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The qualitative properties of chemical systems with localized (heterogeneous) catalysts can depend on
the relative locations of the catalysts. By considering some simple chemical systems with two
catalytic sites it is shown that the number and the stability of steady states and cycles changes with
intercatalytic separation. These examples indicate that geometrical considerations must be explicitly
considered when analyzing the dynamics of highly structured (e.g., biological) systems.

I. INTRODUCTION

Few naturally occurring chemical reactions occur in
well-stirred homogeneous phases. When more realis-
tic reaction conditions are considered, whole new
classes of possibilities for the dynamics of reacting
chemical systems emerge. If a system is not well
stirred, and the effects of diffusion are explicitly con-
sidered, it is known that for open systems, the homo-
geneous phase can become unstable, leading to the de-
velopment of spatial and temporal periodicities. =4
Since these structures are maintained at the expense of
energy flow through the system, they have been called
dissipative structures.

In addition, many chemical systems are spatially
heterogeneous, with reactions rates varying in space as
a consequence of such structural features of the chemi-
cal system as surfaces, impurities, gradients of con-
centration, and heterogeneous catalysts. These factors
can have major effects on the dynamics of chemical
systems. For example, it has recently been shown that
gradients of concentration can lead to the observation of
propagating chemical waves, for cases in which waves
are not otherwise found.® In addition, in homogeneously
oscillating chemical systems, heterogeneous catalysts
can induce waves and thus act as pacemakers.® In
another study of the effects of heterogeneous catalysis
in open systems, it was shown that time independent
undulatory inhomogeneities can occur in the region of
the catalysts even though no instabilities were found for
the homogeneous system in the absence of catalysts.’
In a computer study of chemical systems with catalysts
localized in compartments between which diffusion can
freely occur, it was shown that the qualitative dynamics
(the number of steady states and their stability) can de-
pend on the relative positions of the localized sites. 8
For example, the appearance of stable limit cycle oscil-
lations was found for certain ranges of catalyst separa-
tion for open systems with two localized sites, and the
appearance of completely new dynamical modes was ob-
served as a function of the spatial arrangements of
catalysts in open systems with three catalytic sites. In
an analytic study of the effects of intercatalytic separa-
tion on the stability of steady states, it was confirmed
that changes in catalyst separation can alter the stabili-
ty of the steady state.®

By spatial swilching we refer to those changes in the
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qualitative dynamics of a system which are induced by
an alteration of the geometry of the system. A value of
the parameters at which the change in qualitative dynam-
ics occurs is called a bifurcation point.1° In the follow-
ing we demonstrate spatial switching in chemical sys-
tems with two localized, but chemically coupled catalyt-
ic sites. In Sec. II, we adopt the equations for hetero-
geneous catalysis proposed by Ortoleva and Ross®? as-
suming that the catalysts display the nonlinear depen-
dence on the concentration of chemical species typical
of biochemical systems.® The variation of the number
of steady states on catalyst separation is studied in Sec.
II. In Sec. IV we analyze the dependence of the stabili-
ty of these steady states as a function of catalyst sepa-
ration. The results are discussed in Sec. V.

Il. EQUATIONS FOR HETEROGENEOUS CATALYSIS

The equations for systems displaying heterogeneous
catalysis are®”

8% /0t + F(¥) = DV = G(T)A(r) , 1)

where ¥(r, {) is a column vector of concentrations, D is
a matrix of diffusion coefficients, F gives the change in
concentrations due to homogeneous chemical reactions,
G gives the localized changes in concentrations due to
catalytic activity, and A(r) is a diagonal matrix of Dirac
6 functions, 4,,=5,,6(r—r;), giving the location of cata-
lytic sites. In general, the terms F and G are nonlinear
and integration of this equation for given boundary con-
ditions is impossible. In order to display the phenome-
non of spatial switching, we have assumed a special
case of Eq. (1) which is suitable for (though not neces-
sarily limited to) the analysis of biochemical networks.
The range of effects we observe should also be found in
more complicated systems. We assume there are two
chemical species in a one dimensional system with
boundary conditions ¥(r, #)!,,-..=0 and a diagonal dif-
fusion matrix, D;;=D;5;;, Each chemical undergoes a
spatially homogeneous decay at a rate y; proportional to
its concentration. The system is assumed to be open
and far from equilibrium. Synthesis of the chemical
species occurs only at the localized catalysts, at a rate
determined by the concentration of control chemicals. 1t
This dependence, which has been observed in a number
of different biochemical systems, can be empirically
described by the Hill function!?1?
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b+ (T/0)"
fA(‘Il)_ 1+(‘I’/9)" ’ b<1, (za-)

where #, b, and 0 are positive, real constants which
are fit to experimental data. Equation (2a) is a bounded
monotonic increasing function which corresponds to the
activation of production by the control chemical ¥. If
V¥ inhibits the production of its target compound, the
corresponding form is

C1+b(E/6)"
hW= e

b<1, (2p)
which is a bounded, monotonic decreasing function of V.
We assume the two chemical species are chemically
coupled, mutually controlling the production rate of the
other compound via functions displayed in Eqs. (2). The
resulting equations describing heterogeneous catalysis
for this system (in one dimension) are then

8w, /8t +v,¥, — D, 82, /852 = )\, [T, (x, 1)]6(x —x,), (3a)
8%,/81 + v, ¥, - D, 8%,/ 0x? =X fo[¥y(x, )]6(x —x5) ,  (3b)

where \; is the maximal synthetic rate of species ¢, and
x; is the site where species 7 is synthesized. Equations
() will be analyzed for the three types of coupling be-
tween the two chemical species: mutual activation,
mutual inhibition, and activation~inhibition.

I1l. THE NUMBER OF STEADY STATES

If we set the time derivatives in Egs. (3) equal to
zero, each of the resulting equations for the steady-
state solutions becomes the equation for the Green’s
function of a modified Helmholtz equation, the solution
of which is well-known.' Thus, we obtain the equations
for the steady-state solutions, ¥¥(x) and ¥3(x):

MK

¥(x) = ~2L—]‘ el £ (83(x,)) (4a)
Y1

W) = Rk e A (8ly), (4b)
72

where
K; = ('}’i/Di)llz,

Note that the steady-state concentrations are peaked at
their production points and are damped exponentially
away from these points.

i=1,2. (4c)

Equations (4) show that the complete space-dependent
solutions are determined by the values of ¥) and ¥} at
the points x, and x,, respectively. Hence, we can set
x=x, in Eq. (4a) and x=x, in Eq. (4b) to obtain:

¥1=B81/1¥2); (5a)

¥2=B/2001) (5b)

where y; = ¥7(x;), y;=¥3(x,), and B;=(;k;/2y;) exp(=kd),
with d= |x; —x,!. The steady states of the system are
found by solving Eqs. (5) for y, and y,. If the complete
space dependent solutions are desired, we can substitute
the solutions of Egs. (5) back into Eqs. (4).

To analyze spatial switching, the parameter of pri-
mary interest is d, the separation between the two pro-
duction points. Therefore, to clarify the dependence of

the dynamics on 4 and to simplify the analysis, we will
consider a system with the properties

Y1=Y2=7,
b,=D,=D,
A=A =2,
Bi=B=8.

This simplified system exhibits the same qualitative
behavior as the original system.

Three possibilities exist for the coupling between the
two system components: mutual activation, mutual in-
hibition, and activation-inhibition. For mutual activa-
tion and mutual inhibition, we make the further simpli-
fication that f; =f,=71.

A. Mutual activation
With the above assumptidns, Eqs. (5) become
y1=82) » (7a)

y2=Bfy1). (o)

The curves (7a) and (7b), plotted in the v, —~y, phase
plane, are the reflections of each other through the sym-
metry axis y, =y,. Consequently, a solution to Egs.
(7) occurs wherever one of the sigmoidal curves crosses
the symmetry axis. There may be one or three inter-
sections of the two curves, depending on the parameters.
A graphical solution of Eqs. (7), showing three steady
states, is given in Fig. 1."® From Fig. 1 we see that
three steady states will exist if and only if, at some
steady state the slope, dy,/dy,, of Eq. (7a) is greater
than the slope, dy,/dy,, of Eq. (7b). This condition for
the existence of three steady states can be written as

8 m >1

8
By |y, (8)

Note that condition

where y, is a solution of Egs. (7).

|
00 05 10
Y2
FIG. 1. Graphical solution for the steady states of Eq. (7) for
the case of mutual activation in which the functions f(y) are
given in Eq. (2a) with 6=0.5, 5=0.1, n=4 [these parameters
are also used in constructing Figs. (2)~(7)], and f=1. The
dashed line (- ~--) gives Eq. (7a) and the solid line ( )
gives Eq. (7b).
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7 7
/ B=1.0/
/

FIG. 2. Graphical solution of Eq. (9) for three values of # with
fly) given in Eq. (2a). The solid line gives f(y), and thedashed
line y/B.

(8) will hold only at the central steady state and not at
the outer steady states.

The steady states of the system always occur on the
line y, =y,. Consequently, the solutions of Egs. (7) on
the line y, =y, are the same as the solutions of the equa-
tion

y/B=f0) . (9)

Figure 2 shows the graphical solution of Eq. (9) for dif-
ferent values of 8. We see that there are three distinct
ranges of 8: a high and a low range in which only one
steady state exists, and an intermediate range in which
three steady states exist.

The plot of the solutions, y,, of Eq. (9) versus B is
given in Fig. 3. In the region where three steady states
exist, the steady state values of vy, and y, bofk lie on the
upper, middle, or lower branch of the curve. The mid-
dle branch (dashed line) will be shown later to represent

20
15— —
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0.5+ I\\ —]
L ~~
I >
i |
M
00 05 110 151 20
A B
B

FIG. 3. The steady states of Eq. (7) for the case of mutual
activation as a function of f. The dashed line represents un-
stable steady states and the solid line represents stable steady
states. At a steady state both y; and y, take the same value,
¥s-

05—

00

FIG, 4. Graphical solution for the steady states of Eq. (7) for
the case of mutual inhibition, in which the functions f(y) are
given in Eq. (2b) and f=1. The dashed line gives Eq. (7a) and
the solid line Eq. (7b).

an unstable steady state. Notice that the shape of the
curve in Fig. 3 depends only on the normalized response
function, f. For functions f which are not steep enough
to satisfy Eq, (8), the plot of ¥, versus B will be single-
valued for all 8.

In Fig. 3, there are two bifurcation points, A and B.
Since B depends exponentially on the separation of the
production points, separations d== and d =0 correspond
to the points f=0 and B= 5, = A/2y, respectively. There
fore, as d is increased from zero to infinity, the system
may pass through zero, one, or two bifurcation points,
depending on the value of §;.

For the function f exhibited in Fig. 2
lim f(»)/y >0 . (10)
y=~0

For other functions such that this limit goes to zero [for
example, if b=0 in equation (2a)], the point B in Fig. 3
moves toward S=<« and only one bifurcation point A re-
mains.

B. Mutual inhibition

Since f is monotonically decreasing, it has exactly one
intersection with the symmetric axis y, =y, and there is
one solution of Eq. (7) where y,=y,. However, in this
case there may be two more solutions off the symmetric
axis. A graphical solution of Eqs. (7), showing three
steady states, is given in Fig. 4. Here, there will be
three steady states if and only if the slope, dy,/dy,, of
Eq. (7a) is less than the slope, dy,/dy,, of Eq. (7b) at
the steady state, y, =y,. This will occur if

afy)

ﬁdy

<=1, (11)
Y=y
In Fig. 5 we show the graphical solution of Eg. (9) for
the steady state in which y,=y,. If the line y/pB inter-
sects f(¥) in the region between the cross bars, Eq. (11)
holds and three steady states will exist.

Figure 6 shows the steady states as a function of 8.

J. Chem. Phys., Vol. 60, No. 3, 1 February 1974

Downloaded 27 Feb 2004 to 132.216.11.185. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



838 R. M. Shymko and L. Glass: Spatial switching in chemical reactions
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FIG. 5. Graphical solution of Eq. (9) for three values of 8 with

fly) given in Eq. (2b). The solid line gives f(y) and the dashed
line gives y/B. If the two curves intersect between the cross
bars there will be three steady states.

If the system is at one of the stable steady states in the
region of three steady states, one of the concentrations
¥y, or ¥, takes the value on the upper branch of the curve
and the other takes the value on the lower branch. At
the second stable steady state, the values of y, and y,
are reversed. At all other steady states, including the
unstable steady state in the intermediate region {(dashed
line), both concentrations have equal values as given in
the graph.

In Fig. 6 we see two bifurcation points, A and B. Just

5
a4t — —
3 ]
¥s
21— —
[N e — ! —]
—— :
! | | [
o ! 2 4 6 8/ 10
FIG. 6. The steady states of Eq. (7) for the case of mutual

inhibiton as a function of 8. The dashed line represents un~
stable steady states and the solid line stable steady states. At
a stable steady state in the three steady state region, one of

the concentrations lies on the upper stable branch, and the other
lies on the lower stable branch.

00 05 10

FIG. 7. Graphical solution for the steady states of Eq. (5) for
the case of activation—inhibition, in which f; is given in Eq.
(2a) and f; is given in Eq. (2b). The dashed line gives Eq. (5a)
and the solid line Eq. (5b).

as in the case of mutual activation, the system may pass
through zero, one, or two of these points, depending on
the value of 3y, as d is increased from zero to infinity.
Both bifurcation points disappear if Eq. (11) is never
satisfied, and the plot of y, versus § will be single-
valued for all 8.

For the function f shown in Fig. 5,

lim yf(y) == . (12)
yr o
1f this limit, instead, goes to zero [for example, by
letting b go to zero in Eg. (2b)], the bifurcation point B
in Fig. 6 moves toward 8= and only A remains.

C. Activation-inhibition

A graphical solution of Egs. (5) for this case is given
in Fig. 7. There is exactly one intersection of the
curves in the phase plane, with no possibility of multi-
ple steady states. The single steady states can be stable
or unstable, depending on the values of the parameters.

IV. STABILITY OF THE STEADY STATE

We are interested in determining the stability of each
of the steady states found in the previous section. To do
the analysis, we employ standard techniques'® and com-
pute the asymptotic time dependence of small deviations
€(x, {) away from the steady state,

Tilx, 0)=Tix) +€(x, t), (=1,2), (13)

by considering the equations of motion linearized about
the steady state. In general, the asymptotic time de-
pendence of any function, %(f), can be found from its
Laplace transform

R)= [ e hdt . (14)
Since the inverse Laplace transform is
1 crio st
= — h(s)d
h)= 5 L-,-w e*thi(s)ds | (15)

where ¢ is a real number greater than the real part of
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any singularity of %(s) in the complex s plane, the domi-
nant behavior of %(¢) as £~ « will be given by x(t) ~ ¢S
where s is the value of the pole in the complex s plane
having the largest real part. If there are any poles of
h(s) in the right half of the complex s plane (Re s> 0),
then (¢) diverges. If the linearizations about the steady
states diverge in time, then the steady state is said to
be unstable. In the following, we show that for the two
cases of mutual activation and mutual inhibition there
will be unstable steady states only in the region of multi-
ple steady states, with the central branch in Figs. 3
and 6 being unstable. For activation-inhibition the sta-
bility of the steady state depends on the parameters.

By employing the Green’s function for Eq. (3)!7:18

exp[~y;(t =) = (x = x")2/4D(t - )]
47D, (t -t 72, )

(i=1, 2), (16)

Gilx, x5 ¢, t") =

the solutions can be explicitly written

\Ill(x’ t) =>‘1 fot dt’Gl(x’ X1 t’ t’)fl[\l’a(xl L t')]

+ [T ax'Gytx, x'; £, 0) ¥, (x", 0), (172)
U,(x, 1) =2, {'dt'Gz(x, Xo; by E) ol ¥, (xy, £)]
+ [T axGylx, x5 1, 0) Ty, 0) (17b)

The nonlinear production terms in the first terms of the
right hand sides of Eqs. (19) are linearized about the
steady states as follows:

il Gy, O]=F1900 ) ]+ a6, B+ -, (18)
where
af;[¥,(x;)]
®i="av, (x) RPN (19)

Substituting into Eqs. (17), where the concentration of
chemicals 1, 2, are considered explicitly only at the
pomts Xg, X1, respect1ve1y, and noticing that G(x, x”;

t"Y=G(lx-x"l; t-¢t") we find
€00y, =Ny jo*dt Gy(d; t—t"eylx,, t)

+f_: dx'G, (o, - x"; Dey (', 0), (20a)
€xx, 1) =2p0, [ " at'Gyd; ¢~ ey, 1)

+ f: ax'Gy(x, - x)e,(x", 0) , (20b)

whered is the intercatalytic distance |x; —x,1.

Using the convolution theorem for Laplace transforms,
we compute the Laplace transforms of Egs. (20)

(21a)
(21b)

where g, (x;, s) and g,(x, , s) are the transforms of the
last terms of the right-hand sides of Egs. (20) These
linear algebraic equations in €,(x,, s) and € o(%y, 8) are
easily solved to obtain

€ (x,, s) =7\1a1(~;1(d; S)Ez(xl, s)+g,(x,, 8),

€%, 5) =)\zazéa(d§ $)&lxg, 8)+&,xy, 8)

21065, ) +2,0,G,(d; $)2,(x,, §)

€lxp, 5) = 1=y 0,6G,d; 5)G,(d; s) ?

(22a)

2500y, S) +2,0,6,0d; s)glx,, s)
1-220,0,G, (d s)G,ld; s)

€,(x,, 8) = (22b)

Notice that gy(x,, ) and g,(x,, {) represent the time
evolution of the system in the absence of catalysts,
starting from initial values €,(x, 0) and €,(x, 0). Without
catalysts, there is no net production of the system com-
ponents and therefore, since decay is present, g,(x,, ?)
and g,(x, , t) must be decreasing functions of ¢ for any
transport mechanism. This means that él(xa 5 S) and
gfz(xl , ) have no singularities in the right half s plane
and hence, stability is determined by the position of the
zeros of the denominators, i.e., by the complex solu-
tions of

1 = Mo, @,G,(d; 8) G,(d; s)=0 . (23)

The Laplace transform of the Green’s function given
in Eq. (16) (with x —x'=d) is

Gd; s) =(2D)'1(S;Y)-1/2 exp[ - (%1)1/2 d] . (24)

Inserting this into Eq. (23), we obtain, after some ma-
nipulation.

wogplf2 /2
Z_Eede 2

where

=0, (25)

=(s+v)/pD,
p=0%/4D%| 0y, ,
£=+1 @,0,>0 (mutual activation or inhibition)
=—1 a,a,<0 (activation-inhibition) .
The asymptotic time behavior of €,{x,, t) and €,(x,, ¢)
is given by
€, €~ e~ (1-pag/ kBt , (26)
where 2, is the solution of Eq. (25) which is farthest

right in the complex z plane and k = (y/D)'/2, Therefore,
the condition for instability is

pRezy/kE>1 , (27)

As 2dp*/? increases, the roots of Eq. (25) follow the
trajectories given in Fig. 8, (see Appendix). Two new
(complex conjugate) zeros appear at z =~ 1 whenever
2dp'/? reaches the value (4% - £ —1) (1/2) for successive
positive integers n. Every trajectory eventually crosses
over into the right half-plane, but the maximum positive
real part attained by each one is smaller than that of the
previous one by a factor greater than e®. Therefore,
we need only consider the lowest order (z=0) trajectory.

For the case of mutual activation and mutual inhibition
(¢=+1), the n=0 root lies on the positive real axis.
Using the identity

(o/x¥)e?= | @ a,|, (28)
Eq. (25) can be rewritten
(pz/x?) exp{2d[(pz/k®)!/? ~ 1]} = g2 (29)

The left hand side is monotonic in z and is equal to 1
when pz/k? is equal to 1. Therefore, if

Flaja,|>1, (30)

?
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Imz
£= ~1,n=0
—05
E=+n=|
g=-1,n=1 Re z
/L
- &=—l,n=|
£=+1,n=0
&=+1,n=l
—-05
£=-1,n=0

FIG. 8, Trajectories of solutions of Eq. (25) in the complex

z plane found using Eq. (A6). Curves labelled £=+1 refer to
mutual activation or inhibiton and those labelled £ =—1 refer to
activation—inhibition. The =0, n=1 trajectories are plotted
for both cases.

we must have pz,/k?>1, where z, is the (real) solution
of Eq. (30), and from Eq. (27), the steady state is un-
stable.!” Equation (30) is equivalent to the conditions
for the existence of three steady states, Egs. (8) and
(11). Further, since Egs. (8) and (11) are only satisfied
for the central branch in Figs. (3) and (6), we observe
that the central branch gives unstable steady states and
all other steady states are stable.

For the case of activation—-inhibition ({=-1), the
n=0 trajectory of Eq. (25) lies off the real axis in the
complex z plane. The analysis of Eq. (25) for this case
is not simple (see Appendix) and an analytic stability
criterion analogous to Eq. (30) has not been found.
However, Re z,>0 only if

2dp %> (n/V2) e (31)

Therefore, Eq. (31) is a necessary, but not sufficient,
condition for Eq. (27) to hold. In general for catalytic
systems with activation—inhibition, the function 2dp'/?
increases from 0, passes through a maximum, and de-
creases again as the intercatalytic separation increases
from d=0. Consequently, for systems in which unstable
regions are found, a typical behavior is that there will
be a range of separations for which the steady state is
unstable, with stability found at both larger and smaller
separations. We have chosen a set of parameters of
Eq. (17) for which the steady state is unstable. By in-
tegrating Eq. (17) numerically, starting from a variety
of initial conditions, we have found the system assumes
a limit cycle oscillation, independent of the initial con-
ditions. An example, is given in Fig. 9.

V. DISCUSSION

We have shown that the qualitative dynamics of chemi-
cal systems with heterogeneous catalysis dependsin a

fundamental way on the relative locations of the catalytic
sites. Some simple examples were given in which
changes in the relative locations of catalytic sites lead
to the appearance of multiple steady states and stable
limit cycle oscillations.

These results are important for the study of biological
systems. Here it is known that catalysts are localized
on membranes and that structural integrity at the cellular
and subcellular level is often necessary for proper func-
tioning. Further, stable cycles have been observed in
diverse biological systems,'®% and the existence of mul-
tiple steady states in gene networks may be important
in the understanding of the biochemical basis for differ-
entiation. 2122 Consequently, in theoretical analyses of
biological systems, explicit consideration must be made
of geometrical factors which may influence the dynami-
cal behavior of the system. For example, changes in the
morphological states of mitochondria might lead to
changes in observed metabolic pathways in the mitochon-
dria in different spatial configurations. ®

As the number of catalytic sites increases, theoretical
analysis becomes progressively more difficult, but the
range of interesting behavior also increases. In a re-
cent computer study of the dynamics of compartmental-
ized catalytic networks with more than two chemically
coupled sites, correspondence was found between the
dynamics of chemical systems and the behavior of
analogous Boolean switching networks in which the con-
tinuous Hill functions, Eq. (2), are replaced by discrete
on-off switches, and the time lags due to diffusion in the

Concentration

0 2 4

FIG. 9. Limit cycle solution of Eqs. (3) found for the case of
activation—inhibition, where f; is given in Eq. (2a) and f, is
given in Eq. (2b). The dashed curve gives ¥,(x,, £) and the
solid curve gives ¥y(x,, £). The solution was found by integrat-
ing Eg. (17) numerically, with initial conditions ¥;(¢, 0)=4.0,
W,(x, 0)=0.1 (for all x), and all other parameters equal for
both components and given by y=2, D=2, A=54, 6=1.0, 5=0.0,
n=8, with the intercatalytic distance | x;—x51 =1. With these
parameters Re s; is approximately 3.6.
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chemical systems lead to time lags along relay lines in
the equivalent Boolean systems.? This close corre-
spondence suggests the possibility that simple chemical
computers and chemical automata can be synthesized in
the laboratory by constructing chemical systems with
several localized catalytic sites.

To our knowledge, there have been no demonstrations
of spatial switching in laboratory systems. The synthe-
sis of such systems would be of intrinsic interest, would
help provide an experimental basis for the understanding
of the coupling between structure and dynamics in biolog-
ical systems, and may be a necessary first step in the
design of chemical computers. We hope the analysis
presented here will provide an impetus for the laboratory
synthesis of chemical systems displaying spatial switch-
ing.
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APPENDIX

The stability of the steady state of Eq. (17) is deter-
mined by finding the solution of Eq. (25) which has the
largest real part and applying Eq. (27). Equation (25)
is rewritten as

z-tem P2 (A1)

where £=+1 and 1= 2dp1/2. Taking the logarithm of Eq.
(A1) we tind

logz=-nzt"2+i(n/2)dn+1-£), n=0,1,2,- - -,
(A2)
where the + or — sign locates the root in the upper or
lower half-plane, respectively. Substituting z=7e i and
equating the real and imaginary terms in Eq. (A2), we
find

logr = -1/ %cos36 , (a3)
f=-—nrt/2gins0x3n(dn+1-£) . (A4)

We will choose the range of 6 to be — 7=6 =7 so that,
if £=1 (mutual activation or inhibition) and #=0, Eq.
(A4) requires 6=0. Consequently, this root is real,

z =7, with

angl/2

¥=¢ , 6=0. (A5)

If n+1—£#0, the equation for the trajectories of the
roots, obtained by eliminating 1 between Eqs. (A3) and
(A4), is

7,=e-[*7(4n+1-{)/2-9]ctn8/2, n+1_£¢0 . (AG)

These trajectories are plotted in Fig. 8.

Each point on a trajectory defines a value of 7, which
can be obtained by substituting the values of # and 8
satisfying Eq. (A6) back into Eqs. (A3) and (A4). By

substituting 6 =7 into Eqs. (A3) and (A4), we see that,
except for n=0, £=+1, the nth-order trajectories appear
at z =~ 1 when 1 passes through the value

n=trldn-1-%). (A7)

Similarly, substituting 6 =#/2 into these equations, we
find that the trajectories pass into the right half-plane
when

n=@n=-£)(n/V2) et/ (A8)
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