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A circle map maps the circumference of a circle into itself. Such maps  are of physical and biological interest because they 
arise naturally in many circumstances, as for example the periodic forcing of limit cycle oscillators. The canonical example of 
circle maps  is f ( x )  = Tx + r + A sin2~rx (mod 1) where A and r are two constants. T is an integer that gives the topological 
degree of f .  Cycles that contain extremal points of f are stable, and are called superstable cycles. The locus of superstable 
cycles in (A, r)  parameter space is called the skeleton. The critical points of f ( f ' (x)  = 0) and the discontinuous points of f 
( f ( x )  = 1), break f into monotonic branches. In tiffs paper we propose a novel notation for symbolically representing the 
branches of f ( x )  and discuss the symbolic sequences for the skeleton. Simple rules based on continuity of periodic orbits as 
parameters  change, allow us to construct the skeleton associated with all periodic orbits for the circle maps with T =  0, 
0 < A < 1, T = 0 and T = 1, 0 < A _< 1, ~" = 0. Recursion formulae to compute the numbers  of periodic orbits for T = 0 and 
T = 1 at ~" = 0 are given. 

1. Introduction 

The dynamics arising from periodic stimulation 
of strongly attracting limit cycle oscillations can 
be approximated by one-dimensional maps of the 
circle f: $ 1 ~  S t [1-5]. For example, such maps 
arise in studies of the periodic forcing of biologi- 
cal [6-8] and chemical [9] oscillators by brief 
stimuli. Circle maps also arise in studies of dy- 
namics of laser systems [10-12]. Although the 
detailed quantitative form of the maps differ from 
case to case, topological features of the maps from 
different systems are often the same. Accordingly 
intensive studies have been undertaken to identify 
certain universal features of the bifurcations of 
circle maps that are independent of the precise 
quantitative details. Significant advances have been 
made in the description of the bifurcation and 

scaling characteristics for invertible one-dimen- 
sional diffeomorphisms of the circle and particu- 
larly for parameter values at which such maps 
lose invertibility by developing cubic nonlineari- 
ties [13-16]. However, as practical applications 
accumulate, it is clear that many interesting exper- 
iments and theoretical examples arise for parame- 
ter values at which the map is not invertible 
[6-11]. Although there has been some analysis of 
those cases [2-12, 17-24], a complete theory does 
not exist. The main motivation for the current 
paper is to develop analytic techniques to study 
the global topological structure of the bifurcations 
of noninvertible circle maps. 

One of the primary techniques to analyze non- 
invertible maps with extremal points is to consider 
the periodic orbits containing extremal points [25]. 
Such a periodic orbit is guaranteed to be stable, 
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and is called a superstable orbit. Quite early, 
important theoretical methods were developed de- 
scribing topological features of superstable cycles 
in one-dimensional maps with a single extremum 
[25-27]. Periodic orbits are represented by giving 
sequences of symbols corresponding to whether 
the iterate of the map is to the right or left of the 
extremal point [25-27]. This approach is called 
symbolic dynamics. Symbolic dynamics has also 
been extended to the analysis of cubic maps 
[28-32]. 

In maps with a two-dimensional parameter 
space, the locus of points associated with a given 
superstable cycle has been called a bone [33] and 
the union of bones is called the skeleton [19, 33]. 
The bones are ordered in the two-dimensional 
parameter space and two bones associated with 
the same critical point cannot intersect [19]. Nu- 
merical computation of the skeleton is straightfor- 
ward and has been reported in a number of dif- 
ferent contexts [4, 5, 8, 20-22, 34]. A detailed 
theory of the symbolic dynamics for the skeleton 
of the bimodal map was developed by MacKay 
and Tresser [33]. However, there are still few re- 
suits pertaining to the symbolic dynamics of circle 
maps [5, 17, 35]. 

In this paper we study the circle map 

f(x)=Tx+z+Asin2~rx (modl) ,  (1) 

where T is an integer giving the topological degree 
of the map and A and T are positive real num- 
bers. Although most studies have dealt with this 
map with T = 1 [13-16, 19, 20, 23, 24], maps with 
topological degree 0 are likewise important in 
studies of forced oscillators [1-5] and laser sys- 
tems [10-12]. 

This paper is based on the following idea. The 
skeleton is invariant under translations of ~" = ~0 + 
N where N is an integer (since the map is taken 
modulo 1). As A increases from 1/2~r, bones of 
the skeleton can be continued and intersect the 
symmetry lines "r = +_ N where N is an integer. 
Consequently, a great deal of information about 
the global structure of the skeleton can be poten- 

tiaUy derived from a knowledge of the symbolic 
sequences at • = 0, if it is known how the bones of 
the skeleton intersecting ~" = 0 can be continued in 
(A, ~') parameter space. Indeed it may be possible 
to completely reconstruct the global structure of 
the skeleton of eq. (1) based solely on analytical 
arguments for the symbolic dynamics along ~" = 0 
combined with continuity arguments. However, 
the computations rapidly become difficult when A 
is large because of the large number of symbols 
needed to characterize orbits, and the complex 
transitions of symbolic sequences that occur along 
the skeleton. Consequently, only partial results 
have been obtained thus far. Our approach to this 
problem is one of physicists, rather than mathe- 
maticians. We have used numerical simulations to 
help discover rules for constructing the skeleton 
over limited regions of parameter space in eq. (1). 
Plausibility arguments to help support these rules 
are given. Rigorous proofs suitable for a mathe- 
matician have not been developed and conse- 
quently the rules we give should be considered 
conjectures. 

In section 2 we develop the key theoretical 
concepts needed to discuss the symbolic dynamics 
of eq. (1). A simple symbolic notation for super- 
stable cycles and rules for ordering the superstable 
cycles are given. The concept of rotation number 
is introduced and its connection with the symbolic 
sequences is derived. In section 3 we discuss ad- 
missible sequences of superstable cycles in param- 
eter space for circle maps of degree 0 and 1 when 
~- = 0. In section 4 we give results pertaining to the 
symbolic dynamics of the skeleton of eq. (1). This 
problem involves extension of the ordered se- 
quences along symmetry lines found in section 3, 
to the complete space of two parameters. A num- 
ber of rules have been found for this procedure. In 
section 5 we show that in maps with T ~ 1 the 
rotation number is not invariant along some bones 
of the skeleton. The conclusions are given in sec- 
tion 6. 

Appendix A gives methods to determine admis- 
sible sequences for circle maps with T = 0, • = 0 
based on the h-expansion method [27]. Tech- 
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niques developed earlier [31, 32, 36-42] to deter- 
mine the number of stable cycles in quadratic and 
cubic maps are adapted for circle maps with ~" = 0 
in appendix B. 

2. Symbolic sequence of the circle map 

2.1. The lift and topological degree of circle maps 

The lift and topological degree of circle maps 
are discussed in ref. [22]. Here we give the defini- 
tions and refer the reader to the earlier paper for a 
full discussion. 

Consider the continuous map F: R---> R with 
the symmetry F(x + 1) = F(x) + T for all x ~ R. 
By considering f =  F (mod 1) we restrict the func- 
tion F to the circle S and thus define a map f :  
S 1 ---, S x. The function F is called the lift of f ,  and 
T is the topological degree of f .  

2.2. The symbolic sequence 

The circle map, eq. (1), with degree T has two 
critical points X i and X[, 

1 l osi( ) 

X,'=~+ cos-1 _ ~  , 

where the subscripts i = F ( X i ) - f ( X i )  and i ' =  
F ( X [ )  - f(X,;) .  The two points X/and  X[ divide 
the interval [0,1] into three subintervals (0, X~), 
(Xi, X[) and (Xi;,1) denoted L, M and R, respec- 
tively. Any point x of the map (1) except the 
critical point can therefore be associated with a 
symbol L j, M j, or R j, where the subscript j is 

given by 

j = F ( x )  - f ( x ) .  (2) 

In fig. 1 we show typical circle maps and the 
associated symbols. The subscript j changes ~ at 

(o) T-O {b) T - I  

Lo M-I X'-I 

f (x) f txl  M° 

Xl X'. Ro R° 
I 

o X~c x~ x~,o x~t o X.c X.Cx x~,~ X~c /, 
x X;~c 

Fig. 1. Circle maps  for (a) T =  0, A = 0.9, r = 0.30 and (b) 
T = I ,  A =1 .1 ,  r =0 .2 .  

discontinuous points such as XMo, XLo in fig. 1. In 
what follows if j = 0 we will usually omit the 
subscript of the symbols. 

By this definition any periodic orbit of period 
n, x 1, x 2, x 3 . . . . .  x", can be represented by a sym- 
boric sequence consisting of n symbols p1, 
p2, p3 . . . . .  pn. A superstable cycle is related to a 

symbolic sequence that starts and ends at either X i 
or Xi;. Because of the symmetry of the circle map 
f(1 - x, 1 - r )  = - f ( x ,  r), throughout this study 
we primarily concentrate on the superstable orbits 
starting from X r 

2.3. Ordering of the symbolic sequence 

Before discussing the ordering of the symbolic 
sequence we give two definitions [5, 6]. A symbolic 
sequence is admissible if it corresponds to a stable 
periodic orbit of a map. The parity of a symbolic 
sequence is determined by the number of points of 
the sequence that fall in region of the map with 
negative slope. The parity of a symbolic sequence 
is even, if the symbol Mj appears an even number 
of times; otherwise the parity of the sequence is 
odd. 

In ref. [25], Metropolis, Stein and Stein gave 
rules to order admissible sequences of quadratic 
maps. Since the quadratic map has a single ex- 
tremum there are only two symbols needed to 
construct symbolic sequences. More recent studies 
have dealt with symbolic dynamics of cubic maps 
using three symbols [28-32]. The situations con- 
sidered here are more complicated since we deal 
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with the symbolic  dynamics of  more than three 

symbols.  Let  

L j I <  - - -  < Lj, ,<Mk~ 

< ' ' '  < M k ,  , < R f i  < . . .  < R i t  , (3) 

with the subscripts 

J] < " ' "  <J,,, kl  > " ' "  >km and i 1 < . . .  < i t. 

The  ordering of  subscripts of  the M-branch is 
inverted since the M-branch has a negative slope 

[25]. 
It  is possible to order two sequences P~ and P/~. 

Suppose  P~ = P*o . . . .  Pa = P 'IX.. .  where P* is the 

c o m m o n  par t  of  the sequences P, and Pa, and 

o 4:  IX. If  P* is even, then o > ix gives P~ > P~ and 

o < IX gives P~ < PO; if P* is odd, then o > IX gives 
P,, < Po and a < IX gives P~ > PO. As an example 

consider  the sequences P~ = P = XoR_ 1R_ 1LM_ 1 

and PO= P ' =  X o R _ I M _ I L M _  1 shown in fig. 2. 

Since P* = XoR_ 1 which is even and R _  1 > M _  1, 
we have P > P'. 

The ordering of  the symbolic sequences can be 

used to impose an ordering on the points in a 
cycle. Consider the periodic orbit  x 1, x 2 . . . . .  x n 

and its associated symbolic sequence px, p2 . . . . .  pn. 
Call _pi the sequence pipi+X. . ,  pn. Then x~>  x -i if 

p i >  p j  and x ~ < x J if W <  PJ. This observation is 

crucial to construct  the skeleton in section 4. 
As an example, consider the sequence P = 

X o R _ I R _ I L R  1 in fig. 3. p 2 = R _ I R _ I L R  1, 
P 3 = R  1LR_ 1, and P S = R _ x ( X 0 ) .  For  p5 the 

symbol ( X  o) is enclosed in parentheses since it is 
the next symbol that would be encountered.  Since 
R _ I  > X o  > L  we have P 2 > P s > P 3  and hence 
X2 > X5 > X 3. 

2.4. R o t a t i o n  n u m b e r  

The rotat ion number  counts  the average rota- 
tion of a point  under  subsequent iterates of  a 

circle map. For  a circle map  with T = 1 the rota- 
tion number  of  a periodic orbit  n passing through 

xi÷l 

I X I 

X i 

Xi*l 

I ~ X I 

~ x 3  
X i 

Fig. 2. Symbolic sequences (a) P '= XoR_aM_xLM_ x and (b) 
P=XoR 1R ILM I. In parameter space z>0,  P' and P 
connect to each other and form a bone. T = 0, ~" = 0; for (a) 
A = 0.9469, for (b) A = 0.9698. 

I X I 

xl~l x 5xz~ 

0 
x I 

Fig. 3. Symbolic sequence .~0R_IR_xLR_I for T=0  circle 
map with ~- = 0, A = 0.9734. 

point  x 0 is given by 

F " ( x o )  - x 0 
P n (4) 

For  circle maps  with degree different f rom 1 the 

rotat ion number  of  a periodic orbit  may  depend 
on the initial point  using this definition. For  ex- 

ample, using eq. (4), the periodic orbit  1 / 7  ~ 2 / 7  

4 / 7  ---, 1 / 7  in the map f ( x )  = 2x (mod 1) has 
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a rotation number of 1/3,  2 /3  or 4 /3  depending 
on whether x 0 is chosen as 1/7,  2 / 7  or 4/7,  
respectively. 

An alternative definition for the rotation num- 
ber for circle maps can be based on the symbolic 
sequence. Let 

p = p p: . P,", i I i 2 - .  

where the subscripts ij represent the subscripts on 
the symbols using eq. (2), be a symbolic sequence 
of a period n orbit of the circle map. The rotation 
number is 

1 ij .  (5 )  0 - - ~  
j ~ l  

This definition is equivalent to an earlier formula- 
tion [22]. It is equivalent to eq. (4) for degree 1 
circle maps. This definition gives the rotation 
number of the periodic orbit 1 /7  ~ 2 /7  ~ 4 / 7  -~ 
1 / 7  considered above as 1/3,  independent of the 
initial point. 

3. Admissible sequences 

This paper is directed towards a determination 
of the skeleton of circle maps, eq. (1), based on a 
knowledge of the admissible sequences at ~-= 0. 
In this section we consider techniques used to 
determine the admissible sequences, and the num- 
ber of admissible sequences at • = 0 for eq. (1) 
with T = 0, T = 1. The techniques used are exten- 
sions of methods developed originally for the study 
of quadratic [27] and cubic [32, 42] maps. We 
summarize the results in this section and give 
additional technical details in the appendices. 

The admissible sequences at ~" = 0 can be deter- 
mined numerically from the solutions of the equa- 
tion 

X j = f " ( X j ,  A),  j =  0,1, (6) 

where Xj is the critical point of the map. The 

values of A determined numerically and the asso- 
ciated symbolic sequences are shown in fig. 4 for 
the T = 0 map and figs. 5, 6 for the T = 1 map. 

3.1. T =  0 (fig. 4) 

For 0 < A < 1 /2  the periodic orbits originating 
from X 0 are identical to those found in the 
quadratic map [25]. Consequently the symbolic 
sequences here are well known from previous stud- 
ies and are not repeated here [25, 27]. For 1 /2  _< 
A < 1 the admissible sequences can be determined 
by adopting methods introduced by Derrida, 
Gervois and Pomeau (DGP) for the quadratic 
map [27]. this is presented in appendix A. The 
number of periodic orbits for 0 < A _< 1 can be 
determined analytically without an enumeration 
of the admissible sequences. This can be done in 
two different ways by adopting recursion formulae 
as well as group theoretic methods. The computa- 
tions using recursion formulae are given in ap- 
pendix B. 

3.2. T = 1 (figs. 5 and 6) 

At A = 0.732 the circle map is an onto map. 
For 0 < A < 0.73 (fig. 5) the periodic orbits origi- 
nating from X o are identical to those found in the 
cubic map [29, 32] and consequently the symbolic 
sequences are known from previous studies 
[28-32]. We have not found analytic techniques to 
determine the admissible sequences for 0.732 < A 
< 1 and the results here are known from numeri- 
cal results using eq. (6). The total number of 
periodic orbits found agree with analytic compu- 
tations using recursion and group theoretic tech- 
niques (appendix B). 

4. The skeleton of the circle map 

We now discuss how the admissible sequences 
along the • = 0 axis extend to the whole parame- 
ter space. To study this problem it is necessary to 
consider the changes in the symbolic sequences 
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Rotation 
Period Number A 

5 - 4/5 0.99945 
5 - 4/5 0.99849 
5 - 3/5 0.99768 
4 - 3/4 0.99653 
5 - 3 / 5  0.99464 
5 - 3/5 0.99240 
4 - 3/4 0.99039 
5 - 3/5 0.98910 
5 - 4/5 0.98815 
5 - 4/5 0.98702 
5 - 2/5 0.98612 
4 - 2/4 0.98503 
5 - 2/5 0.98383 
S - 3/5 0.98262 
5 - 3/5 0.98049 
3 - 2/3 0.97725 
5 - 3/5 0.97343 
5 - 3/5 0.96978 
5 - 2/5 0.96665 
4 - 2/4 0.95961 
4 - 2/4 0.95800 
5 - 2/5 0.95058 
5 - 3/5 0.94693 
S - 3/5 0.94269 
3 - 2/3 0.93870 
5 - 3/5 0.93529 
5 - 3/5 0.93251 
5 - 2/5 0.93070 
4 - 2/4 0.92905 
5 - 2/5 0.92754 
5 - 4/5 0.92615 
5 - 4/5 0.92469 
5 - 4/5 0.92313 
4 - 3/4 0.92108 
4 - 3/4 0.91333 
5 - 3/5 0.91126 
5 - 4/5 0.90964 
5 - 4/5 0.90821 
5 - 1/5 0.90676 
4 - 1/4 0.90521 
5 - I /5 0.90351 
5 - 2/5 0.90150 
5 - 2/5 0.89860 
3 - 1/3 0.89592 
5 - 2/5 0.89321 
5 - 2/5 0.88990 
5 - 1/5 0.88723 
4 - 1/4 0.88484 
5 - 1 / 5  0,88246 
5 - 3/5 0.87989 
5 - 3/5 0.87746 
5 - 2/5 0.87386 
4 - 2/4 0.86836 
4 - 2/4 0.83160 
2 - 1/2 0.81313 
2 - 1/2 0.75000 
5 - 2/5 0.70745 
5 - 1/5 0,68393 
4 - 1/4 0.67888 
5 - 1/5 0.67357 
3 - 1/3 0.66145 
S - 1/5 0.65092 
4 - 1/4 0.64681 
5 - 1/5 0.64325 
5 - 3/5 0.62858 
5 - 3/5 0.61726 
5 - 2/5 0.59410 
4 - 2 /4  0.57950 
4 - 2 /4  0.57935 
5 - 2/5 0.55642 

Symbol t c 
Sequence 

R_ f I R  R - -1 -1 
R_ _zR_lM_l 
R. ,.IR.~M 
R_ _IR_I 
R_ :_IR_jL 
R. _IM_I L 
R_ I_IM_ t 
R_ iM ,M 

- -t 

R_ : iM ,M.  - - t  - t  
R_ :_IM_tR_t 
R. I.IML 
R_ 
R_~R -1M -1/414 
R. lR.lte% t 
R-IR-tMR- t 
R_ 

-ILR_, R_ - I  

- -tLM_~ 
R_ _ILM 
R_ 
R.  -~LL 

- t  
R_ _tLM 
R_ _tLM_ l 
R. .iLR. l 
R-I" 1 
R_ tM IMR. l 
R_tM MM. 
R_,M I, MM t 
R_ ;M;. 
R. tM_ IML 

M .R I R-IM- I - ,  - 
R-IM-IM- IM- t 
R.IM-IM.IM 
R-IM-iM- t 
R-tM-tR- i 

R M R-IM- t - I  
R ,M i R-tM- t -~ . 

R-!M[~R-IR- 1 
R. 
R_ ML 
R_ MLM 
R_ MLM_ l 
R_ MLR_ I 
R.M 
R_ MMR. t 
R_ 

R_ ~011. 
R iMM 1R , 
R tMM .M 
R. I~ . IM 
R tMM, 
R_"~MR_'~ 

M_ ~_IM 
M_ MML 

M_ t ~  t M_ 
M_M 
M. MLM 

ML 
M[ MLL 
M. MM. M-IR'IM M_IM_,M 

M_IML t 
M- X' -~M 
M_ K.~M 
M. R_tML 

I 

Fig. 4. Skeleton for T = 0 circle map, z = 0, with 1 / 2  < A < 1.0. In this and following figures the numerically determined values of 
A associated with each superstable cycle are shown. The connections are given by rule 1. 
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(called symbolic transitions) along the bones of the 
skeleton. Several rules for connecting two different 
admissible sequences at ~" = 0 have been discov- 
ered. We only consider symbolic transitions for 
superstable cycles that contain Xj. 

4.1. Continuity rule 

Symbolic transitions occur when a point of a 
periodic orbit either crosses a discontinuous point 

(such as XLc, XMo, X~tc, . . . .  fig. 1) or the critical 
point Xj',. In the case of a periodic point crossing 
a discontinuous point, the symbolic sequence has 
a change in two symbols; if a periodic point 
crosses the critical point Xj',, there is a change in 
one symbol M j, ,~, R j,. 

In a given cycle there may be a number of 
points all identified with the same symbol S. The 
largest of these is called the leading max imum 

coordinate on S and the smallest of these is called 
the leading minimum coordinate on S. For example 
X 2 (X 3) is the leading maximum (minimum) coor- 
dinate on R_ ~ in fig. 3. We can now state the 
continuity rule. 

p1p2 . . . (pk) , (pk+l ) , . . . p , ,  p and P' are identical 

except in the k-locus for transitions involving the 
critical point and in the k- and (k + 1)-loci for 
transitions involving a discontinuous point. P is 
associated with the orbit x ~, x 2 . . . . .  x"  and P' is 
associated with the orbit yl, y2 . . . . .  y". If p k >  
(pk), then x k is the leading minimum coordinate 
on branch pk and y~ is the leading maximum 
coordinate on branch (pk),. 

For example, the two periodic sequences in fig. 
2 entail a single symbolic transition. Calling P = 

X o R _ I R _ I L M  1 and P ' = X o R _ I M _ t L M _  1 we 
have p3 = R _  1 and ( p 3 ) ,  = M _ I .  Since p3 > (p3) , ,  

x a is the leading minimum coordinate on R_ 1 in 
fig. 2b and y3 is the leading maximum coordinate 
on M 1 in fig. 2a. 

4.2. T = 0 circle maps 

The construction of the skeleton for the T = 0 
circle map for all symbolic sequences with 0 < A 
< 1 can be carried out based on the following two 
rules. 

Continuity rule. Consider the symbolic transition 
P ~  P' where P =  p 1 p 2 . . . p ~ p ~ + l . . . p , ,  and P ' =  

Rotation Symbolic 
Period Number A Sequence 

5 0 0.73181 RRRR 
5 0 0.72997 RRRM I 
4 0 0.72790 RRR i 
5 0 0.72496 RRRL I 
5 0 0.72097 RRML I I 4 0 0.71731 RRM 
5 0 0.71398 RRMM 
5 0 0.70967 RRMR J 
3 0 0.70451 RR 
5 0 0.69861 RRLR 
5 0 0.69133 RRLM I 
4 0 0.67873 RRL I 4 0 0.67535 RX'L I 
5 0 0.66044 RMLM 
5 0 0.64965 RMLR 
3 0 0.64161 RM 
5 0 0.63408 RHMR 
5 0 0.62363 RI"~4M - I  
4 0 0.61230 RI~,I 
4 0 0.55390 RMR ] 
2 0 0.52472 R ] 
2 0 0.40370 X' 

Fig. 5. Skeleton for T = 1, ~" = 0 circle map with 0 < A < 0.73. 
The symbolic sequences are the same as the cubic map. The 
connections are given by rule 3. 

Rule 1. Symbolic sequences with 1 /2  <A  < 1.0, 
T = 0 connect to each other in pairs. There is one 
symbolic transition along each bone associated 
with a crossing of the critical point X'__ 1 and a 
change in one symbol M_I  ,a, R_I. Consider the 
periodic orbit x l x 2 . . . ¢ . . . x k . . . X "  associated 
with the admissible sequence P = p ip2 . . ,  p~... pk 
. . . P "  where p i = M _  1 and x i is the leading 

maximal coordinate  on branch M_ 1, p k =  R_ 1 
and x k is the leading minimal coordinate on 
branch R 1. If p i + l < p k + l ,  then the symbolic 
transition happens at P~, i.e. P connects to P ' =  
p 1 . . .  ( p i ) , . . .  p k . . .  p ,  where ( P i ) '  = R _  1. If 
p t+ 1> p k + 1, then the symbolic transition happens 

at pk, i.e. P connects to P' = p 1 . . . p i . . . ( p k ) , . . . p ,  
where (pk), = M_ 1" 

The connections of fig. 4 are all consistent with 
this rule. As an example consider a cycle 
xlx2xax4x 5 associated with P = XoR_IR_ILM_ a 
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Period 
Rotation 
Number A 

5 4/5 0.97771 
5 3/5 0.97301 
5 3/5 0.96621 
4 3/4 0.96247 
5 3/5 0.95966 
5 2/5 0.95801 
5 2/5 0.95440 
4 2/4 0.95152 
5 2/5 0.94862 
5 1/5 0.94614 
5 1/5 0.93896 
5 2/5 0.93675 
4 2/4 0.93434 
5 2/5 0.93200 
5 2/5 0.92901 
5 3/5 0.92733 
3 2/3 0.92382 
5 3/5 0.92061 
5 2/6 0.91918 
5 2/5 0.91696 
4 2/4 0.91549 
5 2/5 0.91428 
5 1/5 0.91349 
5 1/5 0.91173 
4 1/4 0.91015 
5 1/5 0.90840 
5 0/5 0.90655 
5 0/5 0.90284 
5 115 0.90080 
4 1/4 0.89873 
5 1/5 0.89663 
5 1/5 0.89380 
5 215 0.89192 
3 113 0.88865 
5 2/5 0.88534 
5 115 0.88323 
5 1/5 0.87997 
4 1/4 0.87752 
5 115 0.87527 
5 0/5 0.87354 
5 0/5 0.86911 
4 0/4 0.86013 
4 0/4 0.85786 
5 015 0.84868 
5 0/5 0.84416 
5 1/5 0.84228 
4 1/4 0.83991 
5 115 0.83724 
5 1/5 0.83369 
5 215 0.83078 
3 1/5 0.82831 
6 2/5 0.82598 
5 1/5 0.82311 
5 1/5 0.81967 
4 1/4 0.81688 
5 1/5 0.81385 
5 1/5 0.80564 
4 1/4 0.80222 
5 115 0.79890 
5 1/5 0.79487 
5 215 0.79198 
4 2/4 0.78412 
2 1/2 0.78216 
5 2/5 0.77431 
5 1/5 0.77136 
5 1/5 0.76744 
4 1/4 0.76408 
5 115 0.76042 
5 1/5 0.75442 
4 1/4 0.75126 
5 115 0.74856 
5 1/5 0.74543 
3 1/3 0.74187 
5 1/5 0.73859 
6 1/5 0.73609 
4 1/4 0.73294 
5 1/5 0.73432 

Symbol t c 
Sequence 

LtLILIL ~ XILILILRj. "* Xj.L j.LRtRt -D XILR~.RIRI ~ X oRIRIRIRj. "~ 4/5 "1 
LtLILR I • 
L tLzLM 
LjLIL -~XlLjLR l ~XILRtR l -*XoRtRIR 1 - 3/4 / 
LIL,L L _ LILRIL- - - t 
LILI~R 
L~LRH - -  
LLLR 
LILRL 
LjLR'IR ~ I 
LzLH-tR 
LILHL 
LILH 
LILI~ 
L I LNR J 
LILNIL 
LIL X~LR I -~ XoRiR , -~ 2/3 
LtLLzL ~XILRIL1L -=,XzLRILR l ~XoRIRILR l ~3 /5  ~, ~ 
LILLR 
LILLN 
LiLL eLRIL 
LILLL -~LRILL 
LRRR 
LRRM 
LRR 
LRRL 
LRR_,R " ~ l  I 
LRM-iR 
LRML 
LRN 
LRMH 
LRHR l 
LI~I~ L 
LR 
LRL, L 
LRL~ 
LRLM I 
LRL 
LRLL 
LR-IRR 
LR.zRH 
LR_IR 
LX_ 1 'R I 
LH_zRM 
LM.1RR 
LMLE 
LHL 
LMLH 
LMLR I 
LNL1L 
Lt4 
LM/4zL -~ LMRIL 
LNMR 

LMM 

L..L --'1 I LMRL 
LNR 
LMRH 
LMRR ---J 
LMzLL 
LMIL 
L -~XoR l -~1/2 
LL[LL ~XILERIL.-~XoRtLRiL,-~2/5 
LLRR 
LLRH J 
LLR 
LLRL 
LLHL ] 
LLM 
LLMM 
LLMR [ 
LL ...)XoRiL-~l/3 
LLLR 
LLLN I 
LLL -t, XoRILL-~XoRR]L--~I/4 ] 
LLLL -4, XoRILLL-~XoRRILL-~XoRRRIL-P1/5-- ~ # 

Fig. 6. Skeleton of T = 1, 7 = 0 circle map for 0.73 < A < 1. The connections are given by rules 3, 4 and 5. The connections between 
the symbolic sequences and the sequences associated with the Arnold tongues are given by rule 5. 
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(fig. 2b). Here x 3 and x 5 are the leading minimum 

and maximum coordinates on R_ 1 and M_t ,  re- 
spectively. Since __p4=LM-I, P6--X0, the sym- 
bolic transition happens at p 3 =  R_I .  

Rule 2. A symbolic sequence XoMP* for 0 < A < 
1 /2 ,  , r=  0 connects to the symbolic sequence 
X1LP* for 1 < A, r = 0 where P* is common in 
both symbolic sequences and contains only M 
and L. 

Allowed symbolic transitions. In order to deter- 
mine the allowed symbolic transitions for the 
bones associated with the symbolic sequences at 

= 0, 0 < A < 1, it is necessary to determine the 

allowed symbols. The smallest symbolic sequence 
at ~" = 0 is the period 2 orbit XoM. The only 
allowed symbolic transitions are X0M ~ XoR 

XtL, where XIL is the largest symbolic sequence 
at ~" = 0 (see fig. 7). From eq. (1) with T = 0 the 
first iterate of the extremal point (Xo or )(1) is 
~" + A. Since any orbit that starts from X 1 has to 
go to the L-branch, the condition T + A < 1 + X 1 
= 5 / 4  must be satisfied. In this region of parame- 

ter space, the only allowed symbols are L, L 1, M~, 
M ,  M _ 1, R_ 1, R and the only symbolic transitions 

that are possible are 

Mj  ~ R j,  LR ,~, L1L, 

ML ~ M _ t R ,  RL ~ R _ I R  , 

j = - 1 , 0 .  

MR ~ MIL,  

XIL ~ XoR, 

(7) 

Remarks about rule 1. All bones of the skeleton 
for "r = 0, 1 / 2  < A < 1.0, are contained in region I 
in fig. 7. At • = 0, A = 1, eq. (1) is an onto map. 

The symbolic sequences at z -  0 start S o M _ l . . .  
or )(oR_ 1 . . . .  and consist only of the symbols L, 
M, M_ 1 and R_ 1. The first symbolic transition 
that can arise (out of those in eq. (7)) are only 
M L  ~ M_ tR and M_l  ~ R_ 1- However, R can- 
not be a symbol at z = 0. Consequently, if the first 
transition is ML ---, M 1R, then these two symbols 
must undergo further symbolic transitions, and 
the only possibilities are M _ I R ~  M _ I M  or 
M _ I R  ~ R _ I R  ~ R_IM.  However, since neither 

1.0 

0.9 

0.8 

0.7 

0.6 

0.3 

0.2 

0 . 1  

0 i i i i i 

0 0.1 0.2 0.3 0.4 0.5 0.6 
2" 

Fig. 7. Two of the bones of the T = 0 circle map. These two 
bones connect to the symbolic sequences at the lowest and 
largest values of A, 0 < A < 1/2,  at z = 0. These bones define 
regions I and II. In each region, symbolic sequences at r = 0 
connect to each other in pairs. 

of these transitions satisfy the continuity rule, the 
first symbolic transition must be M_ 1 ~ R_ x- As- 
sume that P = p a . . . p i . . . p n  is an admissible se- 
quence at ~" = 0 with pi = M_ 1 (or R 1) and that 
the first transition happens at W. Further use of 
the continuity rule shows that no other symbolic 
transitions at Pk, k 4: i, are allowed. Consequently, 
p , =  p l . . . ( p i ) , . . . p ,  with ( P i ) '  = R _  1 ( o r  M _ I )  is 

also an admissible sequence arising from ~" = 0 
which is connected to P. 

For  the symbolic sequence P, a symbolic transi- 
tion can happen either at the leading maximal 
coordinate on M 1 or the leading minimal coordi- 
nate on R_ 1. The selection of the symbolic transi- 
tion can be made by applying the continuity 

rule. As an example, P = X o R _ I R _ x L M _  t in 
fig. 2b is an admissible sequence connected to 

XoR_IM 1LM 1. Without the continuity rule, it 
would be possible for a transition to occur in 
p s =  M 1, so the connecting sequence would be 

P ' =  XoR xR xLR 1 (fig. 3). However, in P', the 
last symbol R 1 is not the leading minimal coor- 
dinate, and consequently this transition is forbid- 
den by the continuity rule. 

Remarks about rule 2. In the region ~" = 0, 0 < A 
< 1/2 ,  the map eq. (1) is topologically equivalent 
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to the quadratic map, the  smallest and largest 
symbolic sequences are X0M and XoML ~ (n 
oo), respectively. According to the allowed sym- 
bolic transitions they connect to XIL and X1L "÷1 
(n ~ oo) as shown in fig. 7. Although the number 
of symbolic transitions are limited, the symbolic 
transitions that can occur in region II  in fig. 7 can 
be complicated. For example, we have the se- 
quences 

XoMLMM ~ XoRLMM ~ X1LLMM , 

XoMLLM ---, XoM - xRLM 

XoR 1RLM 

---, XoRLLM ---, X1LLLM. 

Suppose P = XoMLP* is associated with the 
periodic orbit  x l x2 . . ,  x"  for ~" = 0, 0 < A < 1/2.  
P'  = X1LL(P* )' is associated with the periodic or- 
bit f l y 2 . . . y ,  for ~ = 0 ,  A > I ,  where P* only 
contains M and L. Since x 2 is the leading maxi- 
m u m  coordinate on M, the first symbolic transi- 
tion on the bone connecting P and P' is either 

XoMLP* ~ XoRLP* or XoMLP* --* XoM_IRP*. 
For  the first case, the symbolic transitions on the 
bone  connecting P and P' are 

p = XoMLP* ~ XoRLP* ~ XILLP* - -  p,. 

The sequence P* in P only contains M and L, 
the first possible symbolic transitions for P* are 

M ~ R and ML ~ M_IR.  If a point x y on M 
could move to R or M_ I, x y has to reach the 
max imum value on M. By the continuity rule xJ 

has to pass a point where f ( x J ) = f ( x 2 ) .  This 

means two periodic points would map into the 

xi+l 

same point. As an example see fig. 8b, where x 5 is 
the leading maximum coordinate on M. If  x 5 
could move to M_ 1 it must pass a point c on M 
where f ( c ) = f ( x 2 ) .  Since this would change the 
length of cycle it is not allowed. Therefore the 
symbolic transitions between P and P'  cannot 
happen at P*. 

If  the first transition for P is ML ~ M_ 1R, the 
symbolic transitions between P and P'  are P = 

XoMLP* ~ XoM_xRP* ~ . . .  ~ XoR_IR(P* )' 

XoRL(P* )' ---, X1LL(P*)'. Here XoR_IR 
XoRL ~ X1LL are the last transitions since at 
A > 1, the symbolic sequence starts at xl, the only 

transition f rom X o to X 1 is XoR ~ XIL; in addi- 
tion, a point on R is the leading minimum coordi- 
nate in the first transition and the leading maxi- 

m u m  coordinate in the second transition. There- 
fore (P*)' cannot  contain R. 

The possible symbol ic  transitions between 
XoM_IRP* and XoR_IR(P* )' are ML ~ M_IR,  
RL ~ R _ I R  and M_ 1 ~ R_ 1. Since P* only con- 
tains M, L and (P*)' does not contain R, the 
symbolic sequence RP* undergoes the transitions 

ML ~ M_IR,  RL ~ R _ I R  and M_ 1 ~ R_ 1 along 
the bone has to take the transitions R 1R ~ RL 
and M _ I R  ~ ML in order to ensure that (P*)' 
does not contain R. By noticing that R always 

follows M 1 or R_I ,  (P*)' also cannot contain 

M_ 1 and R_ 1- Therefore (P*)' = P*. 

4.3. T = 1 circle map 

Bones of the skeleton that extend to A = 1/2~r 
are called primary bones, fig. 9. These arise from 

T = 0 , T = 0 ,  A = 0.4555 T=0,T=0.35, A=0.5507 T=O,T=0, A = 1.0109 

7 \ /  , ,c , , ,  

xi 0 xi  i o x i  

Fig. 8. Maps along a bone of the skeleton of the T = 0 circle map with the symbolic transitions XoMLMM ~ XoRLMM ~ X1LLMM. 
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1.0 fx l  =.o1~ 

0.9 
0.8 

0.7 ~ L n - t  ~7(I-I/4"/T2A211/2=I 
0.6 

o.3 mop I \ /  \ 

0.1 Xo R"'/'21.~ XoR Xl 

o oi, o,  o', oi, 0'809 ,o 
T 

Fig. 9. Three bones of the skeleton for T = 1 circle map with 
rotation number p = 1/n (n ~ 00), p = 1/2 and p = 1. In the 
region indicated, all symbolic sequences are identical to those 
of the cubic map. 

Rule 5. (i) (Based on a rule for symbolic se- 
quences for circle maps that give rigid rotations 
[5]). The rotation number P = m / n  (m and n have 
no common divisors) can be represented by a 
continued fraction, 

m 1 
n 1 

1 
1 

" ' "  + ~ j j  

The symbolic sequence associated with p at z = 0 
is constructed re, cursively. 

the cubic inflection point when the circle map 
becomes noninvertible. For each rational rotation 
number  there is one primary bone associated with 
each critical point. The remainder of the bones at 

= 0 connect to each other in pairs. Rules 3 and 4 
give the allowed symbolic transitions for all bones 
that are not primary bones. Rule 5 gives the 
symbolic sequences of the primary bones at • = 0 
and specifies sequences of symbolic transitions 
allowed on them. 

Rule 3. Suppose the periodic orbit x l x 2 .  . . x i .  . . X k 

. . .  x"  is associated with the symbolic sequence 
p = p X . . . p ~ . . . p k . . . p , ,  p contains Mj or (and) 
Rj;  say P~= Mj and pk = Rj  ( j =  - 1 , 0 ) .  Let x ~ 
be the leading maximal coordinate on Mj and x k 
be the leading minimal coordinate on Rj. If  P~+x < 
Pk+a, then the symbolic transition happens at P~ 
with M j - * R j .  If Pi+I> Pk+x then the symbolic 
transition happens at pk with Rj  ---, Mj. 

Rule 4. I f  the admissible sequence P = 
p t . . .  p i -Xpi . . ,  p ,  contains pi-Xpi = LM x with X i 

the leading maximum coordinate on M x, and P 
does not contain Rj  or Mj ( j =  - 1 , 0 ) ,  then P 
connects to P ' = P 1 . . . ( P i - X ) ' ( W ) ' . . . P "  by the 
symbolic transitions in loci j -  1 and j ,  LM 1 ---> 

LR 1 ---> L1L. 

S 1 = L1LNx -1, 

S2 = S1LSN2- 1, 

Sj=Sj_ISj_  2, forjodd>_3, 

Sj = Sj_2Sj_ 1, for j even > 4. 

The leading maximal coordinate in Sj on branch 

L 1 is X v 
(ii) A symbolic sequence P at ~" = 0 is connected 

to P' at A = 1/2~r by the symbolic transitions 

L1L--*LR1, R1L---~RR1, 

where each symbolic transition is completely de- 
termined by the continuity rule and all transitions 
involve the leading minimal coordinate on the 
L-branch for LIL and RIL. At A = 1/2~r the 
sequence P' does not contain the symbol L 1. 

Allowed symbolic transitions. The bone of the 
skeleton with the largest value of A is given by the 
superstable line with the rotation number p = 1 [7] 
(fig. 9). This means the critical point X 1 = 1 / 2  - 
(1/2~r)cos-l(1/2~rA) is a fixed point along the 
skeleton. Therefore we have 

F(Xx)  = X 1 + T + A s i n 2 ~ r X  1 = 1 + X 1, 
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o r  

+ A(1 - 1/4~r2A2) 1/2 = 1. 

At ~" = 0, A = (1 + 1/4'rr2) 1/2 -- 1.013. Consider 

the skeleton associated with the symbolic se- 
quences for "r = 0 and 0 < A < 1.013 (fig. 9). Since 
all symbolic transitions occur at the ~ ' + A ( 1 -  
1/4'rr2A2)l/2< 1 parameter region, the allowed 

symbolic transitions are 

Mj  ~ Rj, MR 1 ~ M1L, LR 1 ~ L1L, 

M L ~ M _ I R ~ ,  RL,~,R_IR~,  R R I ~ , R ~ L ,  

X~L ,~, X 0 R~, (8) 

where j = - 1, 0 and 1. 

Remarks about rule 3. This rule is similar to rule 1 
for degree 0 circle maps, and consequently similar 

arguments to those for rule 1 can be applied. 
Symbolic sequences for z = 0, 0 < A  < 0.732 . . . .  
where the map is topologically equivalent to the 
cubic map (see fig. 9) are connected to each other 
in pairs with only one transition M ~ R. Conse- 
quently this rule completely specifies the symbolic 
transitions in the skeleton of the bimodal map 
Cp, q(X) = x 3 + px + q associated with the sym- 
bolic sequences at q = 0. This map was studied by 
MacKay  and Tresser [33]. 

Remarks about rule 4. If  P does not contain Rj  
and Mj ( j  = - 1 ,  0), the possible symbolic transi- 
tions in eq. (8) are LM 1 ~ LR 1, LR 1 ~ LIL and 
M I L  ~ M R  1. If  the transition M1L ~ MR 1 oc- 
curred, the next transitions would be 

R R  1 ---, RM 1 

M1L ~ M R  x 

MM1 

follow the transitions LM 1 ,~, LRa ~ L1L to con- 
nect to each other in pairs. 

Remarks about rule 5. First we show that there are 
no periodic points on the M-branch for all pri- 
mary bones. At A = 1/2"~, the circle map is an 

invertible map. 0 < x < 1 / 2  
while 1 / 2  < x < 1 with R j, 
eq. (2). Since the map is a 

function, for any point 

is associated with L j, 
where j is defined in 
monotonic increasing 

y on Rj  we have 

f ( y )  > f (X j )  where Xj= 1/2.  For A > 1/2~r 
the map is noninvertible and Xj = 1 / 2 -  
(1/2¢r) cos-1 (1 /2~A)  is one of the critical points. 
If the symbolic transition Rj---, Mj occurred by 
increasing A, then for any point z on Mj we have 

f ( z )  <f(Xj) .  As A varies, a periodic point y 
would have to reach a value which satisfies f ( y )  
= f ( X j ) ,  in order to have the transition Rj---, Mj. 
This means that two periodic points y and Xj 
would be mapped to the same point. Since this 
would change the length of the cycle, it is not 
allowed and thus there are no symbols on the 

M-branch for primary bones. 
If symbolic sequences on primary bones do not 

contain M j, the transitions Mj ~ R j, MR 1 ~ MIL 
and ML ~ M _ I R  1 can be excluded from eq. (8). 
According to the continuity rule, the transition 
RL ~ R _  xR1 requires that a periodic point y on 
R decreases to a minimum. From the previous 
argument we know that this cannot occur since y 

has to satisfy f ( y ) > f ( X o ) .  Therefore the transi- 
tion RL ~ R _ I R  1 is not allowed. The symbolic 
transitions between the sequences P' at A = 1/2nr 

and P at ~" = 0 are R R  1 ~ R1L and LR 1 ,~ LIL. 
The association of a symbolic sequence for • = 0 

with the symbolic sequence of the rigid circle map 
is based on the fact that P only contains L, L a and 

X 1. This can be shown by looking at the symbolic 
sequence P' at A = 1/2~r which connects to P. 

P' with rotation number p = m/n <_ 1 / 2  can be 
written as 

The transitions RR 1 ~ RM 1 and MR 1 ~ MM 1 do 
not obey the continuity rule. Since the symbolic 
sequences at T = 0 do not contain R1, they have to 

m 

P ' =  Xol - I  (RA'R~LS'), (9) 
i = 1  
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where 

Ai>_O , B~>I for i = 0  to m, 

IAj-AA <_0, Ini-n d <0 f o r j : ~ i ,  

and 

• (Ai+ Bi )+m+ l=n .  
i = 1  

A symbolic sequence with rotation number p = 
1 - m/n can be obtained from P' by changing the 

symbols R ~ L1, R 1 ~ L, L ---> R 1 and X 0 ---> X 1. 
P' connects to P by the symbolic transitions 

RR 1 ~ R1L and LR 1 ~ L1L. Since P does not 
contain R1, eventually P only contains L, L1 and 
xl. 

The symbolic sequences at the cubic inflection 
in circle maps depend on the particular shapes of 
the maps. This can be verified by considering a 
different form of the circle map, 

f ( x ) = T + x  3 (mod2) ,  

where x ~ ( - 1 , 1 ) .  Suppose the orbits start 
at Xj= O, where Xj divides ( - 1 , 1 )  into two 
branches Lj and Rj. From computer simulation 
we determined that the symbolic sequence with 
rotation number p = 2 /9  is XoRRR1LRRRtL. 
For  the map eq. (1) at T =  1 and A = 1/2~r the 
corresponding symbolic sequence for p = 2 / 9  is 
XoRR1LLRRR1L. These two symbolic sequences 
differ by a single symbolic transition RR 1 ,o R1L. 
Consequently, the symbolic sequences for degree 1 
circle map for primary bones at the cubic inflec- 
tion point are not universal. 

5. Rotation number 

Now we discuss the changes of rotation number 
along the bones of circle maps. Consider the circle 
map, eq. (1), and its lift F(x). 

First let us focus on the symbolic transition at 
XLc and look at the change of the rotation number 

when a periodic point x crosses XLo. If X - =  XLc 
+ 0- ,  where 0 -  is a very small negative value, we 
have F ( X - )  = 1 + 0 -  and f ( X - )  = 1 -, the next 
i terat ion will be F ( f ( X - ) )  = T +  r and 
f(f(X-1)) = T. The contribution to the rotation 
number  is A p - =  (1/N)[F(X-) - f ( X - )  + 
F(f(X-)) - f ( f (X-) )]  = T/N, where N is the pe- 
riod of the orbit. If X += XLo + 0 +, then F ( X  +) = 

1 + 0 +, f ( X  +) = 0 + and F(f(X+)) = z, 
f(f(X+))=r. The contribution to the rotation 
number is Ap += 1/N. When the orbit passes 
through XLc the symbols of symbolic sequence are 
changed from LRj  to LIL and the change of 
corresponding rotation number is (T -1 ) /N .  
Therefore, only T =  1 circle maps maintain an 
invariant rotation number when the symbolic se- 
quence changes as a point on a cycle crosses XLc. 

Similarly, when a point on a cycle crosses other 
discontinuous points of circle maps, the corre- 
sponding symbolic sequences will change, and the 
rotation number will also change for the T :/: 1 
circle maps. Therefore only T =  1 circle maps 
maintain invariant rotation numbers along bones 
of the skeleton. 

6. Conclusions 

There are two main classes of problems associ- 
ated with the dynamics of circle maps: (i) scaling 
aspects of the dynamics [13-16]; and (ii) topology 
of the bifurcations [2-5, 19-22, 25-27, 33]. Scal- 
ing arguments have played important roles in many 
areas of physics, and many beautiful results have 
been found relating to the dynamics of circle maps 
[13-16]. Our work has largely been motivated by 
experimental studies of periodically forced biolog- 
ical oscillators [6-8]. What is compelling in these 
experiments is the diversity of complex rhythms 
that can be found as stimulus parameters are 
varied, and it has been a continuing challenge to 
try to develop theoretical insight into the bifurca- 
tions in biological systems [2-5, 8]. This paper has 
shown that the topology of the bifurcations of 
circle maps can be largely determined using ana- 
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lytic methods based upon considerations of sym- 
bolic dynamics (24-28, 32-33] and continuity. 
Other recent work has used symbolic dynamics to 
compute the topological entropy and scaling prop- 
erties at the intersection of Arnold tongues [43]. 
Thus, symbolic dynamics provides powerful ana- 
lytic insights into the structure of periodic orbits 
of circle maps. 

Detailed experimental study of bifurcations in 
physical and biological systems modeled by circle 
maps are difficult to carry out because of the very 
small sizes of the different phase-locking zones 
and their complex organization makes them dif- 
ficult to observe. However, limited results, for 
example see the recent review [44], show that there 
may be discrepancies between observations and 
experiments. Such discrepancies may be ac- 
counted for by using higher dimensional maps, or 
by one-dimensional circle maps wtih discontinu- 
ities. Extending the techniques from one-dimen- 
sional continuous circle maps to these cases is a 
challenge for the future. 

of these techniques have only been achieved for 
the quadratic map [27], the current work shows 
that generalizations to more complex situations 
also work. 

The original DGP paper described the )`-expan- 
sion of a number 1 < x < 2 with basis 1 < )` < 2. 
Suppose 

n 

where Cm+l= 1 if Xm<X, Cm+l = --1 if Xm>X. 
If the series terminates and x = x,, for some finite 
value m then Cm, = 0 for all rn '>  m. Otherwise 
limm_. ~ x m = x. The notation for the set of coef- 
ficients characterizing a )`-expansion is (Ci }. The 
ordering of the ),-expansions (C  i} and (Di} is 
achieved by considering the first different number 
in the two sets, say Cm and Din. Then (Ci } > (Di } 
if C m > D m. The necessary conditions for (C i } to 
be a )`-expansion are 
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Appendix A 

)`-expansion technique for the T = 0 circle map 

Derrida, Gervois and Pomeau (DGP) developed 
a technique for analyzing periodic orbits of the 
quadratic map [27]. The DGP technique, in turn, 
is based on a number theoretic method for the 
representation of real numbers as series which was 
developed by Renyi [36]. Although rigorous proofs 

(Co, Cl,. . .)  > (c,,c,+x . . . .  ) ,  

(Co,  Cl . . . .  ) > ( - c , , - c , ÷ l  . . . .  ), for all i > 0. 

(A.2) 

Thus (1,1, - 1, - 1, - 1, 0, 0 . . . .  ) is not possible 
since, taking i =  3, (1, 1 , -  1 , -  1 , -  1) < 
(1,1,1,0,0). 

DGP showed that for a piecewise linear version 
of the quadratic map, called the tent map, the 
parameters of periodic orbits can be represented 
by finite ),-expansions. The condition for admissi- 
bility of symbolic sequences of the quadratic map 
then translates into the condition for ),-expansions 
of the tent map. This technique has been extended 
by Zeng [31, 32] to the cubic map. 

We now consider a further extension to the 
T = 0  map with 1 / 2 < A  <1  and ¢ = 0 .  First we 
consider the h-expansion of real numbers X = )`/2 
with 2 < )` < 4, which is defined by the two num- 
bers X, and C, depending both on X and )` such 
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that 

X.=  ~ C, 
k=0 hk ' 

The periodic condition f ( n ) ( X o ) = X  o of eq. 
(A.5) with the given initial value X 0 = h gives 

C k = 0, _+ 1, _+ 2, _+ 1/2, + 3/2. 
h ~ 1  Ai 

(A.3) 2 i=0 h i '  
(A.7) 

In eq. (A.3) the C k are integers satisfying where 

( S -  S k ) h  k+l - 1 / 2  

< Ck+ 1 < ( g -  g k ) h k + l +  1 / 2  

or the ratiohal number given by 

Ck + 1 
X - X , =  h,+l . 

In this case C k, = 0 for all k ' >  k + 1. From the 
above it is possible to prove eq. (A.2) by induc- 
tion, 

= X -  Ck+l [ 1 
I X -  x,+xl x,  - h *+----i- I < 2h k÷---q-" (A.4) 

Although Ck here are no longer necessarily + 1, 0 
as defined by DGP, the necessary condition eq. 
(A.2) for eq. (A.3) to be h-expansion still holds; 
eq. (A.4) serves as a key point to complete the 
proof. 

Now we can associate the piecewise linear circle 
map T = 0 and 1/2 < A < 1 with the h-expansion 
discussed above. Consider the map 

/ ( x )  = a h x  +/3h + v, (X.5) 

Where x ~ (0, 4), 2 < h < 4 and a,/3 and y depend 
on the branch L, M, M_ 1 and R_I in such a way 
that 

L: a = l ,  f l=0 ,  ) ,=0,  0 < x _ < l ,  

M: a =  - 1 ,  f l=2 ,  y = 0 ,  1 < x < 2 ,  

M_~: a = - l ,  /3=2, 3,=4, 2<x_<3,  

R_a: a = l ,  / 3 = - 4 ,  7 = 4 ,  3 < x < 4 .  

(A.6) 

B i = ot o . . .  Oli, 

Ao = - ½aoBo, 

A i = -- 1ni_l( '~i_l  "-}- Oti~i) , 

An-1  -- 1 B n - 2 ( 1  - ) ' . - 2 ) .  

i =  1 , . . . , n - 2 ,  

(A.8) 

This. is called the h-expansion of h/2. For any 
given symbolic sequence of length n, the related 
h-expansion can be constructed by eq. (A.6) and 
eq. (A.8). There is a 1-1 correspondence between 
the admissible sequences found numerically for 
periodic sequences with periods less than 6 and 
those computed using the h-expansion method. 
Further extensions of the h-expansion method 
should be possible but the algebra becomes te- 
dious as the number of symbols increases. 

Appendix B 

Recursion formulae for the number of  periodic cycles 

of  circle maps 

Recursion formulae for the number of periodic 
cycles for the T= 0 and 1 circle maps can be 
developed based on analysis of bifurcations. Since 
the basic methods have been developed in earlier 
publications, here we only give the main formulae 
and results. Another approach, based on modify- 
ing formulae of a classic combinatorial group 
studied by Fine [39] and Gilbert and Riordan [40], 
also gives identical results [45]. 

For some orbits with even periods in circle 
maps, the periodic points can pass through both 
critical points of the map symmetrically. The sym- 
bolic sequence is X j P X / P ,  where Xj and Xj' are 
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two critical points of the map, P and P are related 
to each other by changing the symbols Rj ,~, Lj 
and Mj ~ M_j. When a symmetric periodic orbit 
loses stability, simultaneously an asymmetric peri- 
odic orbit with the same length of the cycle be- 
comes stable. This kind of transition has been 
called the split bifurcation [41]. 

The number of periodic cycles for quadratic [37, 
32] and cubic [31, 32] maps can be calculated by 
developing recursion formulae based on an analy- 
sis of the types of bifurcations of the maps. The 
same technique enables us to derive recursion 
formulae for circle maps. 

(i) T = O  circle map, ~ = 0 ,  O < A  < I .  Let M ( d )  
represent the number of orbits of period d that 
arise from tangent bifurcations and P ( d )  repre- 
sent the number of orbits of period d that arise 
from pitchfork (period-doubling) bifurcations. We 
have 

4" = ~ _ , d / d [ 2 M ( d )  + P ( d ) ]  (B.1) 

where P ( n ) = P ( n / 2 ) + M ( n / 2 ) ,  if n is even; 
P ( n )  = 0, if n is odd. The symbol ~'d/,  counts all 
factors of n including 1 and n. The justification 
for this formula is as follows. If we are only 
concerned about periodicity, the T = 0 circle map 

is equivalent to a fourth order polynomial g(x ) .  
The periodic condition for a circle of length n is 
g(" ) (x )  = x which is a 4" order polynomial. When 
the map is onto ( z = 0 ,  A = I  in T = 0  circle 
maps) the equation g(" ) (x )  = x gives 4" real roots 
which must be equal to the total number of peri- 
odic points of period n that arise both from 
tangent and pitchfork bifurcations. Any smaller 
period d that divides n is also a period n orbit. 
Every stable periodic orbit first arises from a 
tangent bifurcation, always accompanied by an 
unstable periodic orbit. With initial conditions 
M(1) = 2 and P(1 )=  0, M ( n )  can be calculated 
by the recursion formula 

M(n)= ~--.ff(4"-nP(n) 

- )-~d/, d [ 2 M ( d ) + P ( d l ] ) .  
d<n 

(B.2) 

Results of eq. (B.2) for n < 11 are given in table 1. 

(ii) T = 1 circle map, • = O, 0 < A < O. 73. In this 
parameter region the number of periodic cycles is 
the same as the cubic map [31-32, 42]. The recur- 

Table 1 
The number of periodic cycles determined by the recursion 
formulae, eqs. (B.2) and (B.4). M(n) is the number of periodic 
cycles arising from the tangent bifurcations. P(n) is the number 
of periodic cycles arising from the period-doubling bifurcations. 

Period T=0 ,  r = 0 , 0 < A < I  T ~ l , r ~ 0 , 0 < A < 1 . 7 3  

n M(n) P(n) M(n) P(n) 

1 2 0 3 1 
2 2 2 8 4 
3 10 0 56 0 
4 28 4 288 12 
5 102 0 1680 0 
6 330 10 9744 56 
7 1170 0 58824 0 
8 4064 32 350000 300 
9 14560 0 2241848 0 

10 52326 102 14122080 1680 
11 190650 0 89878488 0 
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sion formula for M(n)  is given by 

3 " =  E d / , d [ 2 M ( d ) + P ( d ) ]  +S(n ) ,  (B.3) 

where P(n) = M(n/2)  + P(n/2)  if n is even; 

P(n) = 0 if n is odd. Here S(n) represents the 
roots of the symmetric period 2 cycle that arises 
from a period-doubling bifurcation and that loses 
stability by a split bifurcation. S(n)= 2 if n is 
even; S(n )=  0 if n is odd. The initial conditions 
are M(1) = 1, P(1) = 1. 

(iii) T = 1 circle map. T = O, 0 < A < 1.73. The 
derivation of the recursion formula in this case is 
similar to the previous ones. The recursion for- 
mula for M(n) is 

7 " =  ~_,d/,d[2M(d)+ P ( d ) ]  + S ( n ) ,  (B.4) 

where P ( n ) = P ( n / 2 ) + M ( n / 2 ) ,  if n is even; 
P(n)=O, if n is odd; S ( n ) = 0  if n is odd; 

S(n) = 2 if n is even. The initial conditions are 
M(1) = 3, P(1) = 1. The results of M(n) for n < 11 
are compiled in table 1. Since the split bifurcation 
does not change the cycle length, in table 1 we do 
not account for the number of periodic orbits that 
arise from split bifurcations. 
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