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Physiological rhythms are central to life. We are
all familiar with the beating of our hearts, the
rhythmic motions of our limbs as we walk,
our daily cycle of waking and sleeping, and
the monthly menstrual cycle. Other rhythms,

equally important but not as obvious, underlie the release
of hormones regulating growth and metabolism, the
digestion of food, and many other bodily processes. The
rhythms interact with each other as well as the outside
fluctuating, noisy environment under the control of
innumerable feedback systems that provide an orderly
function that enables life. Disruption of the rhythmic
processes beyond normal bounds or emergence of
abnormal rhythms is associated with disease. Figure 1
shows several examples of complex physiological rhythms.

The investigation of the origin and dynamics of these
rhythmic processes — once the sole province of physicians
and experimental physiologists — is coming under 
increasingly close examination by mathematicians and
physicists. Mathematical analyses of physiological rhythms
show that nonlinear equations (see Box 1) are necessary to
describe physiological systems1–4. In contrast to the linear
equations of traditional mathematical physics (for 
example, Maxwell’s equations, the heat equation, the wave
equation or Schrödinger’s equation), nonlinear equations
rarely admit an analytical solution. Consequently, as
Hodgkin and Huxley realized in their classic analysis of the
properties of ionic channels in the membranes of squid
nerve cells, numerical simulations are one essential feature
of quantitative studies of physiological systems5. A 
complementary approach is to analyse qualitative aspects of
simplified mathematical models of physiological systems.
This involves a mathematical analysis of those features of
physiological systems that will be preserved by classes of
models that are sufficiently close to the real system. For
example, periodic stimulation of a squid giant axon gives
rise to a wide variety of regular and irregular rhythms that
can be modelled by simple as well as complex mathematical
models6–8.

Although we know that deterministic equations can 
display chaotic dynamics, it is not straightforward to 
distinguish deterministic ‘chaotic’ dynamics from ‘noisy’
dynamics in real experimental data. The problems were
underscored by Ruelle: “Real systems can in general be
described as deterministic systems with some added

noise”9. Although in some carefully controlled situations it
is possible to obtain good evidence that a system is obeying
deterministic equations with a small amount of noise6–8,10,
more usually the origin and the amount of ‘noise’ is not easy
to determine. In this review, I concentrate on three 
fundamental issues related to synchronization and 
rhythmic processes in physiology: origins of complex 
physiological rhythms; synchronization of physiological
oscillations; and the function of noise and chaos in 
physiological processes with particular emphasis on 
stochastic resonance. Finally, I discuss the potential 
applications of these ideas to medicine.

Origins of complex physiological rhythms
Physiological rhythms are rarely strictly periodic but rather
fluctuate irregularly over time (Fig. 1). The fluctuations
arise from the combined influences of the fluctuating 
environment, the ‘noise’ that is inherent in biological 
systems, and deterministic, possibly chaotic, mechanisms.
In most natural as opposed to laboratory settings, there is
continual interaction between the environment and the
internal control mechanisms, so that separation of 
dynamics due to intrinsic rather than extrinsic mechanism
is not possible. Independent of the mechanism for the 
fluctuation, it is usually not clear whether the fluctuations
are essential to the physiological function, or whether 
the physiological functions are carried out despite the 
fluctuation.

At a subcellular level, ionic channels in cell membranes
open and close in response to voltage and chemical changes
in a cell’s environment. An ionic channel lets a specific ion
pass through it provided there is a concentration gradient of
that ion between the intracellular and extracellular medium
and the channel is open. Because histograms of open and
closed times of ionic channels are often well fit by an 
exponential or a sum of exponentials, theoretical models of
channel activity often assume that the dynamics of channel
opening and closing are governed by simple random
processes such as the Poisson process11–13. Figure 2a shows a
schematic representation of five channels, each of which is
open at time 0 and each of which closes randomly with a
fixed probability of 0.1 ms11. Figure 2b shows the fraction of
open channels as a function of time for a membrane with 5,
50 and 500 channels. As the numbers of channels in a 
membrane increases, the falloff of the fraction of open
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channels approaches the exponential distribution e10.1t. Although
most models of channel opening and closing assume a stochastic
mechanism such as the one above, deterministic chaotic models
might also be consistent with the observed channel dynamics2,3.

It is remarkable that the irregular openings and closings of ionic
channels underlie all neural and muscular activities, including those
that require great accuracy and precision such as reading this sen-
tence, playing a violin concerto or carrying out a gymnastics routine.
Because typical cells have of the order of at least 103 ionic channels of
each type, deterministic equations can be used to model cells even
though the underlying mechanism is probably stochastic11–13. This
notion is supported by studies of heart pacemaker cells in which
channel dynamics have been modelled by random Markov processes.
The resulting dynamics are similar to those generated by the 
deterministic models with an added ‘noisy’ fluctuation of period
similar to what is observed experimentally14,15. Additional regulariza-
tion of dynamics can arise as a consequence of coupling of cells with
irregular dynamics or cells that are heterogeneous15–17.

Given the difficulty of analysing the origin of temporal fluctua-
tions on a subcellular or cellular level, it is not surprising that the
analysis of physiological rhythms in intact organisms provides added
difficulties. In some cases, for example, for electrical activity of the
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Figure 1 Representative physiological time series. a, White blood-cell count in a
patient with cyclical neutropenia (tracing provided by D.C. Dale, C. Haurie and M. C.
Mackey)31. b, Heart rate in a subject at high altitude (adapted with permission from the
British Heart Journal)85. c, Stride time in a patient with Huntington’s disease (tracing
provided by J. Hausdorff)86,87. d, Blood pressure in a patient with sleep apnoea
(tracing provided by A. Goldberger). e, Parkinsonian tremor measured from a finger
(tracing provided by R. Edwards and A. Beuter79). (The traces in panels c and d are
adapted with permission from the Research Resource for Complex Physiologic Signals
at http://www.physionet.org.)
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Nonlinear dynamics is a well developed discipline with many
outstanding results89. Three concepts are central — bifurcations,
limit-cycle oscillations and chaos.

Bifurcations are changes in qualitative properties of dynamics.
For example, as a parameter changes, steady states can become
unstable and lead to stable oscillations, or a system with one
stable steady state can be replaced by systems with multiple
stable steady states. Physiological correlates are immediate.
Drugs may lead to changes in control systems so that an
abnormal, unhealthy rhythm is replaced by a more normal one.
Mathematically, the drug induces a bifurcation in the dynamics,
and as such, the actions of the drug can be analysed in a
theoretical context. Often, the same type of bifurcation can be
found in a host of different mathematical equations or
experimental systems, and it is common to consider the
‘universal’ features of such bifurcations. Because many diseases
are classified and identified by physicians based on characteristic
qualitative features of dynamics, there is a natural match between
the emphasis on qualitative dynamics in both mathematics and
medicine.

Stable limit-cycle oscillations are a key feature of some
nonlinear equations. Following a perturbation, a stable limit-cycle
oscillation re-establishes itself with the same amplitude and
frequency as before the perturbation. A perturbation to a linear
oscillation may lead to a new amplitude of oscillation. For
example, there is an intrinsic pacemaker that sets the rhythm in
human hearts. If one or more electric shocks are delivered directly
to the heart near the intrinsic pacemaker, the heart rhythm is
modified transiently but re-establishes itself with the same
frequency as before within a few seconds. 

Chaos refers to aperiodic dynamics in deterministic equations
in which there is a sensitivity to initial conditions. This means that
even in the absence of stochastic processes, irregular rhythms
can be generated. Although it is easy to consider mathematical
systems in which all stochastic influences have been eliminated, in
real physical and biological systems it is impossible to eliminate
stochastic inputs. Thus, although chaotic dynamics is a clear
mathematical concept, application of this concept to real
biological systems is a difficult undertaking.

Box 1
Properties of nonlinear equations
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brain and the heart, the data can be collected easily using electrodes
on the body surface, and computers provide a means for rapid 
analysis of large data sets. In other areas, such as endocrine function,
determination of hormone fluctuations is difficult and expensive,
requiring drawing blood at frequent intervals and performing
expensive assays on the blood samples.

Consider the timing of the normal heartbeat as a paradigmatic
example of physiological rhythm. Maintaining an adequate blood
flow to the brain is essential to life. The heartbeat is generated by an
autonomous pacemaker in the heart, but its frequency is mediated by
neural activity controlled in turn by a large number of different 
feedback circuits all acting in parallel. As a consequence, the normal
heart rate displays complex fluctuations in time in response to 
environmental factors such as breathing, exercise, changes in posture
and emotion18. Diseases that impair heart function, for example
damage to the heart caused by a heart attack or high blood pressure,
lead to impaired pumping ability of the heart. In such cases, because
the normal heart rate would not pump adequate blood to the brain,
the heart generally beats more rapidly, and many of the normal 
fluctuations of heart rate are blunted. Lacking clearly defined and
widely accepted operational definitions for chaotic dynamics, it is
not surprising that agreement is lacking about whether or not normal
heart dynamics are chaotic19 or not chaotic20,21. Various tests of time
variation have been applied to heart-rate variability to show that
heart-rate fluctuation displays 1/f noise22, fractal dynamics with
long-range correlations23,24, and multifractal dynamics25. Although
similar dynamics in physical systems have been associated with self-
organized criticality26, in the biological context it is impossible to
assert a mechanism based on the current observations. Indeed, it is
possible that many of the properties observed reflect the response of
individuals to a changing environment, and the environmental
inputs themselves have interesting scaling properties27.

There have been extensive quantitative analyses of data from many
other physiological systems. In some instances the original motiva-
tion for the analyses was to determine whether the system dynamics
was chaotic, although I believe the answer to this remains unclear. But

the data do reveal extraordinarily rich dynamics, and I mention 
several examples briefly. Electroencephalographic data reflect 
integrated activity from large numbers of cells in localized regions of
the brain. A seizure shows characteristic changes in electroencephalo-
graphic records typified by larger-amplitude, regular and sustained
oscillations reflecting broad synchronization of neural activity28.
Standard clinical interpretation of electroencephalographic data has
been supplemented by a variety of quantitative analyses motivated by
nonlinear dynamics29,30. Analysis has also been carried out of a variety
of normal and abnormal rhythms of blood-cell levels. Some blood
disorders are characterized by pronounced fluctuations in levels of
circulating white blood cells31. Blood-cell levels are controlled by 
feedback loops with long time delays and theoretical models have 
succeeded recently in analysing the effects of various manipulations.
Endocrine function also provides a challenging area in view of the 
difficulty of obtaining temporal data, although sustained efforts have
generated time series of various hormones including parathyroid 
hormone32, growth hormone33 and prolactin34.

These initial studies indicate extremely rich dynamics with 
differences between normal individuals and patients. The issue of
whether or not the dynamics reflect chaos is much less interesting than
elucidating the underlying mechanisms controlling the dynamics.

Synchronization of physiological oscillators
Although many cells in the body display intrinsic, spontaneous
rhythmicity, physiological function derives from the interactions of
these cells with each other and with external inputs to generate the
rhythms essential for life. Thus, the heartbeat is generated by the
sinoatrial node, a small region in the right atrium of the heart 
composed of thousands of pacemaker cells that interact with each
other to set the normal cardiac rhythm14,15. Nerve cells generating
locomotion synchronize with definite phase relations depending on
the species and the gait35. And the intrinsic sleep–wake rhythm is 
usually synchronized to the light–dark cycle1,36. In general, 
physiological oscillations can be synchronized to appropriate 
external or internal stimuli, so it is important to analyse the effects of
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Figure 2 Schematic diagram showing dynamics in ionic channels that deactivate by a
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stimuli on intrinsic physiological rhythms. Even the simplest 
theoretical models (see Box 2 and Figs 3, 4) show the enormous 
complexity that can arise from periodic stimulation of nonlinear
oscillations.

In vitro experiments in cardiac and neural tissue have clarified the
effects of periodic stimulation in biological systems. Heart and nerve
tissue are examples of excitable tissue4. This means that in response to
a stimulus that is sufficiently large they will generate an event called
an action potential. Following the action potential, for a time interval
called the refractory period, a second stimulus does not elicit a sec-
ond action potential. During periodic stimulation there are both
periodic synchronized rhythms and aperiodic rhythms (see Box 2).
Periodic stimulation of biological systems can give also give rise to
aperiodic rhythms. For weak stimulation, it is common to find 
quasiperiodic rhythms, in which two rhythms with different 
frequencies march through each other with little interaction. Other
aperiodic rhythms are chaotic. Identification of chaotic dynamics in
periodically stimulated heart and nerve tissue is made more certain
by the derivation of deterministic, theoretical models that are 
accurate both quantitatively and qualitatively and that correspond
closely to both the regular and irregular dynamics observed experi-
mentally6–8,10. As the frequencies and amplitudes of the stimulation
are varied, there is a characteristic organization of the phase-locking
zones. However, if the dynamics are dissected on a fine scale, the
detailed bifurcations in model systems differ from one another over
some amplitude ranges. In experimental systems it is difficult to carry
out locking studies in which stimulation parameters are varied finely
because living preparations can be affected by stimulation and may
change over the lengthy times needed to carry out the stimulation.

External inputs can often synchronize biological rhythms. Plants
and animals display a circadian rhythm in which key processes show a
24-hour periodicity. This periodicity is usually set by the 24-hour
light–dark cycle, but if this is removed by placing the organism in a
constant environment, a cycle length different from 24 hours is
observed. Thus the light–dark cycle entrains the intrinsic rhythm. If
there is shift of the light–dark cycle, for example as might be generat-
ed by visiting a different time zone, then a time lag occurs until there is
a new synchronization Such phenomena have been modelled by both
integrate and fire models and limit-cycle models36–39.

Other circumstances in which physiological rhythms are 
stimulated by regular, periodic inputs occur in the context of medical
devices. A mechanical ventilator assists breathing in experiments and
in people who have respiratory failure. Such devices can be used in a
variety of modes, but in the simplest, the physician sets the period
and amplitude and the mix of gases for the ventilator, which then
periodically inflates the patient’s lungs. The resulting periodic lung
inflation can interact with the person’s intrinsic respiratory rhythm.
In some instances, the respiratory rhythm will be entrained to the
ventilator, but in other cases the patient will breath out when the 
ventilator is in the inflation phase40–42.

These examples illustrate the effects of an external periodic input
on intrinsic physiological rhythms. But the physiological rhythms
also interact with one another. An example is the increase of the heart
frequency during inspiration. Although the interactions between the
respiratory and cardiac rhythms are not strong enough usually to
lead to synchronization, such synchronization has been demonstrat-
ed in healthy high-performance swimmers43.

It seems likely that many bodily activities require synchronization
of cellular activity. For example, synchronization seems to be an
essential component of many cortical tasks — coherent oscillations
at 25–35 Hz are found in the sensorimotor cortex of monkeys44 and
40–60-Hz oscillations are found in the visual cortex of cats45.

Many different sorts of mathematical models have been proposed
to account for synchronization in diverse systems. For example, 
synchronization has been observed in mathematical models of 
populations of cells that generate the heart beat in leeches16, the 
respiratory rhythm in rats46, gamma and beta rhythms in the brain47,
and the circadian rhythm48. However, because coupled oscillators
show robust behaviour in which units tend to become synchro-
nized49, the observation of synchronization in models is not in itself a
strong indicator of the suitability of the models.
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Figure 3 Integrate and fire model and locking zones. a, An activity increases linearly
until it reaches a sinusoidal threshold and then decreases linearly. The successive
times when the activity reaches threshold are determined iteratively. b, Schematic
picture of the main Arnold tongues for the sine circle map (equation (3) in Box 2). N:M
locking reflects M cycles of the sine wave and N cycles of the activity. Chaotic dynamics
are found only for b >1/2p. c, Colour representation of a region of b. The colours code
different periodic orbits (compare with b). The delicate geometry and self-similar
structures are more evident in this representation. (Panels a and b modified with
permission from ref. 88; colour version of the locking zones provided by J. Gallas.)
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Given the enormous numbers of connections between different
cells and organs in the body, perhaps the biggest puzzle is not why
bodily rhythms may in some circumstances become synchronized to

each other, but rather why there seems to be so much apparent 
independence between rhythms in different organs.

The function of noise and chaos in physiological systems
When looked at carefully, all physiological rhythms display 
fluctuations. Do the physiological systems function well despite these
fluctuations, or are the fluctuations themselves intrinsic to the opera-
tion of the physiological systems? And if the fluctuations are essential
to the functioning of the systems, is there some reason to believe that
chaotic fluctuations would provide added function over stochastic
fluctuations? There are no clear answers to these questions.

Chaotic dynamics might underlie normal function. In chaotic
dynamics, there are typically many unstable periodic orbits, and
there is also a sensitive dependence on initial conditions so that small,
well-timed perturbations could lead to strong effects on the 
dynamics. Scientists have learned how to control chaotic dynamics50

and nonlinear dynamics51 in model equations and in the laboratory.
Electrical stimulation of complex dynamics in cardiac52 and neural53

systems using chaos-control techniques has led to the regularization
of complex rhythms, although the mechanisms of these effects are
not certain51. Rabinovich and Abarbanel suggest that chaotic dynam-
ics might be easier for the body to control than stochastic dynamics16.
Another way the body might exploit chaos is by associating different
unstable orbits with different percepts. Skarda and Freeman54

proposed that the spatiotemporal fluctuations observed in the olfac-
tory bulb in rabbits are chaotic. Each different odour is associated
with and selects a different unstable spatiotemporal pattern of 
oscillation. However, in view of the difficulties associated with
recording and interpreting spatiotemporal dynamics in living 
biological systems, and the huge gaps in understanding complex
physiological functions involved in cognition and control, these
claims remain intriguing hypotheses rather than established fact.

In normal circumstances, detection of signals is hampered by
noise. For example, because the aesthetic and practical utility of
sounds and images is reduced as noise level increases, designers of
devices for recording and playback of sound and images make 
strenuous efforts to maximize the signal-to-noise ratio.

In other circumstances, however, the presence of noise and/or
chaotic dynamics can improve detection of signals. Stochastic reso-
nance refers to a situation in which the signal-to-noise ratio is maxi-
mum at an intermediate level of noise55–58. For example, in tasks that
are at the threshold of perception, the addition of noise can improve
threshold detection. To illustrate this, consider a ‘leaky’ integrate and
fire model59 in the presence of noise as a model for stochastic reso-
nance (Fig. 5). Assume that an activity (here a membrane potential of
a nerve cell) x is governed by the differential equation

}
d
d
x
t
}41cx&I&j (1)

where c is a decay constant, I is constant input and j is added random
noise. The activity rises to a threshold f(t)41&ksin2pt, which 
represents an oscillating signal. If c40, then x increases linearly to the
threshold (as shown in Fig. 3 and Box 2). When the activity reaches the
threshold it elicits an action potential indicated by the arrows, 
followed by an immediate reset of the activity to zero. With j40 the
maximum value of x is I/c. Consequently, if (11k)>I/c and there is
very low noise, then the activity would never reach threshold (Fig. 5a).
But if there is moderate noise the activity can reach threshold, and this
tends to occur at the troughs of the sine wave (Fig. 5b). Of course, if the
noise is too great, then the activity is no longer as concentrated at the
troughs (Fig. 5c). Thus, at intermediate values of the noise, the activity
is well synchronized to the sinusoidal input, but rather than occurring
on every cycle, there is a stochastic element resulting in a skipping 
pattern of activity in which excitation tends to occur at random 
multiples of a common divisor. Although the mechanisms are not well
understood, similar rhythms, which may represent a ‘stochastic phase
locking’, are observed frequently in physiological data56,57.
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Although noise is helpful in this artificial example, various pro-
posals have been made suggesting that signal detection might be
facilitated in physiological systems by similar mechanisms in which
noise was either added externally or present intrinsically. Several
reports indicate that added noise seems to enhance signal detection
in in vitro preparations58, in animal experiments60,61 and in human
perception62–64. Because noise is an intrinsic property of human phys-
iological systems, a compelling question is whether or not noise may
be acting to aid function in normal activities in a manner similar to
the way it can act to enhance the detection of subthreshold activities.

Prospects for medical applications
In the physical sciences, advances in basic science have inevitably led
to new technology. Although many technological innovations in
medicine, such as X-ray imaging and nuclear magnetic resonance
imaging, have derived from advances in the physical sciences, the
recent mathematical analyses of temporal properties of physiological

rhythms have not yet led to medical advances, although several 
directions are under active consideration.

There is a wide spectrum of dynamical behaviour associated with
both normal and pathological physiological functioning. Extremely
regular dynamics are often associated with disease, including period-
ic (Cheyne–Stokes) breathing, certain abnormally rapid heart
rhythms, cyclical blood diseases, epilepsy, neurological tics and
tremors. However, regular periodicity can also reflect healthy
dynamics — for example in the sleep–wake cycle and menstrual
rhythms. Finally, irregular rhythms can also reflect disease. Cardiac
arrhythmias such as atrial fibrillation and frequent ectopy, and 
neurological disorders such as post-anoxic myoclonus, are often
highly irregular. The term ‘dynamical disease’ captures the notion
that abnormal rhythms, which could be either more irregular or
more regular than normal, arise owing to modifications in physio-
logical control systems that lead to bifurcations in the dynamics65.
What is most important in distinguishing health from disease is that

Because biological oscillators are stable nonlinear oscillations, many of the general features of the interactions between the periodic input and
the ongoing rhythm can be predicted without knowing precise details of the nature of the oscillator or the input. Simple toy models of
synchronization show a host of phenomena shared by more complex models and real systems2,4,49,59,88,90–92.

The integrate and fire model assumes that there is an activity that rises to a periodically oscillating threshold59,90 and then resets to a lower
threshold. Depending on the setting, the activity might represent a nerve membrane potential, a substance that induces sleep or a neural
activity associated with the timing of inspiration. There are also many ways in which one might model the activity. It could be modelled by a
function that increases linearly in time, or by a function that saturates, or perhaps even by a biased random walk. One of the simplest
embodiments of the integrate and fire model is to assume an oscillatory threshold u(t)41&ksin2pt and an activity that increases linearly to the
threshold, followed by a linear decrease to zero (Fig. 3a). To illustrate some of the properties of this model, consider the situation in which there
a jump from 0 to the threshold, followed by a linear decay (slope of 1s2) to zero. Let tn be the time when the oscillation is at the threshold value
for the nth time. Then

tn&14tn&1/s2&(k/s2)sin2ptn (2)

If t41/s2, b4k/s2 and fn4tn (mod 1), we obtain

fn&14fn&t&bsin2pfn (mod 1) (3)

This difference equation — sometimes called the sine circle map — displays an incredible array of complex rhythms91. One type of rhythm is
synchronization of the activity to the sine function in an N:M phase-locked rhythm so that for each M cycles of the sine wave the activity reaches
the threshold N times. For low amplitudes (0 b 1/2p) of the sine-wave modulation, there is an orderly arrangement of the phase-locking
zones, called Arnold tongues. For fixed values of b, as t increases all rational ratios M/N are observed and there are quasiperiodic rhythms in
which the two rhythms march through each other with slight interaction. For b>1/2p, the simple geometry of Arnold tongues breaks down and
there are chaotic dynamics as well as bistability in which two different stable rhythms exist simultaneously. Figure 3b,c gives a hint at the
complexity of the organization of the locking zones.

A second prototypical oscillator was described originally by the French mathematician Poincaré

}
d
d

r
t
}4cr (11r),  }

d
d
f
t
}42p (4)

where the equation is written in a radial coordinate system (r, f). In this equation, there is a stable limit cycle at r41. More realistic models of
biological oscillations also have limit cycles, but the variables in these models would reflect the mechanism of the underlying biological
oscillation. For example, more realistic models of biological oscillators might be written in terms of ionic currents or neural activities. Because
there are certain features of the qualitative response of biological oscillators to single and periodic stimulation that depend solely on the
properties of nonlinear oscillations1, the tractable analytic properties of the Poincaré oscillator make it an ideal system for theoretical analysis.
We assume that the stimulus is a translation by a horizontal distance A from the current state point, followed by evolution according to 
equation (4) (Fig. 4a). If c is sufficiently large, then after the periodic perturbation there is a very rapid return to the limit cycle, and the dynamics
can be described approximately by92

fn&14t&g(fn, A) (mod 1),  where g(f, A)4}
2
1
p
} arccos (5)

Although for 0 A 1 there is again a simple Arnold-tongue geometry that is the same topologically as that found in the integrate and fire model
for low amplitudes, for higher amplitudes the detailed geometry is radically different (Fig. 4b, c).

cos2pf&A
}}}
(1&A2&2Acos2pf)1/2

Box 2
Simple models for synchronization of nonlinear oscillators
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there is a change in the dynamics from what is normal, rather than
regularity or irregularity of the dynamics. Thus, generalizations such
as “chaos may provide a healthy flexibility to the heart, brain, and
other parts of the body”66 must be considered warily.

Efforts are underway to develop better diagnostic and prognostic
methods by analysis of dynamics of physiological rhythms. For
example, in cardiology it would be extremely useful to have a measure
that provides an independent predictor of significant cardiac events
such as impending cardiac arrest. A variety of quantitative measures
of cardiac activity derived from concepts introduced in nonlinear
dynamics have been proposed as markers of increased risk of sudden
death67–71. However, because algorithms must be tested on large 
populations, it is difficult to design and implement clinical trials to
test the utility of the various proposed measures. One recent 
initiative, the development of open databases that could serve as a
repository of clinical data that are difficult and expensive to obtain,
provides an emerging strategy that should prove indispensable for
testing competing algorithms72. Likewise, the public availability of
powerful data-processing methods should advance research73.

Similar efforts at analysis of dynamics of time series are also under-
way in neurology. The earlier debates about whether the electroen-
cephalogram displayed chaotic dynamics have been superseded by
predictions of the onset of seizures using a variety of measures derived
from nonlinear dynamics74–76. Analysis of abnormalities in tremor
and standing steadiness may provide a marker of heavy-metal
toxicity77,78 or the early onset of Parkinson’s disease79.

There are a number of ways in which knowledge about the 
synchronization of oscillators could be put to medical use. Because
bodily functions show distinct periodicities, schedules for drug
administration might be optimized. In cancer chemotherapy, treat-
ments could be based on the circadian rhythm of cell division80.
Intriguing strategies to minimize the effects of jet lag have been 
developed, based on experimental studies of resetting the circadian

oscillator by modifying the exposure to light after travel1,81, although I
am unaware of any clinical studies that have assessed these proposals.

Medical devices that are used to regulate and artificially control
cardiac and respiratory dynamics have been developed principally by
engineers working with physicians. The empirical methods used to
develop and test these devices have not included a detailed mathe-
matical analysis of interactions of the physiological rhythm with the
device. Indeed, devices usually have several adjustable parameters so
that the physician can optimize the settings for operating the device
based on direct testing in a patient. Recent work has investigated the
application of algorithms motivated by nonlinear dynamics to 
control cardiac arrhythmias in humans (ref. 82 and D. J. Christini, 
K. M. Stein, S. M. Markowitz, S. Mittal, D. J. Slotwiner, M. A. Schein-
er, S. Iwai and B. B. Lerman, unpublished results). Although there are
not yet clinical applications, I anticipate that better understanding of
the interactions between stimuli and physiological rhythms will lead
to the development of better medical devices.

The recent identification of stochastic resonance in experimental
systems has led to the suggestion that it might be useful to add noise
artificially as a therapeutic measure. For example, in patients who
have suffered strokes or peripheral nerve damage, detection tasks
might be enhanced by addition of artificial noise to enhance tactile
sensations62. Similarly, addition of sub-sensory mechanical noise
applied to the soles of the feet of quietly standing healthy subjects
reduced postural sway and seemed to stabilize the postural control 
(J. Niemi, A. Priplata, M. Salen, J. Harry and J. J. Collins, unpublished
results). Another intriguing suggestion is that addition of noise might
also enhance the efficiency of mechanical ventilators. The use of a
variable inflation volume with occasional large inflations might act to
prevent the collapse of alveoli and therefore maintain improved lung
function in patients undergoing ventilation83. Finally, low-level
vibratory stimulation of a premature infant seemed to eliminate long
apnoeic periods. Although the mechanism is unknown, it was
hypothesized that a stable fixed point, corresponding to no breathing
in the apnoeic infant, coexisted with the normal limit-cycle oscilla-
tion that corresponded to breathing. The vibration destabilized that
fixed point thereby eliminating the apnoeic spells84.

Conclusions
Physiological rhythms are generated by nonlinear dynamical sys-
tems. In vitro experimental systems often yield dynamics that can be
successfully interpreted using both simplified and complicated
mathematical models. These models make predictions about effects
induced by parameter changes such as changing the frequency and
amplitude of a periodic stimulus. However, rhythms in intact animals
in an ambient environment have so far defied simple interpretation.
Bodily rhythms such as the heart beat, respiration and cortical
rhythms show complex dynamics, the function and origin of which
are still poorly understood. Moreover, we do not understand if the
complex dynamics are an essential feature, or if they are secondary to
internal feedback and environmental fluctuations. Because of the
complexity of biological systems and the huge jump in scale from a
single ionic channel to the cell to the organ to the organism, for the
foreseeable future all computer models will be gross approximations
to the real system. In the physical sciences, scientific understanding
has been expressed in elegant theoretical constructs and has led to
revolutionary technological innovation. If the advances in under-
standing physiological rhythms will follow the same trajectory, then
we are still just at the beginning. ■■
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