 0.5 I.0 
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FIG. 7. The phase density histogram for the experimental system averaged over 50 consecu- 
tive cycles of the ventilator. Zero phase is taken as the ventilator maximum. (a) The period of 
the ventilator is 2.0 sand the amplitude is 18 ml [an excerpt is shown in Fig. l(a)]. (b) The period 
of the ventilator is 4.2 s and the amplitude is 30 ml [an excerpt is shown in Fig. l(b)]. 

In Fig. 7 histograms for the phase of the onset of phrenic firing for the data 
of Fig. 1 are shown. Similar histograms for the model system at three noise 
levels, for A -’ = 0.72, are shown in Fig. 8(a) for k = 0.1 and Fig. 8(b) for 
k = 0.4. The histograms are computed over 400 consecutive cycles of the 
sinusoidal threshold modulation after a transient of 25 cycles. For k = 0.1 
the phase density is continuously distributed over the entire period of the 
threshold modulation for zero noise. This is the behaviour expected for a 
quasi-periodic system (with an irrational rotation number) in region A. 
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FIG. 8. The phase density histogram for the model system with A-’ = 0.72 at three noise 
levels, no noise in al and bl, 5% noise in a2 and b2, 10% noise in a3 and b3. k = 0.1 in a 
and k = 0.4 in b. 
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FIG. 9. The relative density of intervals between the onset of successive phrenic activity 
periods averaged over 50 consecutive cycles of the ventilator. (a) Period of the ventilator is 2.0 s 
and amplitude is 18 ml [an excerpt is shown in Fig. l(a)]. (b) Period of the ventilator is 4.2 sand 
amplitude is 30 ml [an excerpt is shown in Fig. l(b)]. 
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However, the numerical simulation does not discriminate between this 
behaviour and a phase locked system with very long periodicity. Noise does 
not substantially change the histogram of firing density in region A. 

For k = 0.4, A-’ = O-72, with no noise there is 3/4 phase-locking and 
firing occurs at four discrete times during the sinusoidal cycle. With noise 
these peaks become broadened, but with the noise levels used here there 
remain iintervals during the cycle of zero firing density. The experimentally 
observed firing densities are sharply peaked and the high noise levels needed 
to find agreement with the firing sequence with A-’ = 0.72 (section 3.~) 
seem inconsistent with the observed firing density histogram. 

(D) INTERSPIKE INTERVAL DENSITY 

The interspike interval histogram, which gives the distribution for tn+l - t, 
is closely related to the phase density histogram. Figure 9 contains the 
interspike interval histogram for the data of Fig. 1. The interspike interval 
histograms for the model with A-’ = O-72 are given in Fig. 10(a) for k = 0.1 
and Fig. 10(b) for k = 0.4. For k = 0.1, the interspike interval histogram is 
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FIG. 10. The interspike interval histogram for the model system A-’ = 0.72 at three noise 
levels, no noise in al and bl, 5% noise in a2 and b2, 10% noise in a3 and b3. k = 0.1 in a and 
k = 0.4 in b. 
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sharply peaked in the region of the natural period of the oscillator (t,+i - 
t, = 0.72) at all noise levels examined. With noise these peaks become 
substantially broadened. 

4. Discussion 

The effects of noise on a simple model for phase locking of biological 
oscillators have been described. This model has a number of properties 
which parallel findings in phase locking experiments. 

(a) Noise selectively destroys phase locking patterns. As the noise ampli- 
tude increases, the number of remaining observable phase locking 
patterns decreases. This provides one possible explanation for the 
predominance of simple phase locking patterns (e.g. 2/l, 3/2, l/l, 
2/3, l/2) in experimental studies. 

(b) In the presence of noise, in the regions of phase space between stable 
phase locking patterns, there are unstable zones in which there is no 
phase locking. Two qualitatively different types of unstable dynamics, 
which can be distinguished using the techniques of sections 3.~, 3.c 
and 3.~, have been found. 
(i) For low amplitude threshold oscillations, the unstable zone is 

similar to quasi-periodic dynamics, A large number of experi- 
mental studies have produced data suggestive of similar dynamics 
(see Introduction). 

(ii) For high amplitude threshold oscillations, the dynamics in the 
unstable zone is characterized by stochastic skipped (or inter- 
calated) beats. Similar phenomena are illustrated in the clinical 
literature on cardiac arrhythmias as well as in the ventilator- 
respiratory oscillator system. 

Although we believe that these two qualitatively different modes of 
unstable dynamics (which account for most of the unstable patterns obser- 
ved to date), will be observed in biological phase locking experiments, 
current published data are inadequate to support this contention. In most of 
the references cited in the Introduction which deal with unstable coupling 
behaviour, few data were presented which can be used to sharply charac- 
terise the unstable patterns. Many authors seem to regard these unstable 
patterns as curiosities or annoyances, and have not directed sufficient 
attention to understanding the mechanism underlying their generation. 
Study of these unstable patterns may provide a sharp quantitative test of 
theories for the generation and coupling of biological oscillations, and may 
also given a new way to characterize stochastic fluctuations in experimental 
systems. 
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In the deterministic model (section 2) it has been possible to prove that 
only two qualitatively different modes of non-phase locked dynamics can be 
found. The major motivation for the present work was the experimental 
observation of unstable patterns (Fig, 1) apparently related to these two 
qualitatively different types of unstable dynamics. We do not know how to 
rigorously define these two different modes of behaviour, and cannot prove 
that these are the only two types of unstable behaviour found in the 
stochastic model (12). In the neighbourhood of the boundary separating 
regions A and B in Fig. 3, the distinctions between the two different unstable 
modes in the stochastic system are likely to be blurred. Consequently, it is 
possible that a single unified mathematical description may account for the 
statistical features of the two types of unstable dynamics. The mathematical 
problems involved require further analysis. 

The properties of this model seem consistent with experimental obser- 
vations on phase locking in experimental systems. Reports of other types of 
qualitative dynamics (e.g. bistability or hysteresis) which cannot be accoun- 
ted for using our simple model are rare (Moulopoulos, Kardaras & Sideris, 
1965). Thus, we are confronted with the problem of understanding how the 
analysis of coupling phenomena in complex non-linear equations appro- 
priate to model biological oscillations could reduce to, or be equivalent to, 
the analysis of the simple one dimensional model analyzed here. Any results 
in this direction would be worthwhile in view of the mathematical difficulty 
inherent in analyzing the coupling of limit cycle oscillations to periodic 
driving stimuli (for references see Flaherty & Hoppensteadt, 1978). 

There are at least two alternative hypotheses for the generation of 
irregular patterns, such as those shown in Fig. 1. Many authors have 
observed that mathematical models for the coupling of a periodic stimulus to 
a two-dimensional oscillator may show bistability in certain regions or 
parameter space (Hayashi, 1964; Flaherty & Hoppensteadt, 1978). For 
example, for some sets of parameter values the time-driven van der Pol 
oscillator may assume either l/l or l/3 phase-locking patterns, depending 
on the initial conditions. Since one expects that the basins of attraction of 
these patterns are complexly intertwined, under the presence of noise, there 
may be quasi-random skipping between basins of attraction of the different 
phase-locking patterns, leading to an irregular pattern. 

Another possibility is that the experimentally observed irregular locking 
patterns may correspond to “chaotic” dynamical regions in purely deter- 
ministic mathematical models for the interaction of limit cycles with a 
periodic driving force. Such phenomena have recently been described in the 
“Brusselator” with a sinusoidal input (Tomita & Kai, 1978). An analogue 
electrical system of two coupled oscillators has also shown “chaotic” 
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dynamics (Gollub, Brunner & Danly, 1978). However, the generality 
and characteristics of the resulting chaotic dynamics are not currently 
understood. 

Unstable and irregular coupling patterns such as those shown in Fig. 1 
may be a much more general phenomenon than has been previously 
recognized. By drawing attention to a possible mechanism to generate these 
patterns, and showing how they may be classified and characterized, we 
hope to stimulate work specifically directed towards the analysis of these 
unstable patterns. 
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APPENDIX 

The Firing Sequence 

For the stochastic model the criterion for phase locking given in (9) is no 
longer applicable since tn has a random component equation (12). A useful 
method for analyzing the dynamics in this case is the firing sequence, defined 
as follows. For each period of the sinusoidal oscillator, count the number of 
times the oscillator reaches threshold. The resulting sequence of integers is 
the firing sequence. For the stochastic system we use periodicity of the firing 
sequence as a criterion for phase locking (section 3.A). For example, the 
firing sequence for l/2 phase locking is . . .222.. . and for l/l phase locking 
is . ..lll... . These firing sequences are observed even with 5% noise with 
k = O-4. 

We have developed a method to determine the firing sequences for the 
deterministic mathematical model of phase locking presented in section 2. 
The method is heuristic and has been checked on a large number of phase 
locked patterns observed here and previously (Glass & Mackey, 1979). 
Another algorithm, essentially identical to ours, has been given to compute 
firing patterns of a model neuron under constant input (Nagumo & Sato, 
1972; Sato, 1972). Although the physical interpretation of this earlier work 
is different from ours, the mathematical model is topologically equivalent to 
the model in section 2 in region B of (A, k) phase space. The model in 
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Nagumo & Sato (1972) is piecewise linear, and consequently it is amenable 
to analytical computations. Thus, although we have not proven the validity 
of the algorithm, a proof of its validity for a topologically equivalent model is 
available (Nagumo & Sato, 1972; Sato, 1972). 

We first describe a method for generating rational fractions (Hardy & 
Wright, 1960; Sato, 1972; Keener, 1980). Consider two non-negative 
rational fractions h/k and h’/k’ in the interval [0, 11 (the rational fraction 
O/l corresponds to the integer 0). The mediant of these two fractions 
is defined (h + h’)/(k + k’), where h/k <(h + h’)/(k + k’)< h’/k’. By 
successively computing mediants between any two starting fractions, all 
intermediate rational fractions are generated. This is illustrated by the 
construction in Table 2(a). Starting from the “seed values” l/2 and l/l in 
line 1, each successive line contains the mediants plus the entries of the 
preceding line. The nth line contains 2”-‘+ 1 entries. The resulting 
sequences, reading from left to right, share many properties with the Farey 
series (Hardy & Wright, 1960). 

TABLE 2 

(a) Rational numbers 
11.2 l/l 
112 213 l/l 
l/2 3/5 2/3 314 l/l 
l/2 417 315 518 213 517 314 415 l/l 

(b) Repeating units of firing sequences for coupling ratios between l/2 and l/l 
2 1 

; 221 21 21 211 1 1 
2 2221 221 22121 21 21211 211 2111 1 

Firing sequences for the deterministic system are found in a similar 
fashion. The firing sequences for a phase locked pattern is a periodic 
sequence of integers . . . u1u2,, . a+i.. . aj.. . where each ui is an integer and 
the sequence ulu2.. . aj is called the repeating unir. By definition, if there is 
N/M phase locking then 

j=N, jl ai = ibf* (Al) 

Consider two firing sequences, one with a repeating unit uiaz . . . aj and the 
other with a repeating unit bl b2. ; . bk . The ordered sum of the repeating units 
is defined as the sequence alu2...ajb~b2... bk. If the sequence (21~2.. .ai 
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corresponds to a coupling ratio of N/M and blbz . . . bk corresponds to a 
coupling ratio of W/M’ then from (Al) and the definition of the firing 
sequence, the ordered sum corresponds to the locking ratio (N +N’)/(M + 
M’), i.e. the mediant of the two initial coupling ratios. 

The firing sequences observed for the different locking patterns in the 
deterministic system can be computed by computing the ordered sum of the 
repeating units provided the appropriate seed values for the initial repeating 
units are used. These are given in Table 3. The repeating unit for any locking 

TABLE 3 

The seed values used to compute repeating units for different coupling ratios 

Coupling ratio 
Repeating unit 

l/4 l/3 112 l/l 211 3/l 4/l 
4 3 2 1 10 100 1000 

ratio is determined as illustrated in Table 2(b), which gives the repeating 
units for the coupling ratios lying between l/2 and l/l. Starting from the 
seed values 2 and 1 in line 1, each successive line contains the ordered sums 
plus the entries in the preceding line. From (Al) there is a one-to-one 
correspondence between the entries in Tables 2(a) and 2(b). Note that the 
firing sequence in (14) is consistent with a phase locking pattern 38/50. 
Using the methods in this section, the repeating unit for this ratio would be 
2112112112112112111 which is very different from that which was obser- 
ved. Starting from appropriate seed values, the repeating units for other 
coupling ratios can be computed. 


