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We analyze a class of ordinary differential equations representing a simplified model of a genetic
network. In this network, the model genes control the production rates of other genes by a logical
function. The dynamics in these equations are represented by a directed graph on ann-dimensional
hypercube (n-cube! in which each edge is directed in a unique orientation. The vertices of the
n-cube correspond to orthants of state space, and the edges correspond to boundaries between
adjacent orthants. The dynamics in these equations can be represented symbolically. Starting from
a point on the boundary between neighboring orthants, the equation is integrated until the boundary
is crossed for a second time. Each different cycle, corresponding to a different sequence of orthants
that are traversed during the integration of the equation always starting on a boundary and ending
the first time that same boundary is reached, generates a different letter of the alphabet. A word
consists of a sequence of letters corresponding to a possible sequence of orthants that arise from
integration of the equation starting and ending on the same boundary. The union of the words
defines the language. Letters and words correspond to analytically computable Poincare´ maps of the
equation. This formalism allows us to define bifurcations of chaotic dynamics of the differential
equation that correspond to changes in the associated language. Qualitative knowledge about the
dynamics found by integrating the equation can be used to help solve the inverse problem of
determining the underlying network generating the dynamics. This work places the study of
dynamics in genetic networks in a context comprising both nonlinear dynamics and the theory of
computation. ©2001 American Institute of Physics.@DOI: 10.1063/1.1336498#
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Networks of genes underlie the normal development and
function of organisms. Information about the structure of
the genome of humans and other organisms is increasin
exponentially. However, the ways in which the genes
regulate and control behavior are still not well under-
stood. A simple mathematical model is discussed in which
outputs from a gene act to control and regulate the activ-
ity of other genes in the network. The interactions can be
represented as simple logical rules. However, the result
ing dynamics can be quite complex, even in simple net
works composed of only four model genes. Therefore, it is
useful to adopt symbolic methods to describe the dynam
ics. The symbolic methods represent complicated dynam
ics by strings of symbols, and a correspondence can b
established with logical automata that generate similar
symbolic strings. Changes in parameters in the simple
model can elicit changes in the symbolic sequences, co
responding to bifurcations between different patterns of
chaotic dynamics. Thus, the gene networks can be
thought of as computational devices that generate lan-
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guages. Further, based on observation of qualitative
properties of the dynamics, represented by the levels o
activities of genes and whether their products are in-
creasing or decreasing, it is possible to devise methods t
carry out the inverse problem—i.e., to determine the un-
derlying logical network generating the observed dynam-
ics. This work places the study of dynamics in gene net-
works in a computational perspective and may lead to
new methods to study the functional properties in gene
networks.

I. INTRODUCTION

Recent years have witnessed exponential increase
our knowledge about the sequences of nucleotides in
genomes of living organisms. In addition, gene express
chips now enable scientists to monitor activity levels of tho
sands of genes simultaneously.1,2 These experimental ad
vances are leading us into a new era in which the overrid
questions will involve understanding the mechanisms t
regulate gene expression, and lead to the coordinated f
tion of multiple genes. The current work is based on t
following premises:~i! it is sensible to think about genes a
being switched ‘‘on’’ or ‘‘off;’’ ~ii ! crude knowledge abou
© 2001 American Institute of Physics
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the interactions among genes may suffice to understand
functioning of gene networks;~iii ! a simplified mathematica
framework may be suitable to capture a variety of qualitat
features of genetic networks that are relevant to their fu
tional and computational abilities; and~iv! symbolic dy-
namic approaches to dynamical systems3,4 and analysis of
languages in the theory of computation5–7 form a natural
bridge to consider the dynamical and computational prop
ties of differential equations modeling genetic networks.

This work is rooted in early studies by McCulloch an
Pitts, who proposed that binary switching devices opera
in discrete time could be used to model neural network8

They showed that while networks composed of a finite nu
ber of such neurons are computationally equivalent to fin
state machines, a countable number of these neurons
potentially the power of a Turing machine. Largely inspir
by the original McCulloch and Pitts model of the neuro
Kauffman proposed that genetic networks could be mode
by random Boolean networks in which time is discrete a
each element computes a Boolean function based on the
ues of inputs to that element.9 In contrast to the work on
neural networks, in which emphasis was placed on the c
putational properties,10,11 in Kauffman’s analysis of genetic
networks, emphasis was placed on dynamic aspects. St
states and cycles in the logical network were equated w
differentiated cell types in the organism and a variety
extensions have been explored.12,13

Since gene networks do not act in discrete time and g
product concentrations are continuous variables, we bel
that the discrete networks above, or even asynchronous
sions of them, are less suitable to model gene networks
ordinary differential equations in which gene interactions
incorporated as logical functions.14–22 Differential equations
and logical networks have been proposed to model a var
of different specific gene networks.23–27

In this paper we analyze genetic network models both
terms of computational capabilities and in terms of dyna
cal properties. This combination should provide an intere
ing bridge between computer science and dynamical
tems.

II. A DIFFERENTIAL EQUATION

In this section we briefly present a mathematical mo
of gene networks. Since many aspects of the model h
recently been reviewed,21,22 we refer the reader to these ea
lier publications for further mathematical details.

A Boolean switching network withN elements is repre
sented

Xi~ j 11!5L i~Xi 1
~ j !,Xi 2

~ j !, . . . ,Xi K
~ j !!,

i 51, . . . ,N, ~1!

where L i(Xi 1
( j ),Xi 2

( j ), . . . ,Xi K
( j ))P$0,1% and K is the

number of inputs. This is a discrete time and discrete s
space system. Therefore, it must eventually reach a fi
point or cycle under iteration.

Since biological systems are not believed to have clo
ing devices that simultaneously update the network, a dif
ential equation would be a more suitable class of mathem
Downloaded 18 Aug 2003 to 132.216.11.185. Redistribution subject to AI
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cal model. The logical structure of Eq.~1! can be captured by
a differential equation.15,16,18To a continuous variablexi(t),
we associate a discrete variableXi(t),

Xi~ t !50 if xi~ t !,0; otherwise,Xi~ t !51. ~2!

For any logical network, we define an analogous differen
equation,

dxi

dt
52xi1l i~Xi 1

~ j !,Xi 2
~ j !, . . . ,Xi K

~ j !!,

i 51, . . . ,N, ~3!

wherel i(Xi 1
( j ),Xi 2

( j ), . . . ,Xi K
( j )) is a scalar whose sign

is negative~positive! if the corresponding logical variable
L i(Xi1( j ),Xi2( j ), . . . ,Xi K

( j )) is 0 ~1!.
For each variable, the temporal evolution is governed

a first order piecewise linear differential equation. L
$t1 ,t2 , . . . ,tk%, denote theswitch timeswhen any variable of
the network crosses 0. The solution of Eq.~3! for each vari-
ablexi for t j,t,t j 11, is

xi~ t !5xi~ t j ! e2(t2t j )

1l i~Xi 1
~ j !,Xi 2

~ j !, . . . ,Xi K
~ j !!~12e2(t2t j )!.

~4!

This equation has the following property. All trajectories in
given orthant in state space are directed towards a fo
point. If the focal point lies in a different orthant from th
initial condition, then, in general, eventually a threshold h
perplane will be crossed. When the threshold hyperplan
crossed, a new focal point may be selected based on
underlying equations of motion.

Even though Eq.~3! is more realistic than Eq.~1! as a
model for biological systems, this equation still is a high
oversimplified model for real systems. Yet this equation h
remarkable mathematical properties that facilitate theoret
analysis. Moreover, there is an expectation, demonstrate
some simple examples, that the qualitative dynamics in
model system will be preserved in more realistic versio
for example, when the discontinuous step functions are
placed by continuous sigmoidal functions.17

In the differential equation, in general only one variab
will cross its threshold at a given time. Therefore, the d
namics in the differential equation can be mapped on
N-cube where directed edges represent allowed transition
tween logical states. The allowed transitions are also equ
lent to the allowed transitions in an asynchronous switch
network with the same logical structure.12,16,18

Further, for networks in which there is no self-inpu
each edge of theN-cube representation will have a uniqu
orientation.16,18 If the network has self-input, there may oc
cur black walls or white walls,19 threshold hyperplanes fo
which nearby trajectories approach or retreat~respectively!
from both sides. These can be represented on theN-cube by
a pair of arrows pointing inward from each end of the ed
or outward, respectively. Self-input may in some cases be
appropriate description of autocatalysis, wherein a gen
protein product either represses or activates its own syn
sis, as in the case of viral genes~cI and cro! in bacteriophage
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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162 Chaos, Vol. 11, No. 1, 2001 Edwards et al.
lambda.24,28 We will primarily be concerned here with ne
works with no self-input, though this is by no means ess
tial. We define two networks to belong to the samestructural
equivalence classif their directedN-cube representations ar
identical under a symmetry operation of theN-cube. How-
ever, since changes in the location of the focal points$l i%,
can lead to bifurcations in the dynamics even though
directed graph representation is unchanged, the struc
equivalence class is not necessarily sufficient to specify
dynamics.

In some cases, theN-cube mapping gives precise info
mation about the qualitative dynamics of its associated
ferential equation. A vertex on theN-cube with only edges
directed towards it corresponds to a stable steady state in
differential equation. A cycle on theN-cube is attracting if
for each vertex on the cycle, each of theN22 adjacent ver-
tices not on the cycle are directed towards it. An attract
cycle on theN-cube will be associated with either a stab
limit cycle or a stable focus in the ordinary differenti
equations.18 Chaotic dynamics arises in systems with m
tiple cycles passing through individual vertices on t
N-cube but no firm results allow us to identify which diffe
ential equations admit chaos based on theN-cube mapping.

We illustrate these ideas with a four-dimensional n
work that displays chaotic dynamics.20 The network structure
is defined by the truth tables for each variable in Table
This is equivalent to the single truth table in Table II.

TABLE I. Truth table for a four-variable Boolean network. This defines t
mapping for a discrete-time network as well as the signs of the interac
terms in the differential equations for continuous-time networks@in this
case,wt11 , etc., should be interpreted rather as the sign of (dw/dt)1w].

(xy) t wt11 (wz) t xt11 (wx) t yt11 (xy) t zt11

~00! 0 ~00! 1 ~00! 1 ~00! 1
~01! 1 ~01! 0 ~01! 0 ~01! 1
~10! 1 ~10! 0 ~10! 0 ~10! 0
~11! 0 ~11! 1 ~11! 0 ~11! 1

TABLE II. The combined truth table for the Boolean network in Table
Some of the associated differential equations with this sign structure
chaotic dynamics.

(wxyz) t (wxyz) t11

~0000! 0111
~0001! 0011
~0010! 1111
~0011! 1011
~0100! 1100
~0101! 1000
~0110! 0101
~0111! 0001
~1000! 0001
~1001! 0101
~1010! 1001
~1011! 1101
~1100! 1000
~1101! 1100
~1110! 0001
~1111! 0101
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The directed graph on theN-cube is generated by draw
ing arrows from each vertex in the left-hand column to
adjacent vertices~i.e., vertices that lie on a Hamming dis
tance of 1 away from the vertex in the left-hand column! that
lie on a shortest route from that vertex to the vertex in
right-hand column. The number of directed edges emana
from a given vertex is equal to the Hamming distance
tween that state in the truth table at time~t! and the target
state at time (t11). For example, there are three edges
rected out from 0000 towards 0001, 0010, and 0100. T
N-cube representation for this network is shown in Fig. 1

The four-dimensional differential equation,

dx1

dt
52~X2X̄31X̄2X3!2c2x1 ,

dx2

dt
52~X̄1X̄41X1X4!21.37622x2 ,

~5!
dx3

dt
52X1X220.80242x3 ,

dx4

dt
52~X̄1X̄31X3!21.26822x4 ,

whereX̄512X, andc is a constant to be selected is cons
tent with the transition diagram in Fig. 1; whenc51.2546
this equation displays chaos.20 We return to this example
after developing some additional terminology.

III. SYMBOLIC DYNAMICS OF GENETIC NETWORKS

Symbolic methods have provided powerful techniqu
for analysis of dynamical systems.3 Since symbolic methods

n

e

FIG. 1. 4-cube representation of a switching network. An associated di
ential equation, Eq.~5!, displays chaotic dynamics. The bold lines corr
spond to the two cyclesA andB that occur on the chaotic attractor. Base
on Fig. 1 in Mestlet al. ~Ref. 20!.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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163Chaos, Vol. 11, No. 1, 2001 Symbolic dynamics and computation
are discrete, they are also amenable to analysis using
theory of computation6 and in particular the theory o
automata.5 Several works have explored the interface b
tween symbolic dynamic representations of nonlinear
namical systems and computation.4,7,29,30Here we choose a
particular definition of symbolic dynamics based on t
Poincare´ section, and show how this symbolic dynamics p
vides a link between the qualitative dynamics of Eq.~3! and
the theory of computation, thus enabling computational
terpretation of this dynamical system.

We consider Eq.~3! for the situation in which the dy-
namics do not approach a stable fixed point. Therefore,
dynamics are either periodic, quasiperiodic, or chaotic.

For any particular equation of the form of Eq.~3!, we
associate a generative finite state machine and a formal
guage. Since there are various definitions of these terms
concisely describe our notation.

A. Definitions and notation

A finite state machineis a tupleM5(Q,q0 ,S i ,So ,E)
where:

~1! Q is a finite set of states having one designated stateq0

is the initial state;
~2! S i andSo are two sets of letters called the input alphab

and the output alphabet, respectively; and
~3! E is the partial transition functionE:Q→Q. Each edge

is associated with a set of letters fromS i and a string of
~0 or more! letters fromSo .

The finite state machine can be represented as a grap
which each state is a node and the directed edges betw
nodes represent the partial transition function. Each trav
of the automaton along the directed edges generates aword
which is the concatenation of the strings of output alpha
associated with the traversed edges. In this definition o
traverse, it has no designated end, and hence it can
stopped or continue forever. The associated words can
be finite and infinite. The set of such words for all the va
ous inputs constitutes theformal languageassociated with
the ~generative! state machine. In the theory of computatio
the sets of alphabet letters are finite and typically consis
two letters only. In the model of computation over the re
numbers,7 the input alphabet is the infinite set of real valu
R, and the output alphabet is finite. Here, we allow for bo
sets to be of any size.

Languages associated with finite state machines ha
finite alphabet sets are calledregular. We follow the notation
of Ref. 5, p.28: letS be an alphabet, andL,L1 ,L2 be sets of
words on S. L1L25$xyu xPL1 ,yPL2%, L05$e%, Li

5LLi 21 for i>1, L* 5ø i 50
` Li , L15ø i 51

` Li . The empty
set having no word$ % and the singleton set including onl
the empty word$e% are both regular languages. IfL1 andL2

are regular languages, so areL1øL2 , L1L2 , L1* , andL1
1 .

B. Associating a language with Eq. „3…

There are various ways to associate languages with
dynamics of Eq.~3!. We first propose a conceptually simp
method that offers a clear connection between the dynam
and formal languages.
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We assume that all transients have passed and sele
edgee0 that is traversed during the dynamics. Then we in
grate Eq.~3! until the edge is traversed againfor the first
time. The sequence of edges of the graph that were trave
define a cycle, that we associate with a symbol. Each dif
ent cycle, that starts and ends one0 when that edge is firs
encountered, generates a new symbol. The set of symbo
generated defines the output alphabet. The set of all str
representing paths starting at initial conditions frome0 de-
fines the languageL(e0). These definitions generate an int
mate connection between languages and dynamics. Edge
the N-cube correspond to boundaries between orthants
phase space, so a cycle of edges corresponds to a return
on an orthant boundary. The letters constituting the out
alphabet thus correspond to~analytically or numerically
computable! return maps and the words correspond to co
positions of these return maps.

The hypercube dynamics do not describe completely
underlying dynamical system. The hypercubes seem non
terministic ~because there can be more than one outgo
edge from a node! while the underlying dynamics are dete
ministic, and the choice of outgoing edge depends on
exact location in phase space of a trajectory as it crosses
orthant boundary corresponding to a given edge. For an
act formulation as a language, the hypercube needs an i
alphabet in addition to the output alphabet. The input alp
bet is the real value that represents the exact position
phase space of the system on the incoming orthant bound
We think of this input alphabet as a hidden input, but m
remember it is there for the deterministic computation.

We now consider an example. In Eq.~5! for c51.2546
there is chaos.20 Starting on the edge between 0011 a
1011, we encounter the following vertices in defining tw
cycles:

A:1011→1111→1101→1100→1000→0000→0010

→0110→0111→0011→1011,

B:1011→1001→1101→1100→1000→0000→0010

→0110→0111→0011→1011.

The vertex in bold is the only vertex that differs betwe
the two cycles. From numerical integration we find that t
symbolA can appear any number of times in sequence,
the symbolB only appears singly. Then the language for th
equation isBk(A 1B)* , wherek is either 0 or 1 and we take
B 08e. The first term arises because the first symbol gen
ated may beB.

This language has been called thegolden mean shiftby
Lind and Marcus.4 This language can also be generated
the finite deterministic automaton diagrammed in Fig.
called thegolden mean machineby Crutchfield.29

In this case the alphabet is finite~two symbols!. How-
ever, had we started on the edge between 1011 and 100
language generated by the network would have been dif
ent. Now each cycle could loop an arbitrary number of tim
around theA loop defined above before returning to the ed
between 1011 and 1001. Thus, the alphabet here is now
finite. This observation underscores both a weakness a
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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164 Chaos, Vol. 11, No. 1, 2001 Edwards et al.
strength of our formulation. Although it seems artificial
generate different alphabets depending on the initial ed
we propose that different languages associated with exa
the same attractor in the differential equation~3! be consid-
ered ‘‘in agreement.’’

Although the association of the alphabet with retu
maps to a hyperplane has a natural dynamical interpreta
other conventions for associating languages with dynam
can also be adopted.

For example, in the example considered above we m
define languages based on sequences of vertices trav
during the dynamics. Starting at vertex 1011 we can defin
language with three letters:

A:1011→1111→1101,

B:1011→1001→1101,

C:1101→1100→1000→0000→0010→0110→0111

→0011→1011.

The language is now (BC)k((AC)1BC)* , where k50,1.
The structure of the automaton is as before~Fig. 2! but the
edges that were associated withA andB are now associated
with AC andBC, respectively. Breaking up the cycles in th
way can eliminate the possibility of infinite alphabets.

TheN-cube representation of a differential equation p
vides a way to classify networks in structural equivalen
classes based on the symmetries of theN-cube. Symbolic
dynamics provides a basis for discussing additional type
equivalence for Eq.~3! based on qualitative features of th
dynamics. Two networks are in the samedynamical equiva-
lence classif the languages associated with each networ
attractors are identical, except for perhaps a fixed numbe
initial letters. This latter exception allows one to concentr
on the long-term dynamics without much emphasis on
initial state. For example, consider a differential equation
the form of Eq.~3! ~in any dimension!, whose only attractor
is a stable limit cycle in which each edge associated with
limit cycle is traversed only once. Then, independent of
chosen initial state, the language associated with the dif
ential equation will beA* ~after possibly a few initial let-
ters!. Thus, all dynamical systems of the form of Eq.~3! that
converge to a simple globally attracting limit cycle, are in t
same dynamical equivalence class using this definition. N
however, that a network may have multiple attractors.

FIG. 2. The finite state machine generating the language associated
chaotic dynamics in Eq.~5! with parameterc51.2546.
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IV. SYMBOLIC DYNAMICS AND BIFURCATIONS
OF CHAOTIC DYNAMICS

One of the central questions in the field of nonline
dynamics is to determine the changes in qualitative dynam
~i.e., the number, type, and stability of invariant sets! of dy-
namical systems as the parameters in those systems ch
The symbolic representation of dynamics in Eq.~3! provides
a new method to represent qualitative aspects of the dyn
ics. Under changes of the focal points, there can be chan
in the associated language.

We illustrate these ideas by returning to Eq.~5! and
consider the dynamics that are observed asc is changed.
Most of the values ofc given below can in principle be
calculated exactly, using exact calculations of the ret
maps and their fixed points19,21 with the parameterc left
unspecified, and then solving forc under the desired condi
tion. In practice, it is easier to do exact calculations w
particular values ofc and locate a bifurcation point by trying
different values ofc on either side. We denote the retu
maps for theA andB cycles on the (0,2,1,1) boundary
by MA and MB , respectively. Composite mappings we d
note by, for example,MBA(x)8MA(MB(x)). Whenx is on
the boundary between theA andB domains, the two map-
pings are equivalent so in this case we sometimes
M (x)5MA(x)5MB(x).

When c51.2546, there is a trapping region in the (
2,1,1) orthant boundary,20 shown schematically in Fig. 3
FB3 is an unstable fixed point of theB cycle. FA3 is an
unstable fixed point of theA cycle. The stable and unstab
manifolds of these points are indicated by the arrows. In
figure, everything is projected onto a plane orthogonal to
ray throughFA3, but some license has been taken in disto
ing the figure to make the regions clearer. It can be sho
that the fractional linear maps associated with trajectorie
these networks take straight lines to straight lines,21 and this
applies also to projections onto a plane. The line throughS1
and S2 is the separating boundary between the domains

ith

FIG. 3. Sketch of a trapping region in the (0,2,1,1) boundary, for the
network of Eq.~5! with c51.2546, projected onto a plane orthogonal
vectorFA3, an unstable fixed point of cycleA. This and the following two
figures are distorted to make the relevant regions visible. Based on Fig.~b!
in Mestl et al. ~Ref. 20!.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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165Chaos, Vol. 11, No. 1, 2001 Symbolic dynamics and computation
definition ~also called returning cones! of the A and B
cycles. We will denote this boundary byb. The dotted–
dashed lines in Fig. 3 indicate the domains of definition
these two cycles as well as two others,C andD, to be intro-
duced below. The large letters show which cycle applies
which region.S1 is the intersection of the stable manifol
WB

s , of FB3 and the separating boundary,b (S15WB
sùb). S2

is the intersection of the unstable manifold,WB
u , of FB3 and

b (S25WB
uùb). S3 is the intersection ofWB

u and the inverse
image underMA of WB

s @S35WB
uùMA

21(WB
s )#. The triangle

with verticesFB3 , S1 , andS3 is mapped into the two shade
regions~images of theA andB domain parts of the triangle
under their respective mappings!. Thus, this large triangle is
invariant, as is the smaller triangle composed of the t
shaded regions.

This picture changes as the bifurcation parameter,c, is
changed. All of the key points and lines defining the regio
shift. Furthermore, the domains of definition of each cy
also shift. These domains can be calculated from the c
maps as can all of the manifolds and their images~for details,
see Ref. 21!. As shown in Fig. 3, whenc51.2546, the vertex
FB3 lies in the interior of the returning cone forB and the
verticesS1 andS2 lie on the boundary, of course, but awa
from the vertices of the~projected! returning cones.S3 lies in
the interior of the returning cone forA.

If we now increase the bifurcation parameter,c, when it
reaches about 1.2703 the pointS1 leaves the returning cone
for both cycles—in fact, it leaves the (2,1,1) orthant al-
together. Thus, the full trapping region is disrupted. Ho
ever, since the shaded triangle of Fig. 3 is also a trapp
region, and sinceS1 is not part of it, this smaller trapping
region persists.S3 falls out of the returning cone forA at
c'1.2762, butS3 is also not in the smaller trapping regio
At c'1.2763,FB3 falls out of the returning cone forB, as
does the other vertex of the shaded trapping region,MA(S3).
At this point the smaller trapping region is also disrupte
However, the images of this trapping region under the m
pings continue to shrink, and the attractor itself stays aw
from the boundary of the shaded region betweenFB3 and
MA(S3). There is, in other words, a still smaller trappin
region as yet unaffected by the fact that these points have
the returning cone forB. This is demonstrated in the appe
dix.

The dynamical behavior changes significantly whenc
'1.2810 at which pointS2 also leaves the returning cone fo
B ~andA), and moves onto the boundary between the retu
ing cones for two other cycles,C andD, respectively,

C:1011→1111→1101→1100→1000→0000→0010

→0011→1011,

D:1011→1001→1101→1100→1000→0000→0010

→0011→1011.

For c near this value, the attractor passes close toS2 and so
trajectories on the attractor fall outside the returning cone
A andB and into those ofC andD. Thus, the alphabet of th
attractor increases to the set of four letters$A, B, C, D%.
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At c'1.2996, the chaotic dynamics are lost altogether
a stable cycle appears, consisting of 56 transitions, re
sented by the sequence of simple cycles,A B C A B D. This
cycle becomes stable when the fixed point of the return m
lying on the dominant eigenvector of the map’s matrix ent
the returning cone for the cycle~see Ref. 21!.

The symbolic representation allows us to introduce
novel type of bifurcation in chaotic dynamics—a change
parameter that leads to a new language. Although the alp
bet does not change untilc'1.2810, the language doe
change. At the original value of the bifurcation paramet
c51.2546, the symbolic sequenceBB never occurs. This is a
consequence of the fact that the attractor does not ente
part of the shaded trapping region in theB domain that is in
the image of theB domain. However, whenc reaches abou
1.2577, the attractor moves into this region, and the symb
sequenceBB begins to occur in trajectories on the attracto
Thus, the language is no longerBk(A 1B)* . After the bifur-
cation, the sequenceBBB is still not possible as the acces
sible part of theBB domain maps entirely into theA domain.
The exact determination of this bifurcation value and t
way in which BB begins to appear in the attractor are e
plained in the Appendix.

The frequencies of occurrence of the letters may cha
continuously even between the language-bifurcation poi
For example, the relative frequencies~approximate prob-
abilities! of A’s andB’s in numerically generated sequenc
for a few values ofc are listed in Table III.

Another way to look at these changes is in terms of
relative frequency of various lengths of strings of conse
tive A’s following a givenB. We list here the approximate
probabilities of the stringBB, and of 1,2 or 3A’s between
successiveB’s for a few parameter values, based on nume
cal integrations~Table IV!.

The probability of aB following a B increases with the
parameter, and the probabilities of strings ofA’s generally
decreases. As a result, the expected value of the length

TABLE III. Relative frequencies of occurrence ofA andB in numerically
generated sequences on trajectories of Eq.~5!, for several values of the
parameterc.

c Pr(A) Pr(B)

1.2546 0.68 0.32
1.2577 0.68 0.32
1.2678 0.63 0.37
1.2809 0.61 0.39

TABLE IV. Relative frequencies of occurrence ofBB andA 1, A 2, andA 3

between consecutiveB’s in trajectories of Eq.~5!, for several values of the
parameterc.

c Pr(B B) Pr(A 1) Pr(A 2) Pr(A 3)

1.2546 0.00 0.51 0.21 0.13
1.2577 0.001 0.48 0.24 0.13
1.2678 0.12 0.46 0.24 0.09
1.2809 0.17 0.47 0.20 0.08
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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string of A’s following a B decreases from about 2.1 whe
c51.2546 to about 1.5 whenc51.2809.

The languages corresponding to the chaotic dynam
can be complicated, especially where the alphabet consis
four letters, and it can be rather difficult to determine t
precise language for a given parameter value. Just before
bifurcation where chaos is lost, however, the language
pears to be fairly simple. Long numerical integrations su
gest that atc51.2995, the language consists entirely
words made up of the subsequencesABCABD and
ABAABD. At c51.2986 ABD may be repeated sever
times following an occurrence ofABA and for slightly
smaller values ofc the language appears to be even m
complex.

V. THE INVERSE PROBLEM

A practical issue is to determine the network bas
solely on the observed dynamics. We call this theinverse
problem. This means determining the inputs and the ass
ated logical functions for each of the genes of the netwo
We believe that the issue of determining the quantitat
values of parameters is a more difficult and less compel
problem than determining the underlying logical structure
the network. Given the current possibility of assaying t
expression of thousands of genes simultaneously, it will
necessary to develop methods to determine functional in
actions between genes based on the observed dynamics
though the difficulty of carrying out this procedure in a re
istic setting cannot be underestimated, several workers h
tried to work out the genetic networks underlying spec
systems.23–27 Earlier proposals of general theoretical me
ods for carrying out the inverse problem were given by Gl
and Young,31 Liang and colleagues32 and Akutsu and
colleagues.33,34 Here we illustrate how the inverse proble
can be solved based on the example that shows chaotic
namics that we discussed in Sec. III.

We assume that we know the following:

~1! No gene has self-input. This means that the logical fu
tion controlling a given gene does not depend on
logical state of that gene.

~2! The sequence of logical states observed during cha
dynamics. This implies that we are able to measure
levels of the four variables over time and classify the
into two levels, high~1! and low ~0!, by applying a
threshold operation. Thus, we assume that we know
logical sequences associated with the two cyclic
quencesA,B.

~3! The sign of the rate of change of each of the variables
each of the states. By Eq.~5!, the rates of change of eac
variable only depends on the orthant in phase space.
ther, the sign of the rate of change of each variable
immediately determined from the truth table in Table
For example, from the first line in Table II, we know th
if all the variables are low, then variablew will be de-
creasing, whereas variablesx,y,z will be increasing.

Thus, following a trajectory on the attractor, we can p
tially fill in the truth table as in Table V. The blanks in th
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truth table are associated with the five states that are not
of the chaotic attractor~bold lines in Fig. 1!.

Since we have assumed that no gene has self-input
can continue solving the inverse problem by assuming
each gene is a logical function of the other three, e.g.w
depends onx,y,z. Consequently, we can rewrite the sing
truth table above, as four separate truth tables, one for e
of the genes~Table VI!. The blanks are associated with va
ues that are not determined by the entries in the truth Ta
V, that is, edges on theN-cube with neither vertex on the
attractor~see Fig. 1!. Notice that only three values are no
determined. Potentially, these entries could be filled in w
either a 1 or 0,leading to a total of eight different network
that are consistent with the information given. However,
we further assume that each gene in the network is a func
of only two of the other genes in the network@this is the rule
governing the construction of Eq.~5!#, then the information
is adequate to reconstruct Table I. For example, consider
control of genex. From the observation that stateswyzt

5010 andwyzt5011 are associated with different values
xt11, we know thatx must be a function ofz. Similarly, since
wyzt5011 andwyzt5111 are associated with different va
ues ofxt11, we know thatx must be a function ofw. Thus,x
is a function ofw and z and the information is adequate t
determine the complete truth table forx. In a similar fashion,
we can determine thatz is a function ofxy, and we can
reconstruct the truth tables in Table I. We emphasize that

TABLE V. Partial truth table reconstructed from a trajectory on the chao
attractor.

(wxyz) t (wxyz) t11

~0000! 0111
~0001!
~0010! 1111
~0011! 1011
~0100!
~0101!
~0110! 0101
~0111! 0001
~1000! 0001
~1001! 0101
~1010!
~1011! 1101
~1100! 1000
~1101! 1100
~1110!
~1111! 0101

TABLE VI. Partial truth tables for each variable reconstructed from a t
jectory on the chaotic attractor, assuming no self-input.

(xyz) t wt11 (wyz) t xt11 (wxz) t yt11 (wxy) t zt11

~000! 0 ~000! 1 ~000! 1 ~000! 1
~001! 0 ~001! ~001! 1 ~001! 1
~010! 1 ~010! 1 ~010! 0 ~010!
~011! 1 ~011! 0 ~011! 0 ~011! 1
~100! 1 ~100! 0 ~100! 0 ~100! 1
~101! 1 ~101! 1 ~101! 0 ~101! 1
~110! 0 ~110! ~110! 0 ~110! 0
~111! 0 ~111! 1 ~111! 0 ~111! 1
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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ambiguity in three values before invoking the 2-input rule
a result of this particular network’s attractor. Other nets w
attractors that cover more of phase space may have no
biguity even without the 2-input rule.

Although, this is an artificial example, it does give
method that can be used to reconstruct qualitative infor
tion about the interactions in a complex network based
limited information about the dynamics in the network.

VI. CONCLUSIONS

In this paper, we have shown how symbolic metho
that arise in the study of computation theory can be app
to represent qualitative dynamics in models of gene n
works. Though application of symbolic methods to nonline
dynamics has a long history, the current work emphas
the computational aspects of dynamical systems and
lead to novel ways to develop dynamical implementations
automata. The notion of associating bifurcations in dynam
in chaotic systems with changes in the associated langu
may be particularly useful.

The extent to which the methods here are applicable
real genetic systems is not known. The current equations
not realistic for many reasons:~i! control of gene expressio
is not on or off but is graded;~ii ! there may be time delay
associated with synthesis or degradation of gene products
accounted for here;~iii ! decay rates of different gene prod
ucts are different;~iv! although a single gene product mig
control expression of many different genes, the thresh
levels for activation and/or inhibition may be different fo
different targets. However, all these represent quantita
changes in the equations, and the extent to which th
changes influence the qualitative properties of the equat
is still largely unknown. Further, it is intriguing that a rece
analysis of gene expression in sea urchin concludes tha
gene control can be approximated by a logical function ba
on the presence or absence of relevant factors that contro
gene expression.35

In organisms, development and function usually app
to be orderly, and it is reasonable to question the releva
of chaotic dynamics to gene control mechanisms. The n
ber of genes in humans is not known, but is likely of t
order of 100 000 genes. The mechanisms of control of in
vidual genes are now being worked out. It now appe
likely that the expression of individual genes will be co
trolled by multiple inputs~e.g., the regulatory circuit worked
out for a sea urchin gene had seven target sites for D
binding proteins35!. Theoretical models of high dimension
randomly constructed model gene networks~e.g., using the
notation in Sec. II, withN.50 andK.7), showed that the
usual circumstance is that the dynamics in such networks
chaotic.36 Based on these observations, it might be reas
able to expect that gene networks in organisms could ope
in chaotic regimes. However, the theoretical work assum
random networks with randomly constructed truth tabl
and such assumptions probably do not hold in real org
isms. It seems reasonable to assume that the truth table
control of gene expression in organisms are not random.
example, Kauffman has hypothesized that regulation of g
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expression in organisms is carried out by functions cal
‘‘canalizing’’ in which one or more of the input variable
forces the output to a fixed value.13 The effects of incorpo-
rating canalizing functions in model gene control networ
needs further analysis. Although, genetic networks may
operate in chaotic regimes, the current work stresses
analysis of these networks from a qualitative, computatio
perspective that may be represented symbolically. Fina
even if the current formalism cannot capture the qualitat
aspects of real gene networks, it is intriguing that synthe
networks built out of genetic components37,38 have qualita-
tive dynamic properties that are well represented by the
ferential equations here.
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APPENDIX

We wish to locate the bifurcation point where the la
guage associated with the dynamics on the attractor cha
to allow the substringBB, and to understand its appearanc

The trapping region discussed by Mestlet al.20 ~Fig. 3!,
contains a part of the intersection of theB domain and the
image of theB domain@MB maps the triangle with vertice
S1 , S2 andFB3 into the triangle with verticesM (S2), M (S1)
andFB3]. Trajectories passing through this intersection co
tain the symbolic subsequenceBB, so we will call it theBB
domain. But this trapping region is by no means minim
Under iterations of the mappings, it maps into itself,
course, and these images shrink. With the original param
value, c51.2546, two more iterations from the shaded
gion of Fig. 3 lead to a trapping region~shaded region in Fig.
4! that still overlaps with theBB domain. The way in which
these two mappings occur can be traced by means of
labeled points in the sketch. Every time a region crosses
separating boundary,b, between theA andB domains~the
dotted–dashed line throughS2 and S4) it folds on the next

FIG. 4. Sketch of a smaller trapping region than the one in Fig. 3c
51.2546). Note that the triangular region in theB domain with vertex
MBAB(S2) is also in the image of theB domain@the triangle with vertices
MB(S1), MB(S2), andFB3] and therefore trajectories passing through th
region contain symbolic subsequencesBB.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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iteration since part of it is subject toMA and the other part to
MB . The fold always first occurs on the image of the se
rating boundary,M (b), the segment fromM (S2) to M (S4).

Consider first the part of the lowest shaded strip in Fig
that lies in theB domain~with lower edge fromFB3 to S2).
Under iteration ofMB , all points in this piece will eventually
be mapped out into theA domain due to expansion alongWB

u

~the lower edge!, with the exception of points along th
stable manifold ofFB3 @the segment fromMABB(S3) to
FB3]. No other part of the shaded region is mapped back i
this piece, so we may clip it off and still have a trappin
region. However, further iteration of this clipped trappin
region never entirely avoids theBB domain. Note that the
small triangle with tip atMBAB(S2) also extends into theBB
domain. Points on theB side of this part of the trapping
region follow the sequence of mappingsBAB and under
iteration of this combined mapping either come back into
same region or are ejected acrossb into theA domain. How-
ever, some points on the other side are sent back acrob
again underMAAB . To demonstrate that points in this regio
must be on transients and not on the attractor, we look m
closely for a yet smaller trapping region.

Consider the shaded region shown in Fig. 5. The po
marked with a triangle and labeledZ is an unstable fixed
point of the composite map,MAAB . Thus, it and its images
MA(Z) and MAA(Z) ~also marked by triangles! form a
period-3 cycle of the full return map.R1 is the point at which
the stable manifold of theAAB map atZ intersects the line
from M (S4) to MBAB(S2), as shown.R2 is the point at
which the unstable manifold of theAAB map atZ intersects
the fold line M (b). We note that althoughR2 is not in the
domain of definition~returning cone! for the mapMAAB , it
lies in the image of this domain. In fact, the part of t
unstable manifold atZ that lies on the line segment fromZ to
R2 but in the returning cone forMAAB is mapped to the
entire line segment fromZ to R2 . R3 , R4 , R5, andR6 are the
intersection points of the edges of two strips of the sha
region with the separating boundary,b. Note thatM (R6)
5R2 sinceR6 lies on the image underAA of the unstable
manifold of Z as well as onb, so underMB it maps to the
unstable manifold ofZ and toM (b).

FIG. 5. Sketch of a still smaller trapping region that does not intersect
BB domain (c51.2546).
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The shaded region in Fig. 5 is a trapping region. T
can be shown by considering it as the union of five polygo
pieces defined by the following sets of vertices:

T1: Z,R1 ,M (S4),R2,
T2a : MA(Z),MA(R1),R4 ,R3,
T2b : R3 ,R4 ,MBA(S4),MA(R2),
T3a : R6 ,R5 ,R2 ,M (R3),
T3b : MAA(Z),MAA(R1),MA(R2),MBA(S4),R5 ,R6.

Clearly, MA(T1)5T2aøT2b .
Also, MA(T2a),T3aøT3b , sinceMA(Z),MA(R1), and

R3 map toMAA(Z),MAA(R1), andM (R3), while R4 lies on
the line segment betweenR3 andR6 so thatM (R4) lies on
the line segment betweenM (R3) and M (R6)5R2. By a
similar argument,M (R3) lies betweenM (S4) andR2.

MB(T2b),T1. We have shown thatM (R3) andM (R4)
lie on the segment fromM (S4) to R2. A calculation is re-
quired to show thatMBA(S4) and MA(R2) map underMB
into T1 whenc51.2546.

MA(T3a),T3aøT3b. UnderMA , R2 maps toMA(R2)
and M (R3) maps to the line segment fromMBA(S4) to
MA(R2). R6 maps toR2 and R5 maps to the line segmen
from M (R3) to R2. Note that the unstable fixed point,FA3,
for the mapMA lies in T3a .

MB(T3b),T1. As shown above,R5 and R6 map to the
segment fromM (S4) to R2 . MAA(Z) and MAA(R1) map
under MB to Z and R1 , respectively. And finally, as men
tioned above,MBA(S4) andMA(R2) map underMB into T1

whenc51.2546.
The crucial point is that theAAB map has positive ei-

genvalues so that points on one side of the stable manifo
Z ~the line throughZ and R1) stay on the same side unde
iteration ofMAAB . Points in the returning cone ofAAB on
the T1 side stay on this side underMAAB and move away
from the stable manifold, while points on the other side a
move away from the stable manifold, eventually cross
into the B domain, and in particular, into the part of theB
domain whereBB occurs. Thus, it is essential to stay on t
T1 side of the stable manifold atZ. This can be ensured a
long asMAB(R2) lies on theT1 side@MBAB(S4) lies on the
T1 side if MAB(R2) does#.

Intuitively, the reason why trajectories must eventua
leave the part of the trapping region of Fig. 4 that lies in t
BB domain is that even though they may return afterBAB
ejects them andAAB sends them back, every iteration o
BAB maps part of this region across the stable manifold
AAB at Z, so that eventually all trajectories escape and en
the trapping region of Fig. 5~except a set of measure zer
the part of the stable manifold of the unstable fixed point
BAB that lies in the region!.

Now we are ready to consider changingc again. First, if
we decrease cto '1.2537 thenMBAB(S2) lies in the A
domain, while the rest of the picture remains qualitative
unchanged so there is no possibility ofBB occurring, even
based on the trapping region of Fig. 4. For larger values oc
we need the trapping region of Fig. 5, and this remain
trapping region untilc'1.2577 at which pointMAB(R2)
crosses over the stable manifold ofZ and leavesT1. It is not
easy to prove that this is sufficient to ensure thatBB occurs
on the attractor@it would require showing that trajectorie

e
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pass arbitrarily close toMAB(R2) or, equivalently,R2 infi-
nitely often#, but numerical integrations suggest that this
the case.
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