
J. Math. Biology 7, 339-352 (1979) 
Journal of 

�9 by Springer-Verlag 1979 

A Simple Model for Phase Locking of Biological Oscillators 

Leon Glass and Michael C. Mackey 

Department of Physiology, McGill University, 3655 Drummond Street, Montreal, Quebec, 
H3G 1Y6, Canada 

Summary. A mathematical model is presented for phase locking of a biological 
oscillator to a sinusoidal stimulus. Analytical, numerical and topological con- 
siderations are used to discuss the patterns of  phase locking as a function of the 
amplitude of the sinusoidal stimulus and the relative frequencies of  the oscillator 
and the sinusoidal stimulus. The sorts of  experimental data which are needed to 
make comparisons between theory and experiment are discussed. 

L Introduction 

One of  the simplest models for biological oscillators assumes that a variable of  
interest, which we call the activity, increases linearly with time until it reaches a 
threshold. Once the threshold is reached the activity instantaneously and dis- 
continuously resets to zero and the process repeats. Despite the oversimplifications 
inherent in this model, it has been of heuristic value in neurobiology (the ' integrate 
and fire' mode1) (Rescigno et al., 1970; Stein et al., 1972; Knight, 1972a, b; Fohl- 
meister et al., 1974; Hartline, 1976) and cell biology (the 'mi togen '  model) 
(Sachsenmaier et al., 1972; Kauffman, 1974; Tyson and Sachsenmaier, 1978). 

In the following, we show that if the threshold is sinusoidally modulated in time, 
the oscillator may become synchronized to the sinusoidal stimulus so that the 
activity reaches threshold at definite fixed phases of  the sinusoidal threshold 
modulation. If  in the synchronized mode the frequency of the modulation and the 
oscillator are in a ratio of  N: M, we say that the system displays N: M phase locking. 
Figure 1 illustrates several phase locking patterns for this model. 

Phase locking of biological oscillators to sinusoidal inputs 1 has been observed in a 

We do not consider the synchronization of biological oscillators to periodic pulsed inputs. 
Extensive references to experimental and theoretical papers dealing with this problem can be 
found in Hartline (1976), Stein (1977) and Winfree (1977). 
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Fig. 1. Phase locking patterns for the 
integrate and fire model with sinusoidal 
threshold modulation. The dashed line 
represents the activity and the solid line 
the threshold. The parameter 3. -1 which is 
defined in the text in Section 2, represents 
the ratio of the frequency of the sinusoidal 
stimulus, to the natural frequency of the 
unperturbed oscillator. (A) 1:1 phase lock- 
ing, In A- z = _ 0.16; (B) 3: 4 phase locking, 
ln A-1 =-0 .20 ;  (C) 2:3 phase locking, 
In ~-1=--0.24; (D) 3:5 phase locking, 
In ) t -x=-0 .32 ;  (E) 1:2 phase locking, 
In )t-z = --0.36 

large number of  biological preparations, e.g., cardiac rhythms in the cat can be 
synchronized to sinusoidal vagal stimulation (Reid, 1969) and central oscillations 
in ganglia controlling flying in locusts can be synchronized to sinusoidal wing 
flapping (Wendler, 1974). 

One obstacle to quantitative work on phase-locking is the difficulty encountered in 
the analysis of  phase locking of nonlinear oscillations to sinusoidal stimuli. Thus, 
despite several decades of  work (Cartwright and Littlewood, 1951 ; Hayashi, 1964; 
Grasman et al., 1976) a complete understanding of phase locking of the van der Pol 
oscillator to sinusoidal inputs seems distant, and recent work has emphasized a 
numerical approach (Flaherty and Hoppensteadt,  1978). 

These difficulties have led a number of  investigators to consider simple integrate and 
fire models for phase locking (Rescigno et al., 1970; Stein et al., 1972; Knight, 
1972a). In these studies activity is an integral o f a  sinusoidal input and the threshold 
is constant. Where experimental results were available for comparison, there has 
been good agreement with the theoretical predictions (Knight, 1972b; Fohlmeister 
et al., 1974). 
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To the best of our knowledge there have been no previous studies of the effects of 
threshold modulation in integrate and fire models. We have been led to consider 
this possibility as a consequence of experimental studies of respiratory phase 
locking to an artificial ventilator currently underway in our laboratory. In the 
mammalian respiratory system there is good experimental evidence that the degree 
of lung inflation acts to modulate the threshold of the 'inspiratory off-switch' 
(Clark and yon Euler, 1972; Wyman, 1977). Moreover, we believe that in other 
systems in which the mechanism of phase locking is not well understood (Reid, 1969; 
Van der Tweel et al., 1973; Wendler, 1974) threshold modulation may well play an 
important role. 

The model is presented in Section II, and in Section III the zones for N: l  phase 
locking are computed. In Section IV we show that the phase locking properties of 
the model reduce to an analysis of certain one-dimensional maps, the Poincar~ 
maps. Numerical computations of the Poincar6 maps have been performed to 
determine the phase locking regimes and to compute the stability of the phase 
locking computed in Section III. The results are discussed in Section V. In the 
Appendix we discuss topological aspects of the Poincar6 maps. 

H. A Mathematical Model for Phase Locking 

The linearly increasing activity is X ( T ) ,  and the sinusoidally modulated threshold 
is O(T), where for T = 0, 0 ~ X(0) < 0(0). The activity is 

X ( T )  = X(O) + AT,  T >I 0 (1) 

where A is a positive constant. The modulated threshold is 

| = | + K s i n ( o J T + 6 ) ,  0 ~< K <  6)0 (2) 

where 6)0 > 0 is the mean threshold, o~ > 0 is the angular frequency of the sinusoidal 
modulation, q~ > 0 is the phase of the sinusoidal modulation, and K >1 0 is the 
amplitude of the threshold modulation function. The activity will increase until it 
reaches the threshold, and reset to zero. The time T' when the activity first reaches 
threshold is found by equating the right hand sides of (1) and (2) and solving for 
the smallest root satisfying the criterion T'  > 0. Since X(0) < | the root must 
exist. For T >1 T '  the activity is 

X ( T )  = A ( T -  T') .  (3) 

The right hand sides of(2) and (3) are equated to compute the second time T" when 
activity reaches threshold, and so forth. 

Analytical and numerical computations are facilitated by rescaling (1) and (2). 
Dimensionless parameters and variables are designated by lower case letters. 
Defining 

t = coT/2~r 

x ( t )  = X(T)/6)  o k = 1'2/| (4) 

o( t )  = 6)(T)/6)o ~ = 2~A/O~Oo 
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(1) and  (2) become  

x(t)  = x(O) + At, t >1 O, (5) 

O(t) = 1 + k s in (2cr t  + r 0 ~ < k <  1. (6) 

Note  that  in (5) and (6) the period and the mean  ampli tude o f  the sinusoidal 
modula t ion  have been set equal to 1. In  (1) and (2), as well as (5) and (6), the ratio 
o f  the frequency of  the sinusoidal modula t ion  to the frequency of  the unper turbed 
oscillator (K = k -- 0) is given by A- ~ = (OJ| 

In  the remainder  of  this article we discuss the behavior  of  the model  described by 
(5) and (6) in (A, k) pa ramete r  space. We consider the behavior  for  all possible 
initial conditions by setting r = 0 and considering x0e[0, 1). 

HI. N: 1 Phase Locking 

Here  we compute  criteria for the existence of  N : I  phase locking. Assume that  at 
some t ime t~8[O, 1), x(t~) = 0. Then  to have N : I  phase locking it is necessary that  

N A =  1 + k s i n 2 ~ ( t i + N )  
(7) 

= 1 + k sin 2~rt~. 

Equat ion  (7) can be used to compute  t~. In  order  to have real solutions to (7), 

>/ I A N -  11 (8) 

must  be satisfied. I f  the inequality in (8) holds there will be two roots  for  (7), and 
for  the equality there will be one root.  The  two roots will be designated t, and tu. 
As we show below, the subscript s refers to a stable solution (the phase locked 
solution) whereas the subscript u refers to an unstable solution. Define 

a = 1 sin_ a J ANk- 1[, 0 ~< a ~< �88 (9) 

so for  the case AN/> 1, 

t ,  = a, t~ = �89 - a (10) 

and for  the case AN < 1 

t , =  1 - a ,  t ~ = � 8 9  a. (11) 

Note  tha t  for  [AN - 1 ] = k, c~ = �88 and the two roots  coalesce. 

In order  for  a solution of  (7) to be meaningful,  the activity must  be less than  the 
threshold resetting curve for all t imes te(t~, t~ + N) .  Setting 

g(t, t~) = 1 + k sin 2rrt - A(t - t~), (12) 

we must  have 

g(t,  t,) > 0 for  te(t~, t~ + N) .  (13) 

Differentiating (12) determines the time, train, when g(t,  ti) is a minimum.  For  
A > 2~rk, train = t~ + N. Consequently,  for  this situation both  solutions t~, t~ in (10) 
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and (11) are physically meaningful. However,  for A ~< 27rk a different situation 
holds. I f  

f l = ~ c ~  0 ~<fl~<�88 (14) 

the first derivative is zero for t = /3 ,  1 _+ /3, 2 _+/3 . . . . .  However,  the restriction that  
tmt~e(ti ,  ti + N ] ,  along with a considerat ion o f  the second derivative o f  (12), gives 

tml n a s  

tmtn = N -- t3, t, ~< 1 -/3, (15) 

t m l n = N + l  - f l ,  t i >  1 - / 3 ,  (16) 

where ti is computed  f rom (10) or  (11). Equat ion (16) is required for computa t ions  
o f  the root  t,  f rom (11). 

The equations developed in this section were used to numerically compute  the 
N : I  phase locking zones. For  fixed values o f  k and N, (8) determines a possible 
range for A. Values for )t in this range are selected and, using either (10) or (11), 
t, and & are computed.  Then using (12)-(16) we determine whether there are zero, 
one, or  two allowable solutions. 

The results are shown in Fig. 2. The boundaries o f  N :  I phase locking regimes are 
thin solid lines. The boundaries separating the regions in which there are one or  two 
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Fig. 2. Phase locking patterns in (,~, k) parameter space. The borders of the N:I  locking 
patterns, indicated by thin solid lines were computed in Section 3, and the borders of the other 
locking regions are indicated by dashed lines, computed in Section 4. In the N:I locking regions 
the dotted lines separate the regions in which there is one solution (above the dotted lines) from 
the regions in which there are two solutions (beneath the dotted lines), see Section 3. The dotted 
lines asymptotically approach the right hand boundaries of the N:I  regions. The thick solid 
line ,~ = 2rrk separates Region I (above the line) from Region 2 (beneath the line). The behavior 
in these two Regions is discussed in Section 4 and the Appendix 
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Fig. 3. The phase of the stable phase locked solution, t~, as a function of A for several values of k 
in the 1:1 phase locking region 

stable solutions are dotted lines. In all cases, the regions in which there is one 
solution are above the dotted lines, while regions in which there are two solutions 
are beneath the dotted lines. For the case in which there is one solution, this 
solution is stable and corresponds to the phase t~ computed from (10) or (11). 

One of  the experimental observables in a phase locking experiment is the relative 
phase of  the oscillator and the driving stimulus. In Fig. 3 we give t, as a function 
of  In ;~-1 for several values of  the amplitude of  the sinusoidal modulation. 

IV. The Poincar~ Map 

Consider the mathematical model for phase-locking described by (5) and (6) with 
= 0. Let the value o fx ( t )  at t = j be xj ( j  = 0, 1, 2 . . . .  ). For an initial condition 

x0e[0, 1) we have xF[O, 1) f o r j  = 1, 2 . . . . .  The model defines a transformation T 
such that  

X j +  1 = Txj 

xj+  = r ( T x 3  = r (x3 0 7 )  

xs+~ = T(TN- lx , )  = TN(Xj). 

The transformation T is referred to as the Poincar6, or phase advance, map 
(Cartwright and Littlewood, 1951; Arnold, 1973; Flaherty and Hoppensteadt,  
1978). 

A fixed point P of  T of  period N is defined by 

Tu(P) = P 
(18) 

T~(P) ~ P, i =  1 , . . . , N -  1. 
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A fixed point P of  period N will correspond to a solution exactly synchronized to 
the sinusoidal modulation and which repeats with a periodicity of  N. 

Here the Poincard maps have been used to: (a) compute the stability of  the N:I  
locking patterns determined in Section III; and (b) compute boundaries in (A, k) 
space for several other phase locking patterns. The topological properties of the 
Poincard maps are discussed in the Appendix. 

A. Stability of N:I Locking 

Assume that there is a fixed point P, satisfying (18), corresponding to a root t~ 
(i = u, s) computed from (10) or (11). The first derivative of the period N Poincard 
map computed at P, designated (TN)~, is defined by 

(T~)~, = lim TN(P + ~) -- TN(P) (19) 
6 ~  0 

If  ](TN)~[ < 1 the solution is locally stable and if [(TN)~o[ > 1 the solution is locally 
unstable. Calling m = (dO/dt),=t, we compute 

A 
(20) (TN)~' -- A -- m" 

Since A /> m, if the slope of the threshold modulation curves is positive at the time 
threshold is reached in an N:I  pattern, the solution will be locally unstable; if the 
slope is negative, the solution will be locally stable. This justifies the use of  the 
subscripts in (10) and (11). There is a singular case corresponding to the solution 
ts = t~ = �88 ts = t~ = �88 This only occurs at the boundaries of the N:I  phase 
locking regimes where the equality (8) is satisfied. In this case m = 0 and the 
solutions are semistable. An extensive discussion of this situation is found in 
Arnold (1965). These analytical computations consider only the local stability of  
the periodic solutions, while the numerical studies described below suggest that 
locally stable solutions are globally stable (except perhaps for a set of measure zero). 

B. Numerical Studies in (~, k) Parameter Space 

We have numerically computed the Poincard map at a large number of points in 
the (;~, k) space. Initial studies sampled (~, k) space on a coarse grid of approxi- 
mately 100 points covering the region shown in Fig. 2. In this region the ratio of 
perturbation to natural frequency varies over a range of approximately 1 : 4 to 4:1. 
We computed TU(x) where N = 1, 2, 3, 4. 

On this coarse grid, the studies indicated that ()~, k) parameter space was separated 
into two regions. In the lower left corner (Fig. 2), we did not, in general, locate 
fixed points for the Poincard maps, whereas in the remainder of parameter space 
practically all points showed fixed points of low periodicity. Subsequent con- 
siderations have led us to consider the dividing line between these two regions as 
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the curve A = 2~rk (the heavy black line in Fig. 2). We consider the behavior in the 
two regions separately. 

Region 1. A < 2~k. Here an effort was made to determine phase locking behavior 
and to identify the boundaries for several phase locking regions, as determined 
from the Poincard maps. In Fig. 4 we show the Poincard maps TN(x), N = 1, 2, 3, 
for five values of A corresponding to the phase locking patterns shown in Fig. 1. 
Consider the case where In )t -1 = -0.16. Note that T(Po) = Po for Po ~ 0.64. 
Under iteration of T all points are attracted to P0 and no new fixed points arise. 
Consequently for this case the 1 : 1 phase locking pattern shown in Fig. 1 is globally 
stable since all initial values of the activity approach the cycle. For the other cases 
shown in Fig. 1, analysis of the associated numerically computed Poincard maps 
(Fig. 4) shows that the phase locked patterns are globally stable. 

The boundaries for several phase locking regions have been numerically determined 
by examining the Poincard maps for points in the (A, k) plane between points of 
known behavior. Such methods are necessarily approximate. Numerical computa- 
tion of the N:I phase locking regions were completed prior to the analytical studies 
of Section III, and indicate that the localization of boundaries is accurate to at least 
+ 0.05 log units on the abscissa. 

However, numerical studies at a large number (more than 200) points in (~, k) space 
have successfully identified globally stable phase locking patterns in practically 
all cases. Although most points showed phase locking in comparatively simple 
patterns, as shown in Fig. 2, attempts to dissect the boundaries between any two 
neighboring regions always revealed new phase locking patterns. In Table I we give 
phase locking patterns observed in the region between the 1 : 1 and 2: 3 phase locking. 
Note that for k constant, as A-I decreases, the phase locking patterns form a 
decreasing sequence of rational ratios. Further numerical studies would be expected 
to show new phase locking patterns intercalated between those shown in Table 1 as 

-1 is probed on a finer grid. However, in view of the comparatively small volume 
of (A, k) space occupied by higher order phase locking patterns, we have not 
included them in Fig. 2. In the Appendix, we return to the question of phase locking 
behavior in Region 1. 

Region 2. )t >1 2rrk. Sampling points in (~, k) space on a coarse grid gave few 
points which showed phase locking after a few iterations of the Poincard map. 
However, on theoretical grounds (see Appendix) we know that all possible N:M 
phase locking patterns are found in this region. Consequently, it appears that the 
relative volume of (~, k) space occupied by low period phase locking patterns is 
small in Region 2 compared to Region 1. The computations in Section 3 show a 
' funneling" of the N: 1 phase locking regions in Region 2. 

The numerical difficulties involved in localizing boundaries in Region 2 can be 
illustrated by an example. An attempt was made to localize the boundaries of the 
2:5 phase locking region for k = 0.03. For this value of k the entire 2:5 region 
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Fig. 4. Numerically computed Poincar6 maps for the phase locking patterns shown in Fig. 1. 
(A) lnh - 1 = - 0 . 1 6 ;  (B) ln A - Z = - 0 . 2 0 ;  (C) l n ; ~ - z = - 0 . 2 4 ;  (D) l n , ~ - z = - 0 . 3 2 ;  (E) 
In h -z = -0 .36  
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Table 1. Phase locking patterns observed for several values of k and )t 

k In A-1 Phase locking 

0.3 --0.20 1:1 
-0.30 13:16 
-0.35 3 :4  
--0.40 15:22 
--0.45 2 :3  

0.4 -0.28 1:1 
-0.30 5 :6  
--0.32 3 :4  
-0.36 5 :7  
--0.44 2 :3  

0.6 -0.187 1 : 1 
-0.188 6" 7 
-0.189 5 :6  
-0.190 4 :5  
--0.200 3 : 4  
-0.240 2 :3  

0.8 0.16000 1 : 1 
0.15000 3 :4  
0.14439 5 :7  
0.14438 7:10 
0.14420 9:13 
0.14418 11:16 
0.14416 2 :3  

occurs within the range -0.91611 < In A-1 < - 0 . 9 1 6 1 0 ,  where the limits lie 
outside the 2:5 locking region. 

In view of the small volume of (~, k) space occupied by phase locking patterns of 
low period and the resulting numerical difficulties involved in locating the bound- 
aries, but the theoretical certainty that the phase locked regions exist, we have not 
localized the boundaries in Region 2. 

V .  D i s c u s s i o n  

The results presented here pose sharp problems for both mathematicians and 
biologists. 

There is a rich and interesting mathematical literature dealing with the properties 
of the Poincar~ maps for our simple model (Appendix). It will be of interest if the 
properties of this simple model for phase locking are preserved in models for which 
the oscillator is given as a nonlinear differential equation in two or more dimensions. 
In this context, it is common to consider the integrate and fire model as an approxi- 
mation of a n '  extreme relaxation oscillator' in which the time scale for the descend- 
ing phase is very much more rapid than the time scale for the ascending phase. 
However, caution in interpretation is certainly needed since the topological 
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properties of the Poincar6 maps in one dimension depend critically on whether the 
map is discontinuous or continuous. For example, the discontinuities in the 
Poincar6 maps (see Fig. 4) contradict the hypotheses of the Li-Yorke theorem 
which would otherwise be applicable to at least some of the (;L k) parameter space 
(Li and Yorke, 1975). 

Since nonlinear oscillators are expected to phase lock to periodic stimuli, the 
observation of phase locking alone can do little to elucidate the mechanism of the 
biological oscillator or the coupling between the oscillator and the external pertur- 
bation. In Figs. 2 and 3 we have given quantitative predictions for the phase locking 
patterns and phase angles for a mathematical model of phase locking. Although our 
model is consistent with qualitative observations concerning phase locking in 
experimental preparations (Reid, 1969; Van der Tweel et al., 1973) detailed quan- 
titative data concerning the pattern of  phase locking over a range of  frequencies 
and amplitudes of  the external stimuli will be needed before comparisons can be 
made between experimental and theoretical studies. 

Appendix 

Topological Considerations 

Here the points x s = 0 and xj = 1 can be identified since we have assumed that the 
activity resets to zero instantaneously. Thus, the Poinear6 map Tcan  be thought of 
as one which takes the unit circle into itself. 

In (A, k) parameter space there are two regions for the Poincar6 map. First, note 
that T is always one-one since distinct elements are carried into distinct elements. 

Region 2. )t >1 2~rk 

Here the maximum slope of the threshold modulation curve is less than or equal to 
the slope of  the linearly increasing activity. The range and codomain of the trans- 
formation T are equal and T is a one-one map of  the unit circle onto itself. T is 
continuous and differentiable on the unit circle. 

Region 1. ~ < 2~rk 

Here the range and codomain of T are no longer equal, so T is a one-one map of 
the unit circle into itself. T is monotonic, piecewise continuous, and piecewise 
differentiable (Fig. 4). 

Topological Considerations- Region 2. The class of maps which arise in Region 2 
have been subjected to extensive analysis (Denjoy, 1932; Coddington and Levinson, 
1955; Peixoto, 1960; Arnold, 1965; Rosenberg, 1977). We are not competent to 
review this work in detail, but wish to draw attention to certain results which are of 
interest in the current context. Our presentation follows Knight (1972a). 
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If  T is a continuous differentiable one-one map of  the unit circle onto itself, then a 
' rotat ion number '  or ' turning angle' ~(T) defined by 

,x(T) = Lim 1 TN(X ) 
N-,,* oO ~/T 

can be associated with T. If  T depends continuously on a parameter (e.g. A in the 
present case), then the turning angle also depends continuously on that parameter. 
Thus, rational and irrational rotation numbers are found. I f  ~(T) is irrational, 
then T is topologically equivalent to a rigid rotation of the unit circle. If  ~(T) is 
rational, say m/i then either every point x of T~(x) is a fixed point, or T~(x) has a 
discrete set of fixed points. As noted above, if T~(x) has a discrete set of  fixed points 
this corresponds to phase locking of  the oscillator. 

Let S,(SR) be the set of  points in (~, k) parameter space in Region 2 which have an 
irrational (rational) turning number. It has been shown that SR is an open dense set 
so that systems with rational turning numbers are structurally stable (Peixoto, 1960; 
Arnold, 1965). However, the measure of  St is positive (Herman, 1977). In fact, 
Arnold (1965) has examined a class of maps corresponding to a rigid rotation plus 
a small perturbation and has shown that in the limit as the perturbation approaches 
zero, the measure of maps with irrational turning numbers approaches 1. The 
general question of the relative measures of sets with rational and irrational turning 
numbers as one moves around in (~, k) parameter space appears difficult (Rosen- 
berg, 1977; Guckenheimer et al., 1977). 

Topological Considerations-Region 1. After the work reported here was com- 
pleted, we became aware of other work (Keener, 1978) which treats the class of 
maps arising in Region 1. We briefly describe Keener's results. 

For  the discontinuous maps in Region 1, Keener defines the rotation number to be 
the average occupation time on one of  the branches of  the map T. The rotation 
number is rational if and only if some fixed iterate of T has a fixed point. If  the map 
T depends on a parameter (e.g. ~ in the present case), as the parameter is varied the 
rotation number will be rational everywhere except on a Cantor set of measure 
zero. Further, for the cases in which the rotation number is irrational, the invariant 
set of T is a Cantor set. 

Our numerical studies show that in Region 1, the predominant behavior is phase 
locking in comparatively simple patterns (Fig. 2). In the regions between these 
simple patterns, there is stable phase locking of high periodicity (Table I). Although 
there are also irregular dynamics supported on a Cantor set of measure zero in 
parameter space, this behavior cannot be observed in numerical simulations. 
However, in any real physical or biological system there will be small fluctuations 
in activity and threshold due to noise. Consequently we anticipate that near phase 
locking boundaries, and in regions of parameter space in which the rotation number 
is changing rapidly, the dynamics in experimental systems may be quite as irregular 
as the dynamics on the Cantor set of measure zero in parameter space in the strictly 
deterministic system. 
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