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Sequential Recruitment and Combinatorial Assembling of Multiprotein Complexes
in Transcriptional Activation
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In human cells, estrogenic signals induce cyclical association and dissociation of specific proteins with
the DNA in order to activate transcription of estrogen-responsive genes. These oscillations can be modeled
by assuming a large number of sequential reactions represented by linear kinetics with random kinetic
rates. Application of the model to experimental data predicts robust binding sequences in which proteins
associate with the DNA at several different phases of the oscillation. Our methods circumvent the need to
derive detailed kinetic graphs, and are applicable to other oscillatory biological processes involving a
large number of sequential steps.
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FIG. 1 (color online). Dynamics of proteins binding at the pS2
promoter following administration of estradiol in MCF-7 human
breast cancer cells. The proportions of bound pS2 promoters
with key transcription factors and cofactors are shown as a
function of time. Based on data from Ref. [7].
The central dogma of molecular biology states that for a
given gene, the sequence of nucleotide bases in DNA is
transcribed into messenger RNA which in turn is translated
into a specific sequence of amino acids that constitute the
protein coded by the initial gene. In higher organisms, such
as ourselves, transcriptional control is a crucial step in the
regulation of gene expression. This control is modulated by
the configuration of proteins around promoters (DNA re-
gions in the proximity of genes that carry out the integra-
tion of transcriptional signals). Although there are a large
number of theoretical models of transcriptional control
networks [1] and transcriptional control of a single gene
in prokaryotes [2], theoretical analysis of transcriptional
control of a single gene in eukaryotes is much less devel-
oped [3].

Histones and other protein molecules associate with the
DNA to form chromatin, the constituent of the chromo-
somes of eukaryotes. In order for transcription to occur,
chromatin must be unfolded from its condensed geometry
in which DNA is compactly wrapped around the histones.
Although full details are still not well understood, it is clear
that sequential chemical reactions between the histone
molecules and specialized enzymes underlie the modifica-
tion of the chromatin structure [4]. For example, acetyla-
tion of the histones leads to a more open chromatin
configuration, by changing the local electrostatic equilib-
rium of the molecular ensemble around where the modifi-
cation is made, enabling transcription [5]. On each histone
protein there are a number of different amino acids sites at
which chemical reactions can occur leading to a modifica-
tion of the histone-DNA geometry. The histone code hy-
pothesis posits that the modifications of the histones
provide a code which governs the subsequent chemical
processes leading to the remodeling of the chromatin [6].

Recent experimental studies have demonstrated a cyclic
ordered sequence of reactions and alterations of local
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chromatin structure in human breast cancer cells grown
in tissue culture [7]. The culture of approximately 2� 106

cells is initially synchronized. The addition of a hormone,
estradiol, induces 40 min oscillations of the transcriptional
activation of the pS2 gene, which is a marker gene for
estrogenic response. Because of loss of synchronization
between the cells, the observed oscillations slowly damp
and reach constant levels after 8 hours [8]. A possible
source of desynchronization, in addition to stochastic fluc-
tuations at the level of the promoter, could be the varia-
bility among the cells, such as ATP levels or cell size.
These oscillations are monitored by measuring the tempo-
ral association of specific proteins with the DNA measured
at time intervals of as short as 5 min over a 3 h period [9].
In Fig. 1, we show the association profiles of four key
proteins involved in the transcriptional activation of gene
pS2. Estrogen receptor (ER) binds estradiol and initiates
2-1 © 2006 The American Physical Society
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the transcription process. RNA Polymerase II, (Pol II) is a
protein complex responsible for the transcription of genes.
TRIP1 and HDAC are two different proteins that are
involved in the clearance of the promoter after each tran-
scription cycle. In view of the complexity of the sequence,
and the tiny numbers of molecules involved in the binding
in each cell, it is currently impossible to derive detailed
kinetic data about the rate constants of the individual
reactions. Moreover, since it is not clear whether or not
the cells are coupled to each other, the mechanism of the
synchronization of the oscillation poses a challenge for
theoretical interpretation. In this Letter, we propose a
simple model for the oscillation based on a large number
of sequential chemical reactions and transformations of the
chromatin. Based on the analysis of the model, we are able
to predict specific timings of the association of the protein
complexes with the chromatin that reproduces the ob-
served dynamics in Fig. 1.

We assume that there is a network of proteins interacting
together and, sequentially, with the chromatin. Each reac-
tion induces a modification of the substrate complex that in
turn enables the next step in the sequence so that the
reactions are assumed to be irreversible. Further, we as-
sume that the various transcription factors and cofactors
involved in the reactions are present in sufficiently high
concentration that the reaction rates ai are constant over
time. This model is schematized in Fig. 2. A key parameter
in our model is the number m of sequential steps in the
cycle. Many transcription complexes contain more than 50
proteins, which may be partially or completely assembled
on the promoter [10]. Of the order of 100 histone (or other
proteins) modifications have been identified during tran-
scriptional activation [11]. These sequential histone mod-
ifications are associated with the histone code for
transcriptional activation. Based on these considerations,
we estimate that m is at least 200. From the data in Fig. 1,
the period of the oscillation T0 is about 40 minutes. If all
reaction rates are assumed identical (i.e., ai � a), and
choosing m � 200, then we have a � m=T0 � 5 min�1.

Since, generally, there are only two copies of each gene
in each cell, we first consider the dynamics using a sto-
chastic model in which the probability of a given reaction
FIG. 2 (color online). A schematic diagram of the model by
sequential recruitment of protein molecules to the chromatin. x1

represents the chromatin at the pS2 promoter. The xi, 2 � i � m
represent the protein complexes that form successively on the
promoter, at rate ai, leading to the activation of transcription.
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per unit time is equal to the product of the rate constant for
that reaction and the number of potential reactants present.
The time steps between reactions obey a Markov process.
The results of carrying out the simulation using the
Gillespie algorithm [12], for 1, 10, or 100 cells are shown
in Figs. 3(a)–3(c).

The chemical scheme presented in Fig. 2 can be inter-
preted as a sequential Poisson process in which the dura-
tion t before the next reaction takes place follows the
distribution p�t� � ae�at. Then for any individual cell
after synchronization, the kth cycle has a mean starting
time of km

a with a variance km
a2 . Taking a � m=T0, the

starting time of the kth cycle has a variance of
kT2

0

m . This
suggests the natural desynchronization of the system as the
variance increases linearly with k. Asm! 1, the variance
vanishes and the system behaves as a delay differential
system as discussed in Ref. [13]. Thus, just as in the data in
Fig. 1, the stochastic system displays oscillations for sev-
eral cycles provided m is large enough.

In the limit of a large number of cells, the stochastic
dynamics can be approximated by the linear differential
equations

_x 1�t� � amxm�t� � a1x1�t�; (1)

_x i�t� � ai�1xi�1�t� � aixi�t�; 2 � i � m: (2)

In the case ai � a, the eigenvalues �k of the Jacobian
matrix are �k � a�e2�ki=m � 1�, 1 � k � m. We can re-
write �k as �k � i�k, where

�k � a�cos�k � 1�; �k � a sin�k; 1 � k � m:

(3)

Here �k � 2k�=m. Since the real parts of the eigenvalues
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FIG. 3 (color online). (a), (b), (c) Stochastic simulations for 1,
10, or 100 cells. (d) Recruitment curves calculated from Eq. (7).
These computations are based on the binding sequences given in
Fig. 4 (see below). We assume ai � 5 min�1 and m � 200. The
color (or grayscale) code is the same as in Fig. 1.
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FIG. 4 (color online). Binding sequences for the proteins in
Fig. 1. For each protein, the colored (shaded) regions indicate the
indices i of the complexes xi of which the protein is a compo-
nent.
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are nonpositive, Eqs. (1) and (2) do not show sustained
oscillations [14].

Assuming initial conditions, for the �xi	, of
�1; 0; 0; . . . ; 0	, we can compute the solution for all vari-
ables:

xi�t��
1

m

�
1���1�ie�2at

�2
Xm=2�1

k�1

e�ktcos��kt��i�1��k	
�
; (4)

in the case when m is even (a similar expression holds
when m is odd). The higher frequency terms decrease
rapidly so that for m � 200, only the first 6 or 7 terms
give a significant contribution after the first period. The
leading term e�1t cos�1t sets the period. From a Taylor
expansion of this result, we find that the envelope of the
leading term decays as e�2�2t=mT0 , where we set a � m=T0.
This result is consistent with the finding that the oscilla-
tions are more persistent as the number of steps of the
reaction increases.

We now consider the effect of relaxing several of the
unrealistic assumptions in the model. If all reactions are
reversible, with all forward rate coefficients equal to a and
all backward reaction coefficients equal to b, the real and
imaginary parts of the eigenvalues are �k � �a� b��
�cos2k�

m � 1� and �k � �a� b� sin2k�
m . This leads to an

increased damping, and an increase in the oscillatory pe-
riod that scales as b=a for small b in comparison to a.
Consequently, the main results presented below also hold if
the reactions are reversible. A more general discussion on
the effects of reversible reactions in chains of linear reac-
tion kinetics is given in Ref. [15].

Since in the biological system, the reaction rates are not
identical, we now assume that the forward rates are dis-
tributed randomly with probability distribution Q�ai�.
Realizing that the waiting time for each reaction to occur
is independent and identically distributed, the kth cycle’s
starting time has mean and variance, km

R Q�x�
x dx and

km
R Q�x�

x2 dx, respectively. If, in particular, Q�ai� is the
uniform distribution over the interval �a�1� d�; a�1�
d�	, with 0 � d � 1, the kth cycle’s starting time has
mean:

km
2ad

Z a�1�d�

a�1�d�

dx
x
�
km
2ad

ln
1� d
1� d

; (5)

and variance:

km
2ad

Z a�1�d�

a�1�d�

dx

x2 �
km

a2�1� d2�
: (6)

Then the mean and variance of the kth period are, respec-
tively, hTki � hTi �

m
2ad ln1�d

1�d (independent of k) and
�2
Tk
� �2k�1�m

a2�1�d2�
. Thus, on the curve hTi � T0, we have the
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variance �2
Tk
�

4�2k�1�T2
0d

2

m ln��1�d�=�1�d�	2 , which, again, vanishes as

m! 1.
The damping of the solutions of Eqs. (1) and (2) is con-

trolled by the least negative �k’s. Let ai � a�1� �!i� and
� � �a=a, where �a is the standard deviation of the ai’s.
Assuming that ai is uniformly distributed in the interval
�a�1� d�; a�1� d�	, we have haii � a and �a � ad=

���
3
p

,
and then, h!ii � 0 and h!2

i i � 1. Solving the character-
istic equation for successive orders in �, we find that, to
fourth order in �, h�ki � a�cos�k � 1��1� o��4�	, which
is consistent with numerical results that show negligible
dependence of h�ki on d. However, the variance of the �k’s
is �2

�k �
h�ki2

m �2 � o��4�. This shows that the properties of
low damping and synchronization of the oscillation, ob-
served when the ai’s are identical, are conserved in the
limit of large m when the rate constants are different.

We now wish to fit the model to the experimentally
observed binding profiles of the proteins in Fig. 1. Each
protein is a component of several different xi�t� complexes,
but we do not know a priori which ones. We call Pj�t� the
percentage of pS2 promoters bound to one or more mole-
cules of protein j. Then we have

Pj�t� �
Xm
i�1

ci;jxi�t�; (7)

where ci;j is either 0 or 1. Pj�t� is the quantity measured in
ChIP experiments shown in Fig. 1. For each protein j, the
binding sequence fci;jg is determined by doing a least
squares minimization of the data to the model. Because
the first cycle is produced by a different sequence of
chemical steps than the subsequent ones [7], we consider
only the time points such that T0 � t � 3T0. The minimi-
zation procedure is done in 2 steps: (i) we apply the Nelder-
Mead method to minimize the quadratic error, with the
constraint that 0 � ci;j � 1 [16]; (ii) we use the values of
ci;j obtained in the first step as initial conditions to a
method that uses Lagrange multipliers, minimizing again
the mean square error. The latter step enables us to gen-
erate binary ci;j’s. The result of that procedure is shown in
Fig. 4, where the colored regions indicate the regions
where ci;j � 1. The Pj�t�, for each protein in Fig. 1, are
plotted in Fig. 3(d). To test the robustness of these fitted
sequences, we have carried out a number of numerical
2-3
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studies in which we performed fits of the model to the data
relaxing several of our assumptions. In particular, we have
tested for values of m � 100, 200, 300, and 400; addition
of 
2% of noise to the data points (corresponding to the
error reported in Ref. [7]); changes in the vertical scaling of
the data (up to 1.4); and selection of random reaction rates
ai (provided that the period, for the selection of faig, is
close to T0, and the solutions not too damped). Although
there can be slight changes in the values of i where ci;j �
1, or, in some circumstances, a change in the number of
blocks in which ci;j � 1, the main pattern of the ci;j’s in
Fig. 4 remain unchanged.

The results in Fig. 4, in which the precise patterns of
association of each protein are obtained, represent the main
predictions of the current work. Although one might have
anticipated that there would be a single recruitment block
for each protein, the recruitment patterns for proteins
considered here may actually occur in two or more blocks.
Two experimental methods can be used currently to deter-
mine the dynamics of transcription: ChIP assays and fluo-
rescence microscopy-based assays, but these methods
seem to produce conflicting results [17]. Our theoretical
predictions must be viewed in perspective of these two
experimental methods. ChIP assays determine the binding
of promoters with specific proteins, but not at the level of
one promoter in a single cell. In contrast, fluorescence
microscopy assays determine the mobility of proteins
around individual promoters, but does not measure binding
of individual proteins to one promoter. Using ChIP data,
our model enables us to predict successive rounds of
protein binding and unbinding. The protein mobility in-
dicated by these multiple binding events corroborates the
observations from fluorescence microscopy assays, recon-
ciling the observations from the two experimental meth-
ods. Because of lack of precision at the scale of the isolated
promoter, the experimental verification of our findings is
currently impossible. However, these results can be corre-
lated with what is known about the biological system. For
example, five or six principal complexes, with well-defined
functions, are successively formed on the promoter of pS2
[7]. It has been conjectured that the assembling of these
complexes is orchestrated by the ER at different timings of
the cycle [7,11]. Our finding of five different binding times
of ERs matches perfectly that conjecture.

To summarize, we have proposed a simple model for the
oscillation observed in protein association and dissociation
during transcriptional activation in human cells. We have
shown that the model produces oscillations with minimal
damping for large values ofm. Further, these properties are
conserved when the reaction rates are selected randomly.
The current work demonstrates that realistic network ar-
chitecture models may not be needed in order to unravel
the mechanisms of complex reaction sequences at the
19810
subcellular level. Our approach relies rather on the finding
that synchronous dynamics of protein assembly emerge as
a consequence of the large number of intermediate reac-
tions. Our methods should be useful to other systems in
which many sequential steps take place but the detailed
kinetics are not known. Fitting the model to the data in
Fig. 1 resulted in predicted sequences at a time resolution
not possible experimentally and, as such, may be invalu-
able for experimental design and for interpretation of the
mechanisms underlying transcriptional activation.
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