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Abnormal cardiac rhythms (cardiac arrhythmias) often display complex changes over
time that can have a random or haphazard appearance. Mathematically, these changes
can on occasion be identified with bifurcations in difference or differential equation
models of the arrhythmias. One source for the variability of these rhythms is the
fluctuating environment. However, in the neighborhood of bifurcation points, the fluc-
tuations induced by the stochastic opening and closing of individual ion channels in
the cell membrane, which results in membrane noise, may lead to randomness in the
observed dynamics. To illustrate this, we consider the effects of stochastic properties
of ion channels on the resetting of pacemaker oscillations and on the generation of
early afterdepolarizations. The comparison of the statistical properties of long records
showing arrhythmias with the predictions from theoretical models should help in the
identification of different mechanisms underlying cardiac arrhythmias.

KEY WORDS: stochastic differential equations, early afterdepolarizations, ionic mod-
els, premature ventricular complexes, phase resetting.

1. INTRODUCTION

The heart is an amazing organ. In human beings, the heart beats over two
billion times over a 70-year lifetime. An interruption of this beating pattern for a
time as brief as a few minutes often leads to serious neurological damage. Thus,
the heart rhythm must be incredibly robust, able to sustain itself despite a variety
of changes in the body that arise over the short term as a consequence of one’s
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daily activities, as well as over the long term as a consequence of normal aging and
disease. Viewed from a theoretical perspective, one can think of the heart rhythm
as a stable limit-cycle oscillation, some of whose properties, such as the period,
may be modified to suit bodily demands that are conveyed to the heart by neural
activity and circulating hormones that regulate cardiac activity. In this article we
argue that in some experimental and clinical situations, deterministic differential
equations may give results that are qualitatively incorrect and that it is essential to
consider stochastic mathematical models.

In Sec. 2 we give a brief introduction to the key concepts of cardiac electro-
physiology that we use in this article. In Sec. 3, we give some phenomenological
observations about abnormal heart rhythms as recorded from the electrocardio-
gram, focusing especially on the patterns of a type of abnormal heartbeat called
a premature ventricular complex. In Sec. 4 we introduce a few of the stochas-
tic sources that influence the cardiac rhythm. In Sec. 5, we give two examples
of how the stochastic opening and closing of ion channels in the cell mem-
brane can lead to important qualitative changes in the dynamics in mathematical
models of cardiac systems when compared with the dynamics in deterministic
models.

2. A PRIMER ON CARDIAC ELECTROPHYSIOLOGY(36)

In the normal heart, electrical activity originates on each heartbeat in a spe-
cialized pacemaker region called the sinus node. The activity then spreads through
the upper chambers of the heart (the atria), then through the atrioventricular node
and the His-Purkinje system to the lower chambers of the heart (the ventricles). At
the cellular level, the heartbeat is associated with cyclic changes in the electrical
potential difference across the cell membrane, which separates the intracellular
and extracellular milieu. This potential difference arises as a consequence of con-
centration differences of several ions, chiefly Na+, K+, and Ca2+, across the cell
membrane. These concentration differences are maintained by specialized molec-
ular complexes called ion pumps that use energy to transport ions across the cell
membrane. Further, there are individual channels in the cell membrane which
stochastically open or close. Ions flow through these channels and thus change
the voltage across the cell membrane. The rate at which ionic channels open and
close is different for each type of channel and is based largely on the potential
difference across the membrane in which they are embedded. The activity of
channels can also be modulated by neurotransmitters and circulating hormones.
On each heartbeat, there is an action potential, in which there is an increase in
the transmembrane voltage (depolarization), associated with a transient increased
permeability of the cell membrane to Na+ and Ca2+, followed by a repolarization
to the resting membrane potential, associated with an increasing permeability of
the cell membrane to K+. The changes in membrane potential lead to a sequence
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of events that result in the contraction of the heart muscle and the consequent
pumping of blood through the body.

A central goal of research over the past 50 years has been to understand
and mathematically model the ionic processes underlying activity in the heart.
The foundation was set in landmark work by Hodgkin and Huxley who devel-
oped nonlinear ordinary differential and partial differential equations for the ionic
processes underlying the generation and conduction of nerve impulses.(29) Subse-
quently Noble(55) and others extended this approach to the heart. Current mathe-
matical models of a single cardiac cell are formulated as systems of tens of coupled
equations with hundreds of parameters (e.g., Refs. 50, 75).

Abnormal cardiac rhythms (i.e., cardiac arrhythmias) can be viewed as arising
as a consequence of one of two different mechanisms. There is either abnormal
generation of action potentials or abnormal conduction of the action potential
within the heart. Abnormalities in heartbeat generation occur if the sinus node beats
too quickly or too slowly, or if other regions of the heart develop an intrinsic rhythm
that is not entrained to the normal sinus rhythm, leading to ectopic beats. Abnormal
patterns of conduction can arise as a consequence of blocked conduction. For
example, in some people not all the action potentials originating in the sinus node
are conducted to the ventricles. In other people, conduction abnormalities produce
reentrant rhythms, in which the period of the cardiac rhythm is set by the time it
takes for an excitation to travel in a reentrant path, rather than by the period of the
sinus rhythm.(36, 84)

The recognition of the presence of cardiac arrhythmias must have arisen in
antiquity when people felt abnormalities in the rhythm of the pulse. However,
the analysis of arrhythmias has been enormously aided by the electrocardiogram,
which measures the potential difference arising between points on the surface
of the body as a consequence of the propagation of the action potential through
the entire heart. The electrocardiographic signal, which is of the order of 0.1–5
millivolts in amplitude, has been recorded and analyzed for about the past 100
years. Examples of electrocardiograms, which we will discuss in more detail as
the paper progresses, are given in Fig. 1. Abnormalities in the qualitative features
of the electrocardiogram are used to classify cardiac arrhythmias into a number
of different types, based on the nature of the abnormality and the portion of the
heart affected. For example, ventricular tachycardia refers to an abnormally fast
heartbeat originating in the ventricles. But there are several types of ventricular
tachycardia: some of these result in the heart pumping an adequate blood flow to
the body and so can be consistent with the continued existence of life, while others
do not generate enough blood flow and will lead to death. In most people, the
terminal rhythm is ventricular fibrillation, a rhythm in which there are believed to
be multiple co-existing reentrant spiral waves of excitation in the ventricles.(84) In
Fig. 1, the end of each record shows ventricular tachycardia, which can degenerate
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Fig. 1. Electrocardiographic Holter-recording traces from two patients who suffered sustained ventric-
ular tachycardia (arrows indicate onset), obtained from the Sudden Cardiac Death Holter Database.(72)

(A) An 82-year-old woman with heart failure (patient 52). (B) A 68-year-old man with a history
of ventricular arrhythmias who was taking quinidine and digoxin (patient 45). The electrocardio-
graphic complexes are labeled as being of normal (N) or ventricular (V) origin. The number of normal
intervening beats between two ventricular beats (NIB) is indicated below each trace.

into ventricular fibrillation, resulting in death. In fact, this is exactly what happened
subsequent to the end of the last record shown in Fig. 1A.

We now try to place the initiation of arrhythmias into a nonlinear dynamics
context. Clearly, the normal pacemaker oscillation and propagation in the intact
heart are extraordinarily robust. By this we mean that under a wide range of cir-
cumstances, the rhythm is qualitatively identical. The sinus node is the pacemaker
and sets the rate, initiating an orderly spread of excitation over the entire heart.
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However, in some circumstances, parameters describing part or all of the heart
may change from normal values so that qualitatively different dynamics occur.
Mathematically, such qualitative changes in dynamics are called bifurcations. In
some cases changes in parameter values are abrupt, taking place over a time scale
of seconds or minutes (a heart attack, changes in the activity of the nervous sys-
tem or in the circulation of hormones, administration of drugs that change cardiac
properties). In other cases the changes are gradual: e.g., slow changes over the
years as a consequence of a faulty heart valve leading to increased atrial pres-
sure, consequent development of fibrotic tissue, and remodelling of the mix of ion
channels in the atria, resulting in atrial fibrillation.(54) The bifurcation boundary
in parameter space between normal and abnormal dynamics might be traversed
slowly with respect to the time between heartbeats. In such a situation, stochastic
effects will become prominent since a minute change in some parameter would lead
to one behavior or another. This concept is central to the following discussion.

3. ELECTROCARDIOGRAM ANALYSIS

The electrocardiogram provides a visualization of the electrical activity of
the heart. In Fig. 1, we show examples of electrocardiograms of two patients taken
from the Physionet Sudden Cardiac Death Holter database.(72) A Holter recording
is an ambulatory recording of the electrocardiogram, usually over a period of
∼24 h. These two patients had ventricular tachycardia (onset indicated by arrows
in Fig. 1) and the subject in Fig. 1A died while her electrocardiogram was being
recorded. Based on the morphology of the deflections on the electrocardiogram,
we distinguish normal sinus beats (labelled N) and premature ventricular com-
plexes (labelled V). The premature ventricular complexes arise from a site within
the ventricles. In the patient in Fig. 1A there is one morphology for the premature
ventricular complex, whereas, in Fig. 1B, there is more than one morphology.
There are two possible mechanisms for different morphologies in the same pa-
tient. Either the premature ventricular complexes arise from different sites in the
ventricles, or the premature ventricular complexes arise from a single site, but
are conducted through the ventricles differently on different heartbeats. Although
there are several different physiological mechanisms that have been hypothesized
to generate premature ventricular complexes, in most cases it is not known how to
identify a mechanism for the premature ventricular complex based on inspection
of the electrocardiogram.(36, 65) One of the main points of this article is to make
statistical physicists aware of the fascinating problems encountered in trying to
decode the patterns of premature ventricular complexes.

One way to obtain an impression of the pattern of premature ventricular
complexes in the electrocardiogram is to count the number of normal sinus beats
between two premature ventricular complexes. In the records in Fig. 1, we display
these numbers under each trace for several different segments of the recording.
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Most readers of this will be aware that medical exams often evaluate the elec-
trocardiogram only for short time intervals of the order of several seconds. Such
short segments do not always give a clear impression of the record over more
extended times. One way to characterize electrocardiograms with premature ven-
tricular complexes over longer times is to simply write out the integer sequence of
the number of such complexes between consecutive normal beats over long times.
In Fig. 2, we show these sequences for the records from which Fig. 1 was derived.

The data in Fig. 2A shows a preponderance of low integers. These are not
randomly distributed. There are long sequences of consecutive 1s, but also an
apparent gradual increase of the integer values followed by a decrease. There are
also long sequences in which there are no premature ventricular complexes, so that
the integers in the table are then on the order of several hundred. The data in Fig.
2B are quite different. Although there are again long sequences of consecutive 1s,
there are many more long stretches in which there are no premature ventricular
complexes. Moreover, there is also a strong preponderance of odd numbers in the
sequence. The middle trace in Fig. 1B comes from a stretch of 45 numbers of
which 6 are even.

A likely hypothesis about these records is that over the long time intervals of
these recordings, there are some sort of changes in the parameters describing the
state of the heart. Unfortunately, unlike the situation in laboratory experiments,
data collected while wearing portable monitors is not well controlled, and it is not
routine to simultaneously document some of the changes that might underly the
changes in rhythm in these subjects (e.g., change in posture, respiration, mental
state, drugs). Worse still, there are almost certainly physiological changes of which
we are not aware and do not therefore currently monitor.

Consequently, as a means of displaying this information over long times,
we have developed a visualization technique called a “heartprint.”(64-66) We des-
ignate the number of intervening N beats between two consecutive V beats as
the NIB value. A pair of two consecutive V beats is termed a couplet, while
a sequence of 3 or more successive V beats that spontaneously terminates is
termed non-sustained ventricular tachycardia. Premature ventricular complexes
that are not part of a couplet or non-sustained ventricular tachycardia are called
isolated. The NN interval is the time between two consecutive N beats, while the
coupling interval (CI) is the time from an N beat to an immediately following
V beat.

A heartprint (Fig. 3) is a way to represent dependencies between the NN
interval and (i) the ectopic beat interval (between two V beats, or VV intervals),
(ii) NIB values, and (iii) the CI. The ordinate of the 3 colored plots in the heartprint
is the NN interval. The incidence of the VV intervals, NIB values, and the CI are
indicated in the three colored plots, respectively, where the relative frequency
of occurrence is indicated by the color (e.g., red is associated with the highest
incidence, and dark blue with the lowest). The histograms above the colored plots
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Fig. 2. Excerpts of consecutive number of intervening normal (N) beats between two ventricular (V)
beats (NIB) measured from same two patients as in Fig. 1. The boxed sequences indicate the NIB
values associated with the ECG segments shown in Fig. 1.
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Fig. 3. (Color online) Heartprints from the same two patients presented in Fig. 1. The heartprint
represents the dependency between the intervals between two normal beats (NN) and three other
intervals: time between two ventricular beats (VV), number of intervening normal beats (NIB), and
the coupling interval (CI), i.e. the time from an N beat to a V beat. The ordinate of the three colored
plots is the NN interval. The incidence of the VV intervals, NIB values, and the CI is indicated in the
three colored plots respectively, where the relative frequency of occurrence is indicated by the color
(e.g., red is associated with higher incidence). The histograms above the colored plots are those of the
VV intervals, the NIB values, and the CI, respectively, while the histograms to the left give that of the
NN values.
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give the histograms of the VV intervals, the NIB values, and the CI, respectively.
The histogram to the left of the colored plots gives the histogram of NN values.

Figure 3 shows the heartprints for the subjects from whom the electrocardio-
grams in Fig. 1 were taken. There are striking differences, especially with respect
to the distribution of the numbers of sinus beats between ectopic beats, the sinus
rates, and the coupling intervals. In Fig. 3B, there is evidence that the distribution
of the NIB values depends on the sinus rate, with a larger range of NIB values
occurring at lower NN intervals.

An underlying goal of our work is to decode the mechanisms of ventricu-
lar arrhythmia by analyzing data such as that in Figs. 1–3. Further, since some
mechanisms may be associated with a high risk, whereas other mechanisms are
associated with benign rhythms, the analysis of arrhythmia may help guide therapy.

For one class of arrhythmias, called parasystole, there are striking qualitative
features of the heartprint that are reproduced in theoretical models. In parasystole,
there is an independent pacemaker in the ventricle that beats with its own fre-
quency and competes with the sinus rhythm for control of the ventricles. In some
circumstances, the parasystolic rhythm is only marginally affected by the sinus
rhythm. In an earlier paper we have analyzed and modeled a record of this sort
(Case 3 in Ref. 65) by using a stochastic difference equation, obtaining excellent
agreement between the model and the clinical record. However, the two records in
Fig. 1 are qualitatively different from this case that we have analyzed and we do
not have a good theoretical understanding of the dynamics in these records.

There are several possible mechanisms for the dynamics in these
records.(64, 65) It is possible that there is a parasystolic focus that is strongly reset
by the sinus rhythm - a situation that is termed modulated parasystole.(35) It is also
possible that there are abnormal regions in the heart that initiate an extra action
potential. On the cellular level, one mechanism that can lead to this is called
an early afterdepolarization. An early afterdepolarization is a transient increase
in the membrane potential following an action potential. Although afterdepolar-
izations have been recognized for a long time based on experimental studies,(12)

their importance in a clinical context is becoming increasingly clear. For example,
several drugs that have been associated with premature death also lead to early
afterdepolarizations.(15, 36) Further, some genetic defects in Na+ and K+ channels
have been identified which lead to an increased rate of early afterdepolarizations
and increased risk of sudden death.(53) Evidence for a mechanism implicating
early afterdepolarizations is particularly strong for the record in Fig. 1B, since
there are several electrocardiographic characteristics that are consistent with early
afterdepolarizations (abnormally long QT-interval, presence of U-waves) and the
patient was taking a drug, quinidine, that can produce early afterdepolarizations
and ventricular tachyarrhythmias in experimental settings.(1, 46, 49)

To date, there has not been a thorough theoretical analysis of the expected
dynamics that would result if an ectopic focus or an early afterdepolarization focus
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were embedded in the ventricle. In our view, a model would have to include both
propagation into and out of the focus. Further, in order to understand statistical
aspects of records such as those in Fig. 1, we believe it would be essential to
treat stochastic aspects including the fluctuation of the sinus rhythm. Carrying out
such a computation is a future goal. As a partial step in that direction, in Sec. 5
we will use two ionic models to demonstrate that stochastic effects on the level
of the ion channel can lead to gross macroscopic changes in dynamics. First we
review earlier experimental and theoretical work on stochastic dynamics in cardiac
systems.

4. SOURCES OF STOCHASTICITY OF CARDIAC DYNAMICS

4.1. External Stochastic Influences on the Heartbeat

There are numerous influences that control the heart rhythm. Some of these
are external to the heart (or even the body) whereas others are in the heart itself.

People exist in a fluctuating environment. During the course of the day, as
activity changes, the heart reacts to the changing demands. For example, everyone
is familiar with the notion that physical activity leads to a more rapid heartbeat. But
the heart rate also typically increases somewhat during inspiration and decreases
during expiration. These changes are under the control of a large number of
feedback control systems and are mediated by the nervous system and circulating
hormones. Activity of a class of neurons called sympathetic neurons tends to
increase the heart rate and the force of contraction of the heart, whereas activity
of another class of neurons, called parasympathetic neurons, tends to decrease
the heart rate. There are stochastic aspects of this influence. The firing (action
potential) of a nerve cell leads to the release of neurotransmitters in the vicinity of
heart cells, which in turn influence the heart. The neurotransmitters are released
in discrete quantal packets called vesicles. In experimental systems, the number
of vesicles released due to a single action potential is not constant, but is generally
thought to reflect an underlying stochastic process, being often described using
binomial or Poisson distributions.(51) There has been some modelling of the control
systems regulating heart rate that includes a stochastic component.(38, 41, 60, 69)

The result of these influences leads to fluctuations in the heart rate. Analysis
of the fluctuations of the heart rate in normal people has been intensively studied
by analysis of 24-hour Holter recordings. The fluctuations are variously described
as being chaotic or displaying 1/ f noise, multifractality, or long-range scaling.(34)

Although there is no strong evidence for deterministic chaos in normal heart rate
variability, complex fluctuations are observed even if environmental fluctuations
are held constant, perhaps reflecting the dynamics of multiple feedback control
circuits. In the normal heart the variability is greatly reduced when drugs are given
that block the effects of sympathetic and parasympathetic nerve activity,(86) or in
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patients who have had heart transplants that end up largely eliminating functional
nerve fiber endings on the heart.(32) The significant reduction in the variability is
associated with an increased risk for sudden cardiac death in patients who have
suffered a heart attack.(37, 57)

External environmental circumstances not only lead to variations in the nor-
mal heart rate, but are also implicated in the genesis of certain cardiac arrhythmias.
This is captured by the common expression, “My heart skipped a beat [i.e. gener-
ated a premature beat] when I saw . . ..” A more dramatic example is given in Fig. 1
in Ref. 81, in which the ringing of an alarm-clock induced ventricular fibrillation.

4.2. Intrinsic Stochastic Influences on the Heartbeat

In addition to external factors, there are also stochastic influences on the
heartbeat from the heart itself. One way to consider such influences is to consider
factors involved in the generation and propagation of the action potential, and to
analyze those factors using both experimental and theoretical approaches.

4.2.1. Noisy Pacemakers

The heart rate is normally set by the sinus node. The sinus node is highly
heterogeneous in terms of various properties including cell morphology, density
of ionic currents and cell coupling through the gap junctions.(2) Therefore, each of
the many thousands of pacemaker cells within this structure beats spontaneously,
but each has its own intrinsic rate.(58) The beat rate of a single pacemaker cell
is not perfectly regular, with the coefficient of variation of the time between ac-
tion potentials being on the order of 2%.(83) One source of this irregularity is the
stochastic opening and closing of the several thousand single ionic channels that
lie within the membrane of each cell.(24, 83) The cells within the sinus node are
coupled together by gap junctions, which allow electrical currents to flow from
cell to cell. When individual pacemaker cells are coupled together electrically in
an experimental system, the cells mutually synchronize to a common rate, and
the coefficient of variation of the interbeat interval of the population oscillator
falls as

√
1/N , where N is the number of cells, 2 < N < 50.(9) The same result

is found in an ionic model of coupled cells.(82) These experimental and modelling
results are nicely accounted for by a simple phenomenological model in which the
slow diastolic depolarization of the membrane potential between action potentials
is regarded as a random walk superimposed on a linear drift to threshold, result-
ing in an Ornstein-Uhlenbeck process.(9) When many model sinus node cells of
widely differing random intrinsic rates are coupled together, they can mutually
synchronize so that all the cells in the population oscillate at the same common
rate.(3)
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4.2.2. Noisy Excitability and Refractoriness

A cell in the heart that does not beat spontaneously (i.e., a non-pacemaker
cell) is excited by a current flowing into that cell from adjacent cells that have
become excited as a result of the normal activation sequence in the heart. This
process of excitation can be studied in a single neural or cardiac cell by injecting
a pulse of current into that cell through a microelectrode at a given time after
an action potential. Provided that the stimulus strength is sufficiently large, when
the stimulus is given a sufficiently long time after an action potential it elicits a
new action potential. The time interval during which a stimulus does not elicit
a new action potential is called the refractory period. In general the duration of
the refractory period depends on the stimulus amplitude. For a fixed timing of
the stimulus, when the stimulus amplitude is too low (at a fixed pulse duration),
a small subthreshold voltage deflection is recorded. Injection of a pulse with
a sufficiently large current amplitude results in an action potential, which is a
regenerative voltage response much larger in both amplitude and duration than
the subthreshold response. There is generally a very narrow range of stimulus
current within which a tiny increase in stimulus current amplitude results in the
conversion of a subthreshold response into an action potential. The response can
be probabilistic: as the stimulus amplitude is raised within this threshold range
of potential, the fraction of trials at a fixed pulse amplitude yielding an action
potential gradually increases from zero to one.(73) The amplitude at which half the
stimuli result in an action potential, with the other half producing a subthreshold
response, is termed the threshold current. It is generally accepted that the reason
for the stochastic response at a fixed stimulus amplitude and coupling interval
(with some stimuli yielding action potentials, others not) is that on different trials
the membrane is not in exactly the same state, and, following delivery of the
stimulus, does not respond in exactly the same way. This is because the action
potential is generated by the aggregate activity of many single ionic channels in the
membrane, with the numbers of different channels in the open and closed states
at the start of the stimulus pulse, as well as the numbers of channels that open and
close during the course of the response to the stimulus, fluctuating stochastically
from trial to trial.

The two concepts of refractory period and threshold are also relevant to the
study of spontaneously oscillating cells. In Sec. 5.1, we discuss a situation in
which there is threshold behavior in a mathematical model of a cardiac pacemaker
cell.

The easiest way to obtain a true threshold in a noise-free system is to have a
saddle-point in the N-dimensional phase space of the system, and for that saddle
point to have an (N-1)-dimensional stable manifold that serves to divide the phase
space.(17) The effect of noise on such a threshold phenomenon has been studied and
compared with experiment.(44, 45) In noise-free situations in which there is no such
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saddle-point present, there is not a true threshold: the size of the response simply
grows in a continuous way as the stimulus amplitude is increased, producing graded
action potentials of all intermediate sizes.(17) But in electrophysiologically-based
deterministic models, the continuous transition from subthreshold response to full-
sized action potential is so sharp as to be effectively discontinuous.(7, 39) Models
constructed as populations of individual channels have been used to investigate
excitability.(8, 39, 67, 68)

In cardiac tissue, the refractory properties will not be identical in neighboring
cells. Experimental studies have demonstrated that there is a good deal of cell-
to-cell variability in the electrophysiological properties of single cells isolated
from ventricular muscle.(79, 80, 87) This is presumably due to a different mix of
currents in different cells. Some of this variation is due to intrinsic large-scale
spatial gradients in electrical properties of cells in the ventricles.(43, 48) In both
experimental and theoretical work, when cells are coupled together, the dispersion
of action potential parameters is much reduced.(47, 62, 87) However, one of the
important concepts in cardiac electrophysiology is that situations that lead to
enhanced spatial dispersion of refractoriness also tend to lead to a higher incidence
of cardiac arrhythmias.(27, 59)

5. STOCHASTIC MODELS OF CARDIAC ACTIVITY

5.1. Phase Resetting

In some individuals, the pattern of premature ventricular complexes
is compatible with the existence of an ectopic pacemaker within the
ventricles.(11, 35, 36, 64, 65) In that case, the ectopic pacemaker is subjected to in-
put from the sinus node. It is thus important to consider the effect of stimuli on
the rhythm of a pacemaker.

In a phase-resetting experiment one perturbs the rhythm of a spontaneously
oscillating system by applying a brief stimulus at a given phase of the cycle. In
general, the intrinsic rhythm of the system is re-established after a while, but
its timing is typically shifted in time compared to the unperturbed rhythm. This
reestablishment of the oscillation in biological experiments provides the basis for
the usual assumption that biological oscillators are best described mathematically
by stable limit-cycle oscillations.(85) Mathematically, the phase is a point on the
unit circle and a phase resetting curve is the map fµ : S1 → S1. The map fµ
describes the new phase as a function of the phase of the stimulus of magnitude
µ. If a stimulus of magnitude µ always leaves one in the basin of attraction of the
cycle, then fµ must be a continuous function. We call this the Continuity Theorem;
it is a robust result for resetting of stable limit-cycle oscillators.(18, 23)

Earlier experiments from our group studied the phase-resetting response
of spontaneously beating aggregates of cells from the embryonic chick ventricles
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produced by injection of a brief current pulse.(22, 25, 26) The time within the periodic
oscillation at which the stimulus is injected is the coupling time, tc. Typically, a
depolarizing stimulus given early enough during the cycle (usually the cycle
is defined to start on the upstroke of the action potential), e.g., during the action
potential, never evokes another action potential, while a stimulus given late enough
in the cycle, outside of the refractory period, always evokes an immediate action
potential. However, when the stimulus amplitude is chosen appropriately, there is
an intermediate range of tc during which repeated trials at a fixed phase resulted
in a response that was either one or the other of two very different outcomes: an
immediate action potential or an action potential after some delay.(26) Moreover,
even after several beats had elapsed, the envelopes of the action potentials did not
overlap as they must have if the resetting curve was continuous. Since no stimuli
were observed which led to the annihilation of the oscillation, this experiment
apparently contradicts the Continuity Theorem.

We have proposed that the resolution of this apparent contradiction lies
in the fact that the membrane noise produced by the gating of single-channels
must be incorporated into ionic models, thus converting them from deterministic
models to stochastic models.(26) In a previous study we simulated phase-resetting
experiments using an ionic model of the sinus node that takes into account the
stochastic gating of the channels.(39) Figure 4A shows ten repeated phase-resetting
trials at a fixed stimulus amplitude (150 pA) and coupling time (tc = 117 ms),
each made using a different seed for the random number generator. The response
was either an immediate action potential (the “all” response), or a delay until the
next action potential (the “none” response). This classic “all-or-none” response
leads to discontinuous phase resetting.

In contrast, phase-resetting using the deterministic noise-free form of the
ionic model with the same stimulus amplitude and the same tc results in a “none”
response (solid black trace in Fig. 4B). An “all” response can be evoked by increas-
ing tc to 118 ms (dashed black trace in Fig. 4B). One would therefore think that
varying tc between 117 and 118 ms will ultimately give responses intermediate to
the all and the none responses, since the model does not possess a saddle-point.(17)

The blue and the red traces (purple where they virtually superimpose) in Fig. 4B
are the results of varying tc down to a difference of 10−12 ms (which brings us to
the limits of the precision of our numerical integration routine). While a stimulus
injected at tc = 117.158751189269 ms (red trace) does not elicit an immediate
action potential, at an infinitesimally later time (tc = 117.158751189270 ms; blue
trace) there is an action potential after a much shorter delay.

Thus, while the noisy single-channel model (Fig. 4A) replicates the experi-
mentally observed behavior, the noise-free ionic model (Fig. 4B) gives very dif-
ferent dynamics. We turned next to a simpler version of the ionic model, obtained
by reducing the original 7-dimensional model down to a 3-dimensional model.(39)
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Fig. 4. (Color online) Differences in phase-resetting dynamics between noisy (A) and noise-free (B)
sinus node models. (A) Repeated phase-resetting simulations using a stochastic single-channel model
at a fixed coupling time (tc) of 117 ms results in an immediate action potential or an action potential
after a delay. The failure of the two sets of traces to superimpose a long time after the delivery of the
stimulus indicates that the resetting response is discontinuous. (B) In the corresponding deterministic
Hodgkin–Huxley-type model, phase-resetting simulations at tc = 117 ms give a “none” response (solid
black trace), while at tc = 118 ms there is an “all” response (dashed black trace). Fine-tuning tc at
intermediate values results in delayed action potentials, but the response is quite different at two very
close values of tc (tc = 117.158751189269 ms (red trace); tc = 117.158751189270 ms (blue trace)).
Panel A is reprinted from Ref. 39, with permission from the publisher.

The purpose of this simplification was to obtain a model for which we could plot
and visualize trajectories and manifolds in phase space.

The 3-dimensional model displays the same type of behavior shown for the 7-
dimensional model in Fig. 4B, albeit at smaller values of tc (85.336376727283 ms
and 85.336376727284 ms). The two corresponding trajectories are shown in phase
space in Fig. 5A. The limit cycle is given by the black curve, and the stimulus is
injected when the state point is at location A, bringing the state point to location B
(again, purple indicates that the two trajectories are superimposed on the scale of
the figure). At this time the stimulus is turned off. The state point then travels from
location B to location C, from which point on the two trajectories sharply diverge
(red and blue traces). The gray surface shows the slow manifold of the system
(obtained by setting dV/dt = 0). The stimuli that give these two delayed responses
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Fig. 5. (Color online) Separation of “all” and “none” responses in a reduced 3-dimensional noise-free
Hodgkin–Huxley-type ionic model of a sinus node cell. (A) When tc = 85.336376727283 ms (red
trace) or tc = 85.336376727284 ms (blue trace) the trajectories are initially almost superimposed
(purple trace) while the state-point travels very close to the slow manifold (gray surface; obtained by
setting dV/dt = 0). The black curve gives the unperturbed limit cycle, while the fixed point is marked
by an asterisk. (B) Continuation method reveals a family of trajectories that are intermediate to the two
responses above (magenta traces). Reprinted with modifications from Ref. 39, with permission from
the publisher.
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are well-timed in the sense that they deliver the state point to the neighborhood of
the middle (unstable) branch of the slow manifold. The state-point then generates
a trajectory lying very close to the unstable branch of the slow manifold. Such a
trajectory is called a canard, and is notoriously sensitive to small perturbations.

Because of this sensitivity, we turned to continuation methods(13) to probe
the phase-resetting response even more finely over the critical range of tc. Using
continuation to compute responses intermediate to the red and the blue responses
in Fig. 5A, we obtained the magenta trajectories shown in Fig. 5B. There is a
continuous family of intermediate trajectories between the two illustrated in Fig.
5A so that the Continuity Theorem is not violated. However, this behavior is so
delicate, that one can compute that the opening or closing of a single channel
would be sufficient to convert the all to the none response, or vice versa, leading
to the observation of effectively discontinuous resetting.(39)

The application of the principles engendered in this analysis to arrhythmias
in the intact heart is necessarily speculative. However, it is generally accepted that
in normal hearts there can be several regions where there are (ectopic) pacemak-
ers that are normally synchronized or entrained by the sinus rhythm and so are
concealed. That is, should the trace in Fig. 4B represent activity in such an ectopic
pacemaker, each sufficiently strong stimulus stemming from the sinus node will
elicit an action potential if it comes after the end of the refractory period (dashed
black trace in Fig. 4B). Thus, the activity of this ectopic pacemaker would not
lead to activity competing with the sinus rhythm, since it would be entrained or
phase-locked in a 1:1 fashion to the sinus rhythm. However, any one of a variety
of different changes might lead to either a longer period for the ectopic pace-
maker or a weaker input originating from the sinus node, resulting in a loss of 1:1
entrainment. This might lead to a delayed firing of the ectopic pacemaker after
the refractory period of the surrounding ventricular tissue was over, producing a
premature ventricular complex. We imagine that in general the parameter bound-
ary for 1:1 synchronization would be transgressed in a gradual fashion so that
stochastic properties at the cellular level might lead to stochastic ectopy on the
electrocardiogram.

An alternative scenario occurs when there is a pacemaker in some region of
the heart that might be stimulated only after an abnormal delay. For example, there
could be an ectopic pacemaker in a viable strand of tissue in a scar formed after a
heart attack.(70) Entrainment of this pacemaker might lead to a premature ventricu-
lar complex, provided the delay was sufficiently long that the resulting propagated
beat originating in the entrained pacemaker occurred after the remainder of the
ventricular muscle was out of its refractory period. For example, if there is a 2:1
phase-locked rhythm with two sinus beats for each ectopic beat, then if every beat
from the ectopic pacemaker led to a premature ventricular complex there would be
a long sequence in which there was one sinus beat between successive premature
ventricular complexes. If noise causes some of the entrained beats to fall within
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the refractory period of the ventricle and others to fall within the period when the
ventricles are excitable, then the resulting rhythm would display an odd number
of sinus beats between ectopic beats, generating a rhythm similar to that observed
in Fig. 1B — note the NIB histogram in Fig. 3B (see Refs. 11, 21, 64, 65).

5.2. Early Afterdepolarizations

Yet another mechanism that can produce a premature ventricular complex
is an early afterdepolarization occurring in an abnormal area of the ventricles.
In an early afterdepolarization, following the upstroke of the action potential —
but before repolarization is complete — there is an additional depolarization (in-
dicated by arrow in Fig. 6A (right)). Early afterdepolarizations typically occur
in circumstances in which there is a prolonged action potential duration, and as
such they occur following administration of a variety of drugs that decrease potas-
sium currents or increase sodium or calcium currents, or with genetic disorders
that have a similar effect (the long-QT syndrome). As previously mentioned, it
is likely that the premature ventricular complexes in Fig. 1B are due to early
afterdepolarizations.

Early afterdepolarizations have been seen previously in noise-free ionic mod-
els of Purkinje fibre(4, 10, 16, 52) and ventricular muscle.(5, 6, 19, 28, 31, 50, 56, 74–76, 78, 88)

In several of these studies, early afterdepolarizations are produced by blocking a
potassium current. Randomly occurring early afterdepolarizations have also been
found recently in an ionic model of paced quiescent ventricular muscle, in which
the noise is associated with a calcium current.(71)

We use a Hodgkin–Huxley-type ionic model of a small three-cell cluster
of spontaneously beating 7-day embryonic chick ventricular cells.(40) Briefly, the
model contains a Ca2+ current (ICa), three K+ currents (IKs, IKr, IK1), a background
current, and a seal-leak current. ICa generates a slow upstroke, whereas IKs, IKr,
and IK1 contribute to repolarization. All the currents are involved in spontaneous
diastolic depolarization. We simulated the stochastic fluctuations of the ionic
currents by adding a Gaussian white noise current (Inoise; mean = 0, standard
deviation = σ ) to the total sum of the deterministic ionic currents (see Appendix).
The maximal conductance gKs of IKs was reduced from its standard value of 7.8 nS
in order to generate a prolonged repolarization time, a condition that is commonly
observed in the presence of certain drugs or congenital diseases that reduce IKs

(15)

(e.g., the patient in Fig. 1B has a long QT interval, which is indicative of a
prolonged repolarization time, and was taking quinidine, a drug known to block
potassium channels and to lead to early afterdepolarizations(36)).

Figure 6A shows the transmembrane potential obtained with gKs = 1.7 nS in
the absence of noise (left). The prolongation in the repolarization time causes the
interbeat interval (IBI) to be prolonged to 0.54 s (normal value is 0.39 s). The his-
togram of the interbeat interval (the time between successive crossings of −50 mV
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Fig. 6. Transmembrane potential or voltage from model of a small cluster of three embryonic chick
ventricular cells during spontaneous activity, and the corresponding histograms of the interbeat intervals
(IBI) obtained from 4000 s simulations without noise (left, σ = 0 pA), and with noise (right, σ =
10 pA). The conductance (gKs) of IKs is 1.7 nS (A), 1.6 nS (B), 1.59 nS (C) and 1.5 nS (D).

on the action potential upstroke) yields a single narrow peak (Fig. 6A (left)). When
a noise current with σ = 10 pA is added (right), the dispersion in the interbeat
interval increases, and early afterdepolarizations (arrow) are induced in only 0.2%
of the action potentials. Figure 6B shows that when gKs decreases to 1.6 nS in the
absence of noise (left), the repolarization time and IBI increases even further, but
no early afterdepolarizations are observed. When a noise current with σ = 10 pA
is added (Fig. 6B (right)), about a third of the action potentials are followed by
an early afterdepolarization, leading to a bimodal histogram of interbeat intervals.
The average interbeat interval between two consecutive action potentials (with-
out an intervening early afterdepolarization) is shorter than the noise-free value
(contrast histograms in Fig. 6B, left and right). Also, action potentials occurring
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immediately after an early afterdepolarization tend to be shorter than those that
follow a regular action potential. Recordings showing similar mixtures of action
potentials with and without isolated early afterdepolarizations have been made in
experiments on quiescent ventricular cells.(77)

Figure 6C (left) shows the effect of a further decrease of gKs to 1.59 nS in
the absence of noise. The rhythm is periodic, with every third action potential
being followed by an early afterdepolarization. Each early afterdepolarization is
followed by a single action potential with a relatively short repolarization time,
then by another single action potential with a more prolonged repolarization time,
and then by an action potential accompanied by an early afterdepolarization. As
a result, three different peaks are observed in the corresponding interbeat interval
histogram. With a noise current of 10 pA, early afterdepolarizations are observed
following 39% of the action potentials (Fig. 6C, right), which is higher than the
value (33%) in the noise-free case (Fig. 6C, left). The periodic pattern in the
sequences of early afterdepolarizations in the noise-free model is abolished by the
noise. Also the interbeat intervals are shorter than in the noise-free case, and the
amplitude of the early afterdepolarizations becomes heterogeneous.

Further decrease of gKs to 1.5 nS in the absence of noise (Fig. 6D, left) leads
to two successive early afterdepolarization following every action potential, in a
repetitive pattern. Adding noise (Fig. 6D, right) abolishes the repetitive pattern and
induces variability in the number of consecutive early afterdepolarizations after
each action potential (from cases with no early afterdepolarizations, to cases with
3 consecutive early afterdepolarizations).

In order to analyze the noisy sequences of early afterdepolarizations, we
counted the number n of single action potentials between each pair of consecutive
early afterdepolarizations (Fig. 7A) in 10 simulations of 4000 seconds, each con-
taining about 6000 action potentials. The bar plots of Fig. 7B (left) and C (left)
show the averaged normalized histograms for n computed from the simulations
with gKs = 1.6 nS and 1.59 nS respectively at σ = 10 pA. If we assume that
there is a probability p that an early afterdepolarization occurs randomly during
each action potential, then the expected probability for n action potentials between
successive early afterdepolarizations is

P(n) = p(1 − p)n−1, (1)

where p is the fraction of action potentials that have early afterdepolarizations
and n ≥ 1. For each simulation run, p was computed, and the histogram and error
bars in Fig. 7B and C give the mean and standard deviation of p for the 10 runs.
For each run, the value of p was used to calculate P(n), and the horizontal bars
give the mean value of P(n) (the standard deviation is within the width of these
bars). The difference between the observed values and the predicted values was
statistically significant for n = 1 to n = 4 (p ≤ 0.01, unpaired t-test).
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Fig. 7. Analysis of the distribution of the early afterdepolarizations. (A) The number of single action
potentials (arrows), n, between two successive early afterdepolarizations. (B) Simulations with gKs =
1.6 nS and σ = 10 pA, and (C) simulations with gKs = 1.59 nS and σ = 10 pA. Left: normalized
histogram of n obtained from 10 simulations runs (bar plots indicate the mean values, error bars
indicate the standard deviations), and averaged values of 10 random distributions of n, as predicted by
a geometric distribution (curve). The difference between the observed values and the predicted values
was statistically significant for n = 1 to n = 4 (p ≤ 0.01, unpaired t-test). Right: the conditional
probability matrix P(m|m′) was obtained from one of the simulations.

We also examined the conditional probability P(m|m ′) that the value m fol-
lows the value m ′ in the sequence giving the numbers of normal action potentials
between two consecutive early afterdepolarizations (Fig. 7A). Figure 7B and C
(right) show the conditional probability matrices for one of the simulations. This
analysis shows that the n = 1 probability is decreased from what would be ex-
pected if early afterdepolarizations occurred randomly (i.e., P(1)). Further, the
conditional probabilities also show a tendency for temporal ordering different
from what would be expected by chance. For example, in Fig. 7B a value of
m ′ = 2 is preferentially followed by a value m = 2, rather than m = 1 as would
be expected by chance.

These computations demonstrate that a decrease of gKs in a theoretical model
for a cardiac pacemaker produces prolonged repolarization times and longer
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interbeat intervals. If the decrease is sufficiently great, the model shows early
afterdepolarizations, as in several of the references cited earlier. In the absence
of noise, the early afterdepolarizations occur in a regular rhythm for both val-
ues of gKs used in Fig. 6, with gKs = 1.6 nS being the boundary below which
the early afterdepolarizations occur. However, in the presence of stochastic fluc-
tuation caused by the opening and closing of ion channels (and perhaps other
effects), the early afterdepolarizations occur irregularly. The patterning of the
early afterdepolarizations as a function of the noise is sensitive to the details of
the mathematical model and the magnitude of the noise, and this requires more
investigation. We have also observed that slight changes in the value of gKs in
the absence of noise lead to systematic changes in the patterns of early after-
depolarizations similar to those observed in earlier work on a model of cardiac
Purkinje fibre as a bias current was systematically changed.(4) Consequently if
early afterdepolarizations are the source of some premature ventricular complexes
as is now believed, then a possible source for stochasticity in the observed phe-
nomenology may be the fluctuations intrinsic in the opening and closing of ion
channels.

It is generally believed that the local generation of an early depolarization
by a group of cells is one mechanism that can lead to the generation of pre-
mature ventricular complexes in the electrocardiogram. Presumably, as with a
normal pacemaker complex, it is the flow of the current through gap junctions that
synchronizes the activity within the focus. Should the early afterdepolarization
propagate out of the focus where it is generated and into the bulk of the ventricular
muscle, this would induce a premature ventricular complex. There is both experi-
mental and modelling evidence that the surrounding tissue can either facilitate or
suppress the ability of the early afterdepolarization to escape from the focus where
it is generated and to subsequently initiate reentry.(28, 30, 31, 52, 61, 63, 78, 87) Different
ventricular arrhythmias, including a type of ventricular tachycardia known as tor-
sade de pointes (the terminal rhythm in the bottom trace of Fig. 1B) are thought
to be initiated by a premature ventricular complex stemming from such an early
afterdepolarization. Since one of the cases shown above (Fig. 1B) is in a patient
who was taking a drug, quinidine, that is known to increase the incidence of early
afterdepolarizations in model experimental systems, there is a strong possibility
that early afterdepolarizations represent an arrhythmogenic mechanism in that
subject. The current computations offer a possible mechanism for the intermittent
occurrence of the premature ventricular complexes evident in Figs. 1 and 2, since
at the critical values at which the early afterdepolarizations appear, extremely
small changes in parameters or noise lead to markedly different appearances for
the early afterdepolarizations. Thus, comparatively small changes in the concen-
tration of a circulating drug might potentially be a factor inducing bifurcations in
the dynamics.
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6. DISCUSSION

Electrocardiograms in people often show complex rhythms containing pre-
mature ventricular complexes and runs of non-sustained ventricular tachycardia
prior to sudden death.(72) Although there have been a large number of clinical
studies characterizing complex ventricular arrhythmias, e.g. see Refs. 15, 36, 42,
at the current time there has been a diminution of interest in the analysis of these
sorts of rhythms. We believe that one important reason for the relative disinterest
was the Cardiac Arrhythmia Suppression Trial (CAST).(14) This clinical trial was
based on the hypothesis that drugs that reduced the incidence of premature ventric-
ular complexes in patients who had recently experienced a heart attack would also
reduce the incidence of sudden cardiac death in the same patients. In this study,
involving about 1500 patients, half of whom were given placebo and the other
half drugs, there was a significantly greater death rate amongst those who were
administered drugs. To date, only one class of drugs, β-blockers, which inhibit the
effects of sympathetic activity, has been demonstrated to be effective in reducing
the incidence of sudden cardiac death in clinical trials.(33)

The analysis of these arrhythmias from a perspective of basic science will be
a difficult task. Short segments of data do not contain adequate information about
the rhythms, and long segments reveal distinct differences between records that
might seem superficially alike. Consequently, it will be essential to collect data
over long times and to subject this data to a variety of data processing algorithms.
It would also be extremely useful to gather reliable clinical data about the subjects
during the course of their daily activities during the acquisition of the Holter
recordings. However, the relative rarity of Holter recordings of individuals who
experience sudden death makes research in this area an extremely challenging task.
Further, arrhythmias in which there are frequent isolated premature ventricular
complexes are extremely common and are generally considered to be benign, and
the prognostic significance of analyzing such records remains to be demonstrated.

Our major goal in this article has been to make statistical physicists aware of
these challenging problems. We hope others will think that they are worthy of study.

APPENDIX: COMPUTATIONAL METHODS

FOR MODELS WITH NOISE

A commonly used method for adding noise to an ionic model is to add
Gaussian white noise current to the deterministic ionic membrane currents. We use
this method in Sec. 5.2. Thus, the equation for the rate of change of transmembrane
potential is

dV

dt
= −(ICa + IKs + IKr + IK1 + Ib + Iseal + Inoise)/Cm, (A.1)
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where ICa is the calcium current, IKs and IKr are the slow and rapid delayed
rectifier potassium currents, IK1 is the inward rectifier potassium current, Ib is
the background current, Iseal is the seal-leak current, Inoise is the added Gaussian
white noise current, and Cm is the capacitance of the membrane of a three-cell
cluster of embryonic chick ventricular cells. The equations governing the dynamics
of the ionic membrane currents and the initial conditions are taken unchanged
from Ref. 40. The noise current is given by Inoise with standard deviation σ .
Uniformly distributed pseudorandom numbers generated using the rand function
in gcc version 3.4.2 were transformed into Gaussian distributed numbers using the
Box-Muller transformation. Numerical integration was carried out using a forward
Euler scheme with a time step of 0.1 ms (see Ref. 40 for details).

The current noise mentioned immediately above is in fact generated by the
apparently stochastic opening and closing of the gates within a finite number of
channels, each having a finite single-channel conductance. Hence, a lower-level
approach to simulating membrane noise is to model a population of randomly
gating single channels. This can be done quite efficiently without keeping track
of the state of each of the gates within each channel (i.e. whether gate open or
closed)(8, 68) by determining the state and lifetime of an ensemble of gates.(20, 68)

We use this method in Sec. 5.1 (for more details, see Ref. 39).
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