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We analyze the way topological constraints and inhomogeneity in the excitability influence the dynamics of
spiral waves on spheres and punctured spheres of excitable media. We generalize the definition of an index
such that it characterizes not only each spiral but also each hole in punctured, oriented, compact, two-
dimensional differentiable manifolds and show that the sum of the indices is conserved and zero. We also show
that heterogeneity and geometry are responsible for the formation of various spiral-wave attractors, in particu-
lar pairs of spirals in which one spiral acts as a source and a second as a sink—the latter similar to an antispiral.
The results provide a basis for the analysis of the propagation of waves in heterogeneous excitable media in
physical and biological systems.
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I. INTRODUCTION

Geometry and inhomogeneity influence pattern formation
in chemical and biological systems[1,2]. One example
where these two factors play a crucial role is in the experi-
mental observations of distinctive spiral-wave dynamics on
the surfaces of spherical beads, which are excitable inhomo-
geneous chemical media[3,4]. A biological example is the
origin of abnormal cardiac rhythms in the human heart which
depend on the anatomical substrate. The heart possesses a
complex nonplanar geometry with multiple chambers, with
holes corresponding to valves and blood vessels. Some seri-
ous arrhythmias are associated with circulating spiral waves
similar to those observed in chemical media[5]. Since an
abnormal anatomical substrate is a common finding in pa-
tients with some types of cardiac arrhythmias and interven-
tions that modify the anatomy are an accepted form of
therapy[6], theoretical analyses of the interplay between ge-
ometry of the substrate and dynamics may help in the
therapy of cardiac arrhythmias.

In this paper we study spiral-wave dynamics on(punc-
tured) spheres with spatially inhomogeneous excitability. We
show for punctured spheres that the sum of indices which
characterize each spiral has to be zero. Moreover, we dem-
onstrate that topological constraints imposed by the spherical
geometry and inhomogeneity in excitability lead to the for-
mation of pairs of spirals, with distinctive transient dynamics
or as stable attractors, in which one spiral acts as a source
and a second as a sink leading to a source-sink pair under a
broad range of conditions. Our results explain the experi-
mental observations of spirals on spherical beads[3,4].
While we do not consider detailed models of cardiac-wave
propagation, our results may apply to some generic aspects

of atrial arrhythmias because the thin walls of the atria can
be described as two-dimensional(2D) inhomogeneous excit-
able media with specific geometrical features[7].

II. INDEX THEOREM FOR PHASE SINGULARITIES

The mathematical description of spiral waves is based on
the notion of phase which in turn allows one to characterize
spiral waves by an index. From this description, a number of
topological results placing restrictions on spiral-wave dy-
namics can be derived[5,10–13].

With the exception of a finite number of singular points,
with each point in an orientable and compact two-
dimensional differentiable manifoldM we identify a unique
phase lying on the unit circle,FPS1. The resulting phase
map or phase field is assumed to be continuously differen-
tiable, except at the singular points. The manifold can be
triangulated[14] (subdividing it into a set of polygons),
where none of the edges or vertices of the polygons pass
through a singularity. The indexI (sometimes also called the
topological charge or winding number) of a curveC bound-
ing a polygon is found by computing the line integral

2pI =R
C

= F ·dl , s1d

where the polygon is always traversed in a clockwise orien-
tation. By continuity of=F, I must be an integer. The index
of a singular point is uniquely defined as the index of any
curve C provided thatC encircles the point but no other
singular points. The index of a curve that does not enclose
any singular points is obviously zero.

If the manifold M has no boundaries, each edge of the
triangulation is an edge of two polygons. Since the line in-
tegral adds up the change in phase along the various edges of
the polygon, the sum of the indices of the singular points for
a phase field inM is
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SMI = 0, s2d

where the sum is over all singular points. This follows since
the contribution of the change in phase of each edge to the
total integral is counted twice, but since the edge is traversed
in opposite directions each time, the net contribution of each
edge is zero. This index theorem is applicable to tori and
other surfaces of genus different from 0. However, unlike the
more familiar Poincaré index theorem(see Ref.[15], p. 74,
for vector fields) the sum of the indices of the singular points
does not depend on the genus of the surface.

This index theorem for manifolds without boundaries can
be extended to manifolds with boundaries. In the following,
we will consider the case of structures that arise from punc-
turing orientable and compact two-dimensional differentiable
manifolds. The index of a hole can be uniquely defined as the
index of a curveC provided thatC encircles the hole but no
other holes or singular points andC is positively oriented
with respect to the domain which contains the hole and is
bounded byC. Applying this definition and taking the sum-
mation in Eq.(2) over the singularities and the hole, or the
holes if there is more than one hole, the index theorem can
be proved by the same line of arguments as for the case of
manifolds without boundaries.

This extension is important in the heart, for example,
where the atrium is punctured by valves and veins. In such
cases one is led to consider manifolds with holes—for ex-
ample, a sphere with a hole. A sphere with a hole is topo-
logically equivalent to a disk, and, indeed, the results for
disks and for spheres with holes are consistent: For the disk
D2, bounded by a curveC,

SD2I =R
C

= F ·dl , s3d

so that the sum of the indices of the singular points in the
disk is equal to the index of the curveC bounding the disk. If
there is a single singular point on the disk, with an index of
+1, the index of the curve bounding the disk will also be +1.
Imagine now the boundary of the disk to be brought together
(like a drawstring bag) so that the boundary of the disk now
defines a hole in the sphere. In this geometry the curveC will
be traversed in an opposite orientation(the hole is now in-
sideC) from the direction it was traversed when it was the
boundary of the disk. Now if there is a singular point with an
index of +1 on the sphere, the index of the hole is −1, so that
the sum of the indices is again zero.

Since it is necessary to conserve the sum of the indices,
singularities of index ±1 usually arise and are destroyed in
pairs of opposite sign[9]. An exception occurs when singu-
larities are destroyed by collision into a boundary, so that the
index of the singular point and the index of the boundary
both change simultaneously. Another exception occurs if
there are singularities with index different from 1. In such
cases interactions between different singularities can lead to
the destruction or creation of odd numbers of singularities
[16].

III. FITZHUGH-NAGUMO EQUATION

The FitzHugh-Nagumo(FHN) equation[17]

]u

]t
= «−1S−

u3

3
+ u − vD + Du¹

2u,

]v
]t

= «su − av + bd + Dv¹
2v, s4d

whereusr ,td andvsr ,td are two scalar fields,e2 is the ratio
of the time scales associated with the two fields, andDu and
Dv are the constant diffusion coefficients, is a prototypical
model for excitable media. We chooseDu=2 andDv=0. The
real parametersa andb characterize the local dynamics and,
hence, the local excitability. Whenever 0,a,1, ae2,1,
andubu.bH;s1−ae2d1/2f 1

3s2a+a2e2d−1g, the FHN system
is excitable. AtbH a Hopf bifurcation occurs such that for
ubu,bH the system exhibits oscillations. In the following we
takea=0.2, e=0.2, andb.bH=0.863. . ..

We consider a spherical shell whose outer and inner radii
areRe andRi, respectively, and focus on thin spherical shells
whereRi =40, Re=42. The radii are large enough to avoid a
curvature-dependent loss of excitability[18], and the shell is
sufficiently thin that the dynamics is effectively 2D corre-
sponding to the dynamics on a sphere[19]. The initial con-
dition is a domain of an “excited” state, adjacent to a domain
of the “refractory” state. Both domains have the forms of
slices of the same size oriented from the north to the south
pole [20] and yield a pair of counterrotating spirals.

In order to apply the topological results to the FHN equa-
tion, it is necessary to first define the phase. We define a
phase, Fsr ,td based on the equation tanFsr ,td
=vsr ,td /usr ,td if vsr ,tdÞ0 and usr ,tdÞ0. Thus, singular
points at givent are pointsr in the medium for which
vsr ,td=0 andusr ,td=0. For eacht, we obtain a continuously
differentiable phase mapMt= uFs: ,tduDt that associates to
each point in a well-defined domainDt a phase lying on the
unit circle,FPS1. For our FHN medium, the domain is the
surface of a(punctured) sphere reduced by a finite number of
points where the phase is singular at fixedt.

Rotating spiral waves in the FHN equations are obviously
associated with a singular point which is called the spiral
core. In what follows, we assume that there are only single-
armed spirals so that a clockwise rotating source has an in-
dex of +1 and a counterclockwise rotating source has index
−1. A clockwise rotating sink has an index of −1, and a
counterclockwise rotating sink has index +1. From Eq.(2), it
is impossible to have a single rotating spiral wave on a
sphere; in addition, there must be at least another singular
point or a hole with nonzero index.

For excitable media, a nonzero index of a hole implies
that wave fronts travel permanently around the hole such that
the numbers of fronts traveling clockwise and counterclock-
wise are different. This includes the particularly simple case
of a single wave front traveling around the hole which can be
considered as a spiral wave associated with the hole.
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IV. SPIRAL-WAVE DYNAMICS IN SPHERICAL
GEOMETRIES

A. Dynamics in excitability gradients

First consider homogeneous FHN media with a constant
b=bex;0.9. The wave fronts emanating from the spiral
cores with opposite index “annihilate” along the equator
such that each spiral determines the dynamics on half of the
sphere(see Fig. 1, left panel)—similar to what has been ob-
served in Ref.[21] for a different excitable system. We have
shown that this behavior is robust with respect to disorder in
excitability with small amplitude and correlation length. If
random, uncorrelated spatial variations inb exist on length
scales much smaller than the diameter of the spiral core me-
ander[22], the dynamics is able to average over such small-
scale inhomogeneities. The robustness explains why such
states have been experimentally observed in some chemical
reactions on spherical beads which are intrinsically inhomo-
geneous[4].

Applying a constant gradient inb as sketched in the right
panel of Fig. 1 leads to a different scenario. The time evolu-
tion of the spiral pair may be partitioned into four distinct
regimes as shown in Figs. 2 and 3. Because of the gradient,
the frequencies of the two spirals differ since a higher value
of b corresponds to lower excitability, which generally im-
plies a lower spiral frequency[23]. During a short transient
T, the spiral with the higher frequency assumes control of the
dynamics[24] on the sphere. The location on the sphere,
where wave fronts emanating from the two spiral cores an-
nihilate, moves toward the core of the low-frequency spiral.
Finally, the low-frequency spiral core is pushed farther from
the high-frequency spiral core[24,25] (see Fig. 3). After this
short transient, the wave fronts travel from pole to pole, lead-
ing to the creation of a source-sink pair. This(intermediate)
state is shown in Fig. 4 and corresponds to regime I in Figs.
2 and 3. Viewed from the low-excitability end of the sphere,
the waves wind into a small region about the core, reminis-

cent of the structure of antispirals—i.e., inward moving spi-
rals seen in oscillatory media[26]. However, the origin of
this inward spiral motion in oscillatory media differs and is
distinct from that observed here. In oscillatory media, either
spirals or antispirals are stable depending on system param-
eters and the wavelength diverges on the border in the pa-
rameter space between these two regimes. Thus, antispirals
exist independently of spirals. This is not the case here be-
cause the generation of an inward-moving spiral relies on the
presence of a spiral source and spherical geometry. For ex-
ample, consider the FHN system with a disk geometry and a

FIG. 1. (Color online) Left: spiral waves of excitation(light
fronts) on the sphere for constantb=bex emanating from spiral
cores close to the poles on an equator projection. The white arrows
show the direction of propagation. One annihilation front along the
equator can be identified. Right: sketch of the constant gradient in
the inhomogeneous case. The dashed lines are the equi-b lines and
we choosebmax=1.0 andbmin=bex. The anglef describes the ori-
entation with respect to the axis from pole to pole. The results
described in the text do not depend qualitatively on the choice off
or bmin andbmax as long as they yield stable spirals.

FIG. 2. (Color online) The local excitabilitybsr stdd at the spiral
cores versus time. Gradient-induced motion of the two spiral cores
leads to a change in the local excitability at the cores with time. The
spiral period in the final state isT0=13.2±0.1. Four different re-
gimes can be identified(see text). Inset: the final bound pair of
counterrotating spirals in regime III forf=51.0° is shown on an
equator projection such that the point of lowest excitability lies on
the central longitude. The spiral closer to the equator has index −1
while the other one has index +1.

FIG. 3. (Color online) The distance between the two spiral cores
dstd versust. Gradient-induced motion of the two spiral cores leads
to a change in the distanced between the cores with time. The
lower and upper curves correspond to the distance inR3 and S2,
respectively. The dashed lines are the respective upper bounds
given by the size of the sphere.
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radial gradient in excitability such that the maximum value
of b is located in the center of the disk. In this case, a
source-sink pair cannot occur because the high-frequency
spiral, acting as a source, would push the other(low-
frequency) spiral out of the system, excluding the presence
of any strong random inhomogeneities in excitability which
may pin the low-frequency spiral and prevent its motion
(see, e.g.,[27]). The lower panel of Fig. 4 shows that rem-
nants of the low-frequency spiral persist in a small area
around the core. It has been speculated that antispiral waves
might occur in cardiac tissue[28]. While excitable media
cannot support a regime of exclusive antispirals due to their
excitable character, our results show that source-sink pairs
with similar characteristics could form in the heart where the
underlying dynamics is excitable, the medium is inhomoge-
neous, and the topology is similar to a(punctured) sphere.

Spiral dynamics of the type described above has been
observed by Maselko and Showalter[3] in experiments on
the excitable Belouzov-Zhabotinsky reaction on spherical
beads. They attributed the generation of spiral source-sink
pairs to inhomogeneities in the medium related to differing
chemical environments. This is consistent with our findings
for systems with gradients and is further confirmed by the
work reported in Ref.[21]. While the generation of source-
sink pairs due to a gradient in the FHN medium investigated
here is only an intermediate state(but one that persists for
approximately 240 spiral periods in our simulations), random
spatial variations of the excitability with a correlation length
comparable to the diameter of the spiral core meander or
larger can lead to a final state consisting of such a source-
sink pair [22]. This is due to the fact that the source can be
trapped in a region of depressed local excitability.

Not only does the gradient in the FHN medium change
the local excitability but it also induces a drift of the spiral
cores[29]. For our model, the drift is rather slow compared
to the transition to the source-sink pair which takes place
during the transient regimeT. This can be seen in Fig. 2.
[The fluctuations inb(r std) are due to spiral meandering.] In
regime I, the dominating spiral drifts toward lower excitabil-
ity and its wave fronts continuously push the other core in
the opposite direction, thus keeping the distanced between
the cores approximately constant(see Fig. 3). The fluctua-
tions in dstd are again due to meandering of the spiral cores.
Because of this drift, the local excitabilities at the two spiral
cores approach each other until they become equal.

At this point, regime II in Figs. 2 and 3 is entered. The
dynamics change drastically: the enslaved spiral reverses its
drift direction and regains control over its own dynamics.
Both spirals drift toward lower excitability. Due to the geo-
metric constraints imposed by the spherical geometry, the
spirals approach each other until they form a bound pair(at
t<7500).

They finally reach a stable state(at t<9500) correspond-
ing to regime III in Figs. 2 and 3. Neither theaveragedis-
tance between the spirals nor theaveragelocal excitability
changes further. Yet on top of the persisting unsynchronized
meandering of the two spiral cores, the bound pair slowly
moves along a(closed) equi-b curve on the surface of the
sphere. The direction of the motion depends on the initial
condition—i.e., whether the spiral with positive index was
initially closer to the point of lowest excitability or to the
point of highest excitability than the spiral with negative
index. The wave dynamics generated by this bound pair is
shown in the inset of Fig. 2.

While kinematic theory applies only to spirals with large
cores, it is instructive to note that this theory predicts that the
direction of the drift due to gradients depends on the model
system and its parameters[30]. Although our simulations
have shown the same direction of drift for a range of param-
eters in the meander region of the FHN phase diagram, it is
conceivable that, under different circumstances favoring a
drift toward higher excitability, one spiral could act as a per-
manent source and a source-sink pair could be the final at-
tractor. Such a scenario would also be consistent with the
experimental findings in Ref.[3].

B. Punctured spheres

Next, we consider a homogeneously excitable sphere with
a single hole. Two scenarios can be observed depending on
the location of the hole with respect to the spiral pair. If a
spiral wave is not permanently attached to the hole, the dy-
namics is very similar to the case without any hole. If one of
the spirals is permanently attached to the hole, the frequency
of this spiral is lowered. The size of the hole determines the
frequency of the spiral because the wave front has to travel
around the hole. The transient dynamics is similar to that in
regimeT for the case with a gradient; however, no drift of
the spiral cores is induced and the final state is a spiral
source-sink pair as shown in Fig. 5. Not only is the net index
conserved during the transition to a spiral source-sink pair

FIG. 4. (Color online) Waves of excitation on the sphere in
regime I of the gradient-induced dynamics shown in Figs. 2 and 3.
A source-sink pair has formed. For random spatial variations of
excitability with a correlation length comparable to the diameter of
the spiral core meander, the final state is very similar to the one
shown here[22]. Upper panel from left to right: view centered at
the north pole, south pole, and the equator. The source at the south
pole has index −1 and the sink at the north pole index +1. The black
circles show possible choices ofC. The white arrow shows the
direction of wave propagation. Lower panel: dynamics at the north
pole. Time increases from left to right withDt=2.5 between
snapshots.
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but so is the index of the individual spirals: during the tran-
sition an outgoing-counterclockwise-(clockwise-) oriented
spiral is converted into an ingoing-clockwise-
(counterclockwise-) oriented spiral. Thus, the formation of
spiral source-sink pairs conforms with the topological con-
straints.

If a gradient as well as a hole is present, the spiral drift
discussed earlier also determines the final state, which de-
pends on the hole’s location in the gradient field. For in-
stance, if the point of lowest excitability in the medium is on
the hole boundary, simulations show that the spiral which is
not attached to the hole will stabilize close to this point. In
this final state odd numbers of wave fronts are attached to the

hole, again conserving the topological charge of the hole.

V. CONCLUDING REMARKS

Inhomogeneities due to spatially varying excitability on
(punctured) spherical shells lead to complex spiral-wave dy-
namics and the formation of source-sink spiral pairs in ex-
citable media. The results presented here are immediately
applicable to excitable media in more complicated geom-
etries such as tori or multiholed tori and to situations in
which multiarmed spirals are found. This includes math-
ematical modeling of cardiac tissue. The approach taken in
this paper stresses constraints and aspects that apply to, and
must be observed in, all realistic models of the heart satisfy-
ing certain criteria of continuity. There are also implications
for the treatment of cardiac arrhythmias. In cardiology it is
sometimes possible to develop maps showing the timing of
the excitation over limited regions of heart[6]. In this case, a
sink might be confused for a source(of the arrhythmia), and
this might have implications for the diagnosis of the mecha-
nism and the choice of therapy. The current work shows how
partial knowledge about what is happening in some regions
that could be observed might be helpful in establishing prop-
erties of dynamics that could not be observed. While the
types of sinks we have described here have only been ob-
served in chemical media[3,4] so far, we certainly expect
their existence in the cardiological domain.
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