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The bifurcation structure in a two-parameter family of circle maps is considered. These maps have a (topological) degree 
that may be different from one. A generalization of the rotation number is given and symmetries of the bifurcations in 
parameter space are described. Continuity arguments are used to establish the existence of periodic orbits. By plotting the locus 
of parameter values associated with superstable cycles, self-similar bifurcations are found. These bifurcations are a generaliza- 
tion of the familiar period-doubling cascade in maps with one extrema, to two-parameter maps with two extrema. Finally, a 
scheme for the global organixation of bifurcations in these maps is proposed. 

1. Introduction 

Our interest in the bifurcations of circle maps 
arises from studies on the effects of brief periodic 
electrical stimulation on spontaneously beating ag- 
gregates of embryonic chick heart cells [l-4]. In 
these experiments there are two independent 
parameters, the frequency and amplitude of the 
periodic stimulus. The dynamics are determined as 
a function of the frequency and amplitude of the 
periodic stimulation. If the autonomous oscillation 
is described by a strongly attracting limit cycle 
which is rapidly reestablished following a stimulus, 
then the effects of periodic stimulation are well 
described by a circle map, i.e. a map of the unit 
circle S’ into itself, which can be experimentally 
measured, 

X ,+1 = g(X,; 6) + 7 =f(X,; b, d. 0) 

In eq. (l), x, represents the phase in the cycle of a 

stimulus, r represents the time between stimuli, 
and b is a parameter which depends on stimulus 
strength. Theoretical computations of predicted 
dynamics using eq. (1) show close agreement with 
experiment [l, 3, 41. 

There have been numerous studies in which 
dynamics in physical and biological systems are 
analyzed using one-dimensional circle maps [5-29, 
31-341. A particularly simple functional form 
(often called the “canonical” example) for circle 
maps which arises in diverse contexts is 

X r+1 =Mx,+bsin2ax,+~ (modl), (2) 

where M is an integer which gives the (topologi- 
cal) degree of f, and b and T are real parameters. 
This function with M = 0 has been proposed as a 
model for hybrid optical devices [lo-131 and 
periodically stimulated biological cells [14], and 
with M = 1 as a model for a periodically stim- 
ulated nonlinear oscillator [9], periodically forced 
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Josephson junction [15, 161, and periodically 
stimulated biological oscillators [3, 17-191. The 
canonical example with M = 1 also arises as a 
special case of the standard map, and has been 
analyzed as a general model of the quasiperiodic 
route to chaos [20-291. Several recent studies of 
eq. (1) with M = 1 use renormalization techniques 
at the value b = 1/2e [25-281. We know of no 
application which treats cases with M > 1. How- 
ever, the map with M = 2, b = 0 is often given as a 
textbook example of a map which displays ergodic 
dynamics [30, 311. In this paper the canonical map 
is used in numerical studies to exemplify many of 
the more general mathematical results. Other func- 
tional forms for circle maps have also been pro- 
posed [2, 4, 7, 8, 33, 341. 

Starting from an initial condition, x,,, one can 
iterate eq. (1) to generate a sequence x0, xi = 

f(x,), *. * , x, = f”(x,). A periodic orbit will arise 
if x:+~=x:, x:+/ #x: for 1 Ij c n. Let 

The stability of the periodic orbit is determined by 
the value of h (as seen using the mean value 
theorem): for IX] c 1, the orbit is stable, and if 
IX 1 # 1, it is called hyperbolic. When IX I = 1, there 
is a bifurcation of the periodic orbit [35]. In generic 
situations, there are two definite possible bifurca- 
tions, depending upon the sign of X. Suppose the 
map f depends on a parameter CL, and that at 
p = pa, ]A] = 1. When X = 1, for values of p close 
to c(~ there is either no periodic orbit (say for 
~1 -E pO) or two orbits of period n, one stable and 
the other unstable (say for p > pa). There is a 
tangent, or saddle-node, bifurcation at p = pO. 

When X = - 1, depending on the sign of p - pa, 
for p small, there is either a stable orbit of period 
n, or a stable orbit of period 2n and an unstable 
orbit of period n. The point p = /.Q,, where X = - 1, 
is a period-doubling, or flip, or subharmonic, bi- 
furcation point. As stated before, these two types 
of bifurcation cover the generic case, but other 
possibilities do exist [35]. Clearly, if an extremal 

point, at which (af/ilx) = 0, is a periodic point on 
a cycle, the cycle will be stable and is then called a 
superstable cycle. 

Studying the iterates of extremal points has 
played an important role in the analysis of one 
dimensional maps [36, 371. In maps with two 
parameters, we call the locus of superstable peri- 
odic points as a function of those parameters the 
skeleton. The main justification for the use of the 
skeleton is a nondegeneracy assumption, that all 
stable periodic orbits are “created” through a 
generic bifurcation, either flip or saddle-node, and 
lose their stability through a flip bifurcation. For 
an orbit of period n, the derivative of f n must 
therefore go from 1 to - 1 in the process and will 
cross the origin. Stated otherwise, we assume that 
close to any stable periodic orbit is a superstable 
orbit. Several of the figures in this paper give the 
skeleton for members of the canonical family. 

Another concept which has played an important 
role in the study of circle maps is the rotation 
number, designated p [38, 391. The rotation num- 
ber counts the average increment in x per iter- 
ation of the map. In our studies of the periodically 
stimulated heart cells, the rotation number is ap- 
proximately the number of cardiac contractions 
divided by the number of electrical stimuli. If 
there is a stable periodic pattern consisting of N 
stimuli and M contractions we say there is N: M 
phase locking with p = M/N (i.e. p is rational). 

A problem of general interest in the analysis of 
circle maps is to characterize the dynamics for the 
canonical family eq. (2) for fixed M as a function 
of x0, b, T. At the present time a complete analysis 
of this difficult problem has not yet been achieved. 
However, in the following we show that by using 
comparatively elementary techniques, several 
properties of the global bifurcations of circle maps 
can be found, and other properties can be conjec- 
tured. In section 2 properties of rotation numbers 
are summarized and symmetries are described. In 
section 3 we state several results concerning the 
existence of fixed points of circle maps. A main 
result of this section holds for all circle maps of 
degree one, and monotonic maps of degree M s 1: 
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for any initial condition x E S’, there exists at 
least one value of r such that x is a fixed point of 
rotation number p, for any value of p. Stable 
dynamics in physical systems correspond to ex- 
istence of stable fixed points in these maps. In the 
case that g is a circle map of degree one with two 
extrema, then for each rational rotation number 
there are at least two values of r giving rise to 
superstable orbits. We also give a new construc- 
tion for the Amol’d tongues [40, 411 in degree 1 
monotonic circle maps. In section 4 we describe 
the skeleton computed numerically in the “canoni- 
cal” example. The skeleton for degree 0 circle 
maps shows self-similarity in the two-parameter 
space (fig. 3). The skeleton of the degree 0 circle 
map, is apparently repeated in an orderly way in 
circle maps of higher topological degree (fig. 6). 
The implications of these results for experiments 
are discussed in section 5. 

2. Rotation numbers and symmetries in circle maps 

2.1. Rotation numbers 

Nonlinear oscillators perturbed by periodic 
pulsatile stimuli can in some limits be described by 
circle maps of topological degree 0 [2]. Therefore, 
it is useful to have a definition for the rotation 
number for circle maps of topological degree dif- 
ferent from 1. In [2] a definition was proposed 
which is equivalent to the original definition used 
by Poincare [42], but is different from definitions 
currently used. In this section we define the rota- 
tion number for maps of degree one and extend 
the definition to more general maps. 

Consider the continuous map FzR + R with the 
symmetry F(x + 1) = F(x) + M for all x E R. By 
considering f= F (mod 1) we restrict the function 
F to the circle S1 and thus define a map f:S’ + S’. 
The function F is called the lift off, and M is the 
degree. The iterates of the lift are continuous. 
When f is a monotonic map of degree 1 (an 
orientation preserving homeomorphism) the rota- 

tion number can be defined 

F”(x) --x 
p(f,x)= lim n . 

“+CO 

This limit exists and is independent of x. The 
rotation number is rational for a periodic orbit. If 
the rotation number is irrational the dynamics are 
called quasiperiodic. 

When f has degree one but is not monotonic 
(i.e. it is not an invertible map and not a homeo- 
morphism), a supremum must be used in the limit, 
and each map gives rise to a rotation set R,= {w 

ER(p(f,x)=w for some XES’} [29, 43-451. 
Here the rotation number may depend on the 
initial condition. 

When the degree of f is not necessarily one, an 
auxiliary function is defined: for any x E S’, x0 = 
y0 and, for i 2 1, 

x;=f(xi_l)=F(xi-1) (modl), 

Ai_l(xi_1)=F(Xi-1)-Xi-l, (4 
i-l 

Yi(Xo) = C Aj(xj) =Yi-l(X,) +Ai-l(xi-1). 
j-0 

We then define the rotation number 

This definition is equivalent to standard defini- 
tions when f has degree one. However, when f 

has degree different from one the definitions are 
not equivalent. To illustrate, consider the map 
f(x) = 2x (mod 1) which has a cycle of period 3, 
l/7 + 2/7 + 4/7. If we use the lift to compute p 
we have 

F3(l/7) - l/7 1 F3(2/7) -2/7 2 =- =- 
3 3’ 3 3 

and F3(4/7) -4/7 = 4 
3 3’ 

Clearly, the lift cannot be used to define the rota- 
tion number since all points of a cycle must be 
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Fig. 1. Graph of the auxiliary function y,(x) defined by eq. 
(4) for the special case f(x)=Zx; a) n(x); b) yz(x); c) 

Y,(X). 

associated with the same rotation number. How- 
ever, applying the definition used here we see that 
&l/7) = p(2/7) = p(4/7) = l/3. One conse- 
quence of the definition is that the rotation num- 
ber is no longer a continuous function of x. This 
can be seen in fig. 1 which shows y,(x) for f(x) = 
2x. As well, in non-invertible maps cycles of 
different periods and chaotic dynamics can all 
have the same rotation number. Such behavior was 
observed in the bifurcations of degree 0 and non- 
monotonic degree-l maps modelling periodically 
forced oscillations [l, 3, 41. Despite its limitations 
in the analysis of non-invertible maps, the rotation 
number often has a simple physical interpretation 
and consideration of its properties is of interest. 

2.2. Symmetries 

There are symmetries in the periodic points and 
their rotation numbers. First consider any circle 
map of degree M, eq. (1). Using the definition for 
the rotation number we find that if x* is a peri- 
odic point of period N with p = K/N for T = 7*, 
then x* will be a periodic point of period N with 

p=(K+N)/Nforr=?.*+l.Thuswhenconsid- 
ering the bifurcations of eq. (1) we need only 
consider values of 0 5 7 I 1 since there is a trans- 
lational symmetry in 7. 

Now consider the canonical map eq. (2). This 
map shows the symmetry 

g(l -x; b) = M- g(x; b). 

Assume that x* is a periodic point of period N 
with p=K/N at ~=+r* (OIT~~). Then l-x* 
will be a periodic point of period N with rotation 
number p = (MN - K)/N at T = 1 - 7*. Proof of 
this result follows along the lines sketched out 
in [2]. 

3. Periodic points 

In this section we discuss results concerning the 
existence and stability of periodic points in circle 
maps. We first consider linear maps for which a 
complete description of periodic points is possible. 
Then we establish the existence of periodic points 
using the intermediate value theorem. Finally, we 
use the implicit function theorem to demonstrate 
continuation of the locus of periodic points in 
parameter space. 

3.1. Linear maps 

The map defined by eq. (2) reduces when b = 0 
and r = 0, to the well-studied map f(x) = Mx 

(mod 1). A general analyzis of its statistical prop- 
erties has been performed by Renyi 1461, who 
allowed M to be any positive real number. Shub 
[47] has also studied expanding maps of the circle 
which included linear maps of degree greater than 
1 as a special case. None of these earlier studies 
considered the rotation number for maps with 
degree greater than one. A detailed description of 
the periodic points in linear maps can be devel- 
oped. We briefly recount results for the linear map 
of degree 2, f(x) = 2x + 7. Results for linear maps 
of other degrees can be readily derived. 
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First take T = 0 and associate each point x E 
[O,l) with its binary expansion. The action of the 
map on x is the same as the shift map on the set 
of sequences of two symbols. Counting the num- 
ber of periodic orbits is a classic problem of 
combinatorics [48] and is equivalent to the count- 
ing of periodic orbits in the map Ax(1 - x) when 
it is onto [49]. For T = 0, all points having eventu- 
ally periodic binary expansions are periodic and 
their rotation number is the arithmetic mean of the 

elements in one basic period of the periodic part 
of their expansion. For example, the points x = 
l/15 and x = 3/7 have binary expansions 0.0001 
and 0.011 and rotation numbers l/4 and 2/3, 
respectively. 

All fixed points of the map with r = 0 continue 
in the x, T plane in a simple way. In particular, the 
locus of fixed points in the x, r plane fall on the 
family of straight lines x = q/(2N - 1) - T where q 
and N are integers. 

3.2. Periodic points in nonlinear circle maps 

The continuity of the lift of circle maps can be 
used to show the existence of a minimal number of 
periodic points. Consider the circle map f(x; 7) = 
g(x) + T of degree M with lift F(x; T). By itera- 
tion of the lift we compute 

n-l 

= F”(x; T) +plM” +p2 c Mj, 
j-0 

(5) 

where p1 and p2 are integers. 
Now fix x = x0 and consider the fixed points as 

T varies from r* to T* + 1. Each value of T for 
which (F”(x,; 7) -x0) takes an integer value gives 
a periodic orbit. Hence from the intermediate value 
theorem there must be at least C;:iMi-l different 
values of r between r* and r* + 1 for which x0 is 
a periodic point of the map f “. The rotation 
number of these periodic orbits is only accessible 
through the auxiliary function y, detined in eq. 
(4). Its discontinuity when M > 1 restricts its use 

in straightforward applications of the intermediate 
value theorem. 

However the following result has been obtained 
for the map f (x; 7) = g(x) + +T with g(x) a map of 
degree 1 or a monotonic map of degree M > 1: 

Theorem. For any rational number k/n and any 
point x0 on the circle, there is a value of T for 
which x0 is a periodic point of f (x; 7) with pe- 
riod n and rotation number k/n. 

The proof of this result for M = 1 follows from 
the continuity of the lift, the intermediate value 
theorem and the translational symmetry of the 
rotation numbers [19]. The proof of the result for 
monotonic maps of higher degree follows since the 
only discontinuities of the function y,, considered 
as a function of r are “decreasing” jumps. From 
numerical studies we conjecture that the theorem 
holds more generally for all circle maps with de- 
gree M > 1. Stability of the periodic points iden- 
tified in the above results is guaranteed if the 
initial condition x0 is an extremum of f (x; 7). In 
this case the periodic points are on superstable 
cycles. When f (x; 7) has multiple extrema, two 
different extrema may be periodic points for the 
same value T. For example when f (x; 7) = x + 
b sin4?rx + 7, a case considered as a model for the 
periodically forced Van der Pol oscillator [50], 
such degeneracy occurs and the skeleton is identi- 
cal to the skeleton of eq. (2) with M= 1. 

Now fix r = r. and consider fixed points as x 
varies from x* to x* + 1. Each value of x for 
which (F “(x, 70) - x) takes an integer value gives 
a periodic orbit. From eq. (5), there must be a 
minimum of M” - 1 different values of x in S’ 
which are periodic points of the map f “. 

3.3. Continuation of periodic orbits 

The results in the preceding section treat fixed 
points in the map f (x; 7) = g(x) + ‘T. We now let 
g depend on a parameter 6, and consider the case 
in which g is monotonic. 

Consider the function 

H( x, b, T) = F”(x; b, T) -x -J, (6) 

where J, n are integers and n is positive, and F is 
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a lift of the map defined by eq. (1); then a point in 
3 space (x; b, T) where H = 0 corresponds to a 
periodic orbit of period n for f. 

Suppose that a periodic orbit exists for a fixed 
period n at a point x*, and parameter values 
(b,, T,,); both i?H/ab and aH/ih are easily com- 
puted, and, since the latter derivative is non-zero 
whenever g is monotonic, the implicit function 
theorem yields the existence of a curve 7 = T(b) in 
the parameter space (7, b) along which the point 
x * is a periodic point of period n. The monotonic- 
ity of g is a sufficient but not a necessary condi- 
tion for a periodic point to be continuable. 

These observations lead to a new construction 
of the structure identified by Arnol’d, the so-called 
“Arnol’d tongues”, describing the rotation number 
distribution in a two-parameter family of mono- 
tonic degree-l maps [40, 411. 

Themapf(x;b,r)=x+r+bsin2?rxisreadily 
seen to have rotation number p/q, when b E 

[0,1/2a] and r E [O,l], if and only if there is a 
point on the circle corresponding to a value of the 
parameters (7, b) lying on one of the continuation 
lines described above. Let 7 = T(b) be a line for 
which a given point x* is a periodic point with 
rotation number p/q. The projection of the family 
of such continuation lines with the same rotation 
number for all points x E S’ on the plane x = 0 is 
called the Arnol’d tongue. The order of these 
tongues along the taxis must remain the same for 
all values of b between 0 and 1/2a in view of the 
uniqueness of the rotation number of f for these 
parameter values. The compactness of the tongues 
also follows from this uniqueness and the periodic- 
ity of f(x; b, T) in the variable r. If the periodic 
orbit existing at (b, ?) is hyperbolic, then its 
structural stability implies that there is an interval 
of values of T about ? for which this orbit is 
preserved. 

We thus see that properties of the dependence 
of the rotation number on parameters, which have 
been considered before [41], can be obtained by 
very simple arguments using the implicit function 
theorem. These arguments, however, cannot be 
used to detect the appearance of new periodic 

b 

b 

b 

L 
2lr 

Fig. 2. Skeleton lines (b > M/Zs) and branches for which 

x = 0.5 is a periodic point (b < M/297) for the canonical map 

(eq. (2)). The rotation number of the cycle at the bottom of the 
stemisindicated.a) M=l;b) M=2;c) M=3. 

points via saddle-node bifurcations where the map 
is non-monotonic. 

We conclude this section by presenting a 
numerical computation for the canonical family 
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(eq. (2)), with M = 1,2,3 which illustrates some of 
our main results (fig. 2). For 0 I b i M/2a, the 
canonical family is monotonic. For this region we 
plot the locus of points for which x = 0.5 is a fixed 
point of period N, N = 1,2,3. Since the map is 
monotonic the value of T for which x = 0.5 is a 
fixed point for given period at b = 0 is uniquely 
continuable in the (b, T) plane. For b > M/2s 
there are two critical points which bifurcate from 
x = 0.5 as b increases. For b > M/2a we plot the 
skeleton up to period 3. Note that the two branches 
of the skeleton of each period are required by the 
result of section 3 when M = 1, and consistent 
with our conjecture when M > 1. As well the 

b 
0.5 

b 

0.37 

0.38 0.42 0.46 0.4262 0.4372 0.4482 

I- T 

symmetries described in section 2.2 are found. The 
description thus far has not considered the higher 
order bifurcations. (Beginnings of these higher 
order bifurcations can already be seen in fig. 2 for 
the degree-2 and -3 maps.) 

4. Skeletons 

We now turn to a numerical study of the super- 
stable orbits and bifurcations of the families de- 
fined by eq. (2). We first consider degree 0 circle 
maps and then maps of higher degree. 

0.55 

0.35 

0.387 

0.376 

Fig. 3. Skeleton for the map of eq. (2) with A4 - 0; k + represents a cycle of period k associated with the maximum and k - a cycle 
of period k associated with the minimum. a) Locus of superstable cycles of periods 1,2,3; not all cycles of period 3 are labelled; b) 
Enlargement of the square in (a); periods 2 and 4 are now shown; c) Enlargement of the square in (b); periods 4 and 8 are shown; d) 
Enlargement of the square in (c), showing periods 8 and 16. Notice the topological equivalence, especially between (b) and (d). 
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4.1. Maps of degree zero 

We consider first the maps of degree zero 
f(x, b, 7) = T + b sin2rx. In fig. 3, we show the 
lines of the skeleton for chosen regions of the 
parameter plane (b, T), and for appropriate peri- 
ods. In fig. 3a, the skeleton is shown for periods up 
to 3. Branches of the skeleton associated with the 
minimum are denoted by a - sign, those associ- 
ated with the maximum by a + sign. In fig. 3b, we 
show magnification of the square enclosed in fig. 
3a, and the lines of the skeleton associated with 
periods 2 and 4; this process of magnification is 
repeated from fig. 3b to fig. 3c, and from fig. 3c to 
fig. 3d, for periods 4 and 8, and 8 and 16 respec- 
tively. 

The same computations have previously been 
performed on a piecewise quadratic degree-0 circle 
map [14], leading to essentially the same results. 
This further supports our observation that the 
structure we describe is topological in nature, and 
independent of the precise functional nature of the 
maps. This self-similarity, repetition of the same 
geometric features on different length scales, has 

b 
0.35 

f ..’ 

.A. 
-** . . . . . .._ . . . . . . . . . . . . . . . . . . *..** 

. ...** -. . . . .._ 
. . . . . . . . . . . . . . . . . . . _....... -*-. 

0.15 LLll-Sd 
0.3 0.5 0.7 

T 

also been found for other period-doubling se- 
quences (e.g. 3,6,12,. . . ). 

The skeleton does not give direct information 
about the bifurcations in the map. However, there 
is a close connection between the skeleton and the 
lines of bifurcations which is revealed from 
numerical studies. In fig. 4 we show the regions of 
stable period-2 orbits and the associated bifurca- 
tion lines and superstable cycles. Note the cusp 
shaped border formed by the lines of tangent 
bifurcation. Just as the skeleton has a self-similar 
structure in parameter space, so do the zones of 
stable orbits. In fig. 5, we give a schematic diagram 
of the zones of stable periodic orbits which em- 
phasizes the self-similar nature of these zones. This 
structure has been previously described in degree-l 
circle maps [22-241. A self-similar structure has 
also been observed in one pammeter families of 
maps with one critical point [51]. Figs. 3 and 5 
generalize the familiar period-doubling sequence 
to a map with two extrema and two parameters. 

On the line T = 0,O I b I 0.5, two distinct one- 
parameter maps with one critical point are de- 
fined. Therefore, on this line, the bifurcations 

b 
0.35 

Fig. 4. Lines of the skeleton and locus of bifurcations for the map of eq. (2) with M = 0; a) Solid lines show flip bifurcations, dashed 
lines show saddle-node bifurcations, and dotted lines show period 2 superstable cycles; b) the zone of existence of a period 2 stable 

cycle is hatched. 
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@J period 8 

m period 4 

H period 2 

SOLID LINES- period doubling 
bifurcation 

DASHED LINES- tangent bifurcation 

Fig. 5. Schematic (conjectured) organization of the self-similar 
period-doubling bifurcations in two-parameter maps with two 

extrema. Bifurcation lines and locus of superstable cycles are 

shown. (Drawn after the style of Mondrian and Mandelbrot). 
See also the drawing in [23]. 

observed are the same as in interval maps with one 
maximum. For the region 0 I T + b I 0.5, the in- 
terval (0,0.5) is invariant and the branches of the 
skeleton extend from the line at 7 = 0. In this 
region, the behavior is thus a straightforward ex- 
tension of the results about interval maps with one 
maximum; in particular, for a fixed 7, as b in- 
creases, the order of appearance of periodic orbits 
is described by the U-sequence [36]. Further dis- 
cussion of bifurcations in this map follows the 
same arguments in [14]. 

There are two types of superstable cycles possi- 
ble: “doubly” superstable cycles, when both criti- 
cal points are on a unique cycle, and “bistable” 
cycles, due to co-existence of two periodic orbits, 
each one having only one critical point [22- 
24, 521. 

4.2. Maps of degree diflerent from zero 

The skeleton of the map of degree zero recurs in 
the bifurcation diagrams of maps of other degrees. 

b 
0.225 

b 
0.35 

c 
(b) 

b 
0.49 

0.47 1 
0.205 0.215 0.225 

I- 

Fig. 6. Skeleton lines near the values of b where the map 
defined in eq. (2) loses its monotonicity; only cycles of periods 
3 and 6 are represented. a) M = 1; b) M = 2; c) M = 3. 

Specifically, consider first the map of degree 1, 
f(x; b, 7) = x + T + b sin2rx, for values of b where 
the map is not monotonic, b > 1/2~. 

Within each of the phase locking zones de- 
scribed in the last section, we observe a global 
arrangement of the skeleton lines that is topologi- 
tally the one present for the degree zero map. We 
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show in fig. 6a the skeleton inside the tongue 
based at T = l/3. Tangent to the line b = 1/2m is 
a branch associated with both extrema. Inside this 
basic branch, associated with period 3, are branches 
corresponding to period 6, and the latter parts of 
the skeleton are observed to be the first lines in a 
self-similar diagram essentially identical to the one 
of fig. 3. In general, inside a zone of p : q phase- 
locked dynamics, there will be a main branch of 
the skeleton, tangent to the line b = 1/27r [18, 191, 
associated with orbits of period q. This branch will 
enclose a structure of skeleton branches, repre- 
senting periods a multiple of q (e.g. 2q, 4q, etc.) 
organized in a network topologically similar to the 
one of fig. 3. 

As illustrated in figs. 6b and 6c, the same 
arrangement is present in maps of other degrees, 
based at the “stems” illustrated in fig. 2. It is 
apparent from fig. 6c that the skeleton structure 
becomes “denser” as the degree of the map 
becomes larger. Yet the skeleton maintains a 
remarkable crystalline beauty and.simplicity. Thus, 
the skeleton in maps of degree greater than 1 
appears to be a straightforward extension of the 
structure previously described in degree-l circle 
maps [19]. 

Most results in this section are based on numeri- 
cal evidence. However, as mentioned, partial ana- 
lytical results for degree 1 maps have been found 
by Boyland [29]. His analysis mainly relies on the 
rotation sets of maps and as such does not give 
information about higher order bifurcations. Re- 
cent results using renormalization in degree-l maps 
further support the numerical results presented 
here [24]. 

5. Discussion 

In the preceding we have described the global 
bifurcations of circle maps. The theory for mono- 
tonic circle maps is straightforward. In non-mono- 
tonic maps the bifurcations are more complex. 
However, they nevertheless follow a simple logic 
and order which has been partially described. 

A number of further mathematical studies are 
suggested by our results. Problems still to be 
worked out include: 

1) To determine the complete skeleton of the 
degree-0 map. A construction analogous to the one 
given by Metropolis, Stein and Stein [36] for the 
U-sequence in the interval map is needed. 

2) To determine the class of circle maps which 
display the same bifurcations as the “canonical” 
maps. 

3) To determine the “interference” between the 
skeletons in neighboring p/q and p’/q’ zones in 
circle maps with degree 2 1. 

4) To determine if the results extend to maps in 
higher dimensions (see, for example, [49, 531). 

Despite these problems, amongst others of a 
mathematical nature which have not yet been 
resolved, we believe that the current computations 
provide a firm basis for experimental studies of 
bifurcations in diverse systems. The current com- 
putations clearly show that in a 2-parameter space 
the bifurcations in systems described by circle 
maps show an extremely delicate but regular struc- 
ture. One’s ability to resolve this structure would 
depend on intrinsic characteristics such as noise 
and stability of the system, as well as the care and 
experimental precision with which the system was 
investigated. In experiments on periodically 
stimulated cardiac cells, the experimentally 
observed bifurcations appear to be consistent with 
those theoretically predicted from iteration of an 
experimentally measured circle map [l, 3,4]. How- 
ever, in this biological system, there is intrinsic 
“noise” and it is impossible to resolve the fine 
details of the structure theoretically predicted. 

Much greater precision should be obtainable in 
non-living systems. We believe that it is likely that 
some of the experimental systems currently being 
investigated will show the same complex bifurca- 
tions in a space of two parameters such as those 
described in this manuscript. We cite several 
examples which bear closer study: 

1) Mackay [54] showed bifurcations in a two- 
parameter phase space of an electronic network 
having the same splitting of Arnol’d tongues 

observed in the degree-l circle maps. 
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2) Hybrid optical systems described by degree-0 
circle maps [lo-131 should follow the bifurcations 
in fig. 4. 

3) In general, a physical or biological system 
described by a circle map will be expected to 
display bistability, hysteresis, quasiperiodic dy- 
namics, period-doubling, and intermittency. There 
are many examples of chemical, electronic and 
hydrodynamic systems [5] where these diverse 
dynamics are all found in a single system as param- 
eters describing the system are varied. More sys- 
tematic investigation of the dynamics as two or 
more parameters are varied over very narrow scales 
will be needed in order to demonstrate the struc- 
tures shown in fig. 5, if they are indeed present. 

4) Circle maps have been shown to occur in 
electronic systems [33]. It should be possible to 
implement an electrical circuit which is described 
by the canonical example with degree 1 (see the 
construction in [IS]). 

Previous workers have shown that diverse physi- 
cal and biological systems display the same “ uni- 
versal” bifurcations found in one-parameter, 
one-dimensional maps. We believe that careful 
studies of dynamics as a function of two parame- 
ters will reveal that the global bifurcations de- 
scribed in this manuscript are much more common 
than is currently recognized. 
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