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(Reprinted from Nature, Vol. 233, No. 5314, pp. 67-68, September 3, 1971) 
 
Uniform Distribution of Objects in a Homogeneous Field: Cities on a Plain 
 
The uniform distribution of objects in a homogenous field is familiar in all kinds of 
circumstances - atoms in liquids1 , fibrils in cells4, hairs on insects5

’
6 and mammals7, stomata on 

leaves8, trees in forests9~° and cities on plains11
’
12. In many of these circumstances the relative 

positions of the objects may be described by a radial distribution function. In what follows we 
shall show that such a function may be used to study the distribution of cities on a plain. 
Fig. 1 is a map of part of the Spanish Plateau lying south-east of Madrid and bounded by 
latitudes 0° 53’ W, 3° 41’ W and longitudes 38° 48’ N, 40º 16’ N. This area is homogeneous in 
climate, physiography, transportation, population density and economy. The towns are 
represented by circles whose radius is an approximate measure of physical extent13. We have 
chosen for analysis the 40 mile square centered at latitude 2° 30’ W and longitude 39° 47’ N 
which is especially homogeneous in town size and density. 

The radial distribution function g(R) is defined as the probability that a structure will be in a 
unit area a distance R away from an arbitrary structure, divided by the number probability 
density. It may be computed for the towns lying in the square in Fig. 1 in the following way. 
Place each town in turn at the origin and surround it by a series of concentric circles spaced at a 
distance of ∆R =1 mile. Determine the area, K1(R) (lying wholly within the square in Fig. 1) of 
the annulus whose boundaries are at distances of (R - ∆R/2) and (R+ ∆R/2) from town i. Let the 
number of towns lying within this annulus be N1 (R). If N is the total number of towns in the 
square and K is the area of the square, then 
 
      N(R) 

g(R) =   ------- 
                ρK(R) 
 
where  
 
                 N 
    N(R) =  ΣN1(R) 
                i=1 
 
                N 
   K(R) = ΣK1(R) 
              i=1 
 
     ρ = N / K 

 
In Fig. 2 the computed distribution function is indicated by the dashed curve drawn through the 
crosses which represent the points at which the determination was made; the radial distribution 
function for a random distribution is depicted by the dashed-dot line in Fig. 2. 

The diminished density near the origin and the subsequent damped oscillations in density are 
characteristic of distributions in which objects are fundamentally randomly dispersed, but are 
subjected to repulsive interactions which tend to diminish the probability of finding two objects 
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close to each other. If the distribution is formed by a dynamic process that guarantees that the 
distribution is maximally random subject to the constraints of the interparticle interactions, then 
the theoretical concepts developed in the study of the statistical mechanics of equilibrium liquids 
may be applied. 

An example is useful. Assume that the towns are randomly distributed subject only to the 
constraint that no two town centres may be closer than a distance, d. Similar models have been 
proposed as prototypes for spatial interaction and pattern formation in biological systems6,7,9. 
Because the resulting distribution also arises in the hard-core model of classical liquids at 
equilibrium2,3, the radial distribution functions for such distributions have been intensively 
studied. The results are tabulated3 for different relative packing densities, ρ’, where ρ’ is the 
number density divided by the maximum close packed hard-core density, and is given by 
 
           √3 
  ρ’  =  --- ρ d2 
                    2 

 
The best agreement is given when ρ’ = 0.5, which corresponds to a hard-core town diameter 

of d = 3.46 miles (solid line in Fig. 2). Although there is qualitative agreement, the hard-core 
interaction is too stringent to give detailed quantitative agreement with the experimental results. 
A more realistic interaction between towns would be graded, in which the probability of finding 
two towns close together would be low, but would continuously increase as the distance between 
the towns increased. This is what would be expected from the geographic theory of central 
places11,12. Lawrence, in a study of hair placement in Oncopeltus, has hypothesized the existence 
of a very similar repulsive interaction which leads to the uniform distribution of hairs6. 

No matter what system is considered, this hypothesized repulsive field plays much the same 
role as the intermolecular potential in the theory of liquids. If the distribution of structures is 
maximally random subject to the constraints imposed by this repulsive field, then the equations 
developed in statistical mechanics may be applied. It is possible to compute theoretical radial 
distribution curves for a given hypothesized field (ref. 1, chapter 5) and also to determine, 
approximately, the interaction between structures if the radial distribution function is known (ref. 
1, page 80). Future work may characterize the hypothesized repulsive fields and explore their 
physical, biological and social origins in those diverse disciplines where uniform distributions 
are observed. 
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