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Periodic stimulation of limit cycle oscillations leads to one-dimensional maps f : S’ --* S’ with two parameters which 
correspond to the frequency and amplitude of the periodic forcing. Bifurcations are described for the situtation in which 
f is of topological degree zero. Self-similarity is found in the parameter space. 

Periodically forced nonlinear oscillators display a 
rich spectrum of dynamics, including bistability, 
hysteresis, period-doubling bifurcations, intermittency 
and aperiodic “chaotic” dynamics [l-7]. No clear 
understanding of the global bifurcation structure as 
frequency and amplitude of the forcing are varied has 
yet been obtained. However, in many instances the 

dynamics can be approximated by one-dimensional 
maps [8-l 81. For the special case in which one 

stimulates a strongly attracting limit cycle oscilla- 
tion by brief stimuli, the reduction to a one-dimen- 

sional map is straightforward [2,8,9,13,17,18]. In 
this case, one obtains the one-dimensional finite dif- 
ference equation 

xi+l = g(xi) + r =f(Xi) (mod 1) . (1) 

Here xi represents the phase in the cycle (which is 
normalized to lie between 0 and 1) at which the ith 
stimulus falls, r is the time interval between successive 

stimuli, and g is a nonlinear function g : S’ + S1 . Ex- 
periments in a preparation of spontaneously beating 
cardiac cells from chick heart perturbed by brief elec- 
trical current pulses displayed period-doubling bifur- 
cations and irregular aperiodic dynamics [2]. There 
was close agreement with predictions made by iterat- 

ing (1) using an experimentally determined g(x). 
The topological degree of g(x) [hence of j(x)] 

counts the number of timesg traverses the unit circle 
as x increases around the unit circle once. For example 
the function 

g(x) = Mx + b sin(27rx) ) (2) 

where M is an integer, has a topological degree of M. 
Many biological oscillators show experimentally mea- 
sured functions g(x) with a topological degree of 1 
for small-amplitude stimuli and topological degree of 
0 for large-amplitude stimuli [ 14,191. The particular 
choice of (2) withM = 1 arises in many different appli- 
cations and has been studied in some detail [9,13,15- 
17,20-241. In this note we consider the bifurcations 
of (1) for maps of degree zero. Only limited results 

have so far been obtained for maps of degree zero 

[14,18]. 
Repeated iteration of (1) generates a sequence of 

pointsxr =f(xo),x2 =f(xl) =f2(xo), . . . . If 

xi+N = xi ; Xi+i#Xi, 1 ~j<N, (3) 

then the sequence x0, x1, . . . . xN =x0 is a cycle of 
period N which is stable provided I(af”/axi),i =X0 1 
< 1. If an extremum of f(x) is a point on the cycle 
then the cycle is called superstable. The locus of 
superstable cycles in parameter space is called the 
skeleton [ 16,171. Since g(x) is considered mod 1 in 
(l), the skeleton is periodic in T with a period of 1. 

We now consider the skeleton of (1) when g(x) is 
of topological degree zero. Rather than consider the 

sine functions, g(x) = b sin(2nx) (mod l), we let 

g(x) = 8bx(l - 2x) , O~x~O.5, 

=8b[x(2.-3)+1] tl, O.S<x<l. (4) 
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The computations we give here for (4) have been re- 

peated for (2) (with M = 0) and give qualitatively sim- 
ilar results. 

The branches of the skeleton for cycles of period 1 

can be simply computed. The local maximum (x 
= 0.25) is on a cycle of period 1 on the line b = 0.25 
- r + j and the local minimum (x = 0.75) is on a cycle 
of period 1 on the line b = 0.25 t r + j where j is an 
integer. Since no two branches of the skeleton asso- 

ciated with the maximum can intersect, the slope of 

all such branches as b increases approaches -1. 
Likewise, the slope of all branches of the skeleton as- 
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sociated with the minimum approaches +I. 
Fig. la shows the skeleton up to period 3. Branches 

of the skeleton associated with the maximum are de- 

signated by a t sign and those associated with the 
minimum by a - sign. On the line T = 0, with 0 <b 
< 0.5, (4) is two disjoint quadratic functions. Thus, 
on the line r = 0 and 0 < b < 0.5 the same bifurcations 
are observed as in interval maps with one maximum 
[25,26]. For the region 0 < r t b < 0.5, the interval 
(0,0.5) is invariant and the branches of the skeleton 

which are present at T = 0 extend smoothly into this 
region. The behavior in this region is thus a straight- 

Fig. 1. The skeleton for a degree zero circle map generated by substituting (4) in (1); k* represents a cycle of period k associated 
with the maximum and k-represents a cycle of period k associated with the minimum. (a) Locus of superstable cycles of periods 
1, 2, 3. To facilitate drafting, not all cycles of period 3 are labelled. (b) Enlargement of the square in (a); the superstable branches 
of periods 2 and 4 are now shown. (c) Enlargement of the square in (b); periods 4 and 8 are represented. Notice the topologic 
equivalence with (b). (d) Enlargement of the square in (c); periods 8 and 16 only are shown. In the upper left corner are 2 lines 
representing period 8 as labelled. The remaining lines in the upper left-hand corner are all of period 16 (there are 16 in all but 
these are not resolved in this fiiure). 
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forward extension of the well-known results about 

interval maps with one maximum. Thus, for fixed r 
as b increases periodic orbits appear in the U-sequence 

Pd. 
Along the line 

b + 7 = 0.75 (5) 

the first iterate of the maximum is the minimum. 

Consequently, along the line in (5) branches of the 
skeleton associated with the maximum and minimum 
must intersect. This creates a whole new sequence of 

skeletal branches associated with the minimum which 

are also ordered according to the U-sequence, 
We’have done numerical studies of the bifurcation 

structure in skeletal branches tangent to the line in 

(5). In fig. lb we show the period 2 and period 4 cy- 
cles in the enclosed square in fig. la. Figs. Ic and Id 
show magnifications of regions in parameter space 
focusing on period 4 and 8 cycles, and period 8 and 
16 cycles, respectively. The apparent repetition of the 
same geometric features in figs. lb-ld on different 
length scales is called self-similarity. Self-similarity 
can also be found for other period-doubling sequences 

(e.g. 3, 6, 12 . ..). 

Self-similarity in the bifurcations of two-parameter 

quartic maps was observed by Chang et al. [27]. Self- 
similarity has also been observed in bifurcations lead- 
ing to intermittency in circle maps of degree 1 [24]. 
As well, in the final stages of preparation of this 
manuscript we became aware of an independent study 
of self-similarity of period-doubling bifurcations for 
circle maps of degree 1 which gives results related to 
those shown in fig. 1 [28]. Thus, self-similar bifurca- 

tions in parameter space may well be a fundamental 
feature of bifurcations in two-parameter maps. Note 
that in the one-parameter interval maps there is al- 
ready self-similarity of the bifurcation diagram in pa- 
rameter space, since the ratio of the sizes of successive 
period-doubling zones converges to Feigenbaum’s 
number [25]. However, the rich geometrical struc- 
ture present in two-parameter maps shown in fig. 1 is 
not present in the one-parameter examples. 

Previous studies have found the skeleton shown in 
fig. la in two different situations: (i) in the bifurca- 
tions of two-parameter cubic maps [29] ; and (ii) in 
the bifurcations of circle maps of degree 1 [ 16,17,28], 
In the skeleton of degree 1 maps it was conjectured 
that the skeleton in fig. 1 appeared an infinite number 

of times but in an orderly fashion as described in refs. 
[ 16,171. We believe that this bifurcation structure rep- 
resents the unfolding of bifurcations in two-param- 
eter, one-dimensional maps with two extrema, and 
thus may be widely observed. Numerical results on 
a two-dimensional, two-parameter map indicate that 

similar structures may also be present [30]. 
As one moves about in the two-parameter space of 

fig. 1 one will observe many features observed from 
periodically forced oscillations including bistability, 
hysteresis, period-doubling bifurcations, intermittency 
and chaos. The great complexity but orderly struc- 

ture of fig. 1 makes it clear that experimentalists 
should try, if at all possible, to study bifurcations as 

a function of two parameters. Otherwise, it will be 
difficult to understand the sequence of bifurcations 
experimentally observed. 
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