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Scroll waves in spherical shell geometries
Francisco Chávez and Raymond Kapral
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Ontario M5S 3H6,
Canada

Guillaume Rousseau
Groupe SYRRA, case 7008, UFR de Physique, Universite´ Denis Diderot, 2 place Jussieu,
75251 Paris Cedex 05, France

Leon Glass
Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada

~Received 25 April 2001; accepted 21 July 2001; published 4 October 2001!

The evolution of scroll waves in excitable media with spherical shell geometries is studied as a
function of shell thickness and outer radius. The motion of scroll wave filaments that are the locii
of phaseless points in the medium and organize the wave pattern is investigated. When the inner
radius is sufficiently large the filaments remain attached to both the inner and outer surfaces. The
minimum size of the sphere that supports spiral waves and the maximum number of spiral waves
that can be sustained on a sphere of given size are determined for both regular and random initial
distributions. When the inner radius is too small to support spiral waves the filaments detach from
the inner surface and form a curved filament connecting the two spiral tips in the surface. In certain
parameter domains the filament is an arc of a circle that shrinks with constant shape. For parameter
values close to the meandering border, the filament grows and collisions with the sphere walls lead
to turbulent filament dynamics. ©2001 American Institute of Physics.@DOI: 10.1063/1.1406537#
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Geometry often plays a role in determining the nature of
pattern structure and dynamics. Our interest is in excit-
able systems where wave propagation may be strongl
influenced by geometrical features. Such systems ar
common in nature and the propagation of electrochemi-
cal waves in the heart is an especially important example
It is known that factors such as the topology, thickness,
and inhomogeniety of cardiac tissue can strongly influ-
ence wave propagation and give rise to fibrillation or flut-
ter. In this paper we do not consider such complex sys-
tems but instead examine the much simpler case o
excitable media with spherical shell geometries. For this
highly idealized case we are able to study in quantitative
detail the effects of geometry on the nature of the wave
propagation processes. The work provides insight into
some of the geometrical factors that determine wave dy-
namics which may be relevant for more complicated sys-
tems.

I. INTRODUCTION

Spiral waves are one of the most commonly found p
terns in chemical and biological excitable media. Spiral a
scroll waves have been studied extensively in chemic
reacting media such as the Belousov–Zhabotinsky~BZ! sys-
tem in a variety of two- and three-dimensional geometrie1

In biological systems they play an important role in pr
cesses like dictyostelium discoideum aggregation and mo
ment, Ca21 wave propagation in xenopus oocytes and ot
contexts,2 and electrochemical wave propagation in t
heart.3,4 In many of these examples the geometry in wh
the spiral wave dynamics takes place is complex and
7571054-1500/2001/11(4)/757/9/$18.00
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nature of the dynamics depends on the geometry in a n
trivial manner. The focus of this study is on the effects
geometry on scroll wave dynamics.

One of our motivations for studying this problem is
develop a theoretical basis for understanding the dynamic
cardiac arrhythmias which are abnormal rhythms in
heart. In normal hearts cardiac arrhythmias are rare, bu
diseased hearts cardiac arrhythmias can become more
mon. For example, if chambers of the heart become ab
mally large, they are susceptible to serious arrhythmias
which waves are believed to circulate in a fashion that
similar to the circulation of the BZ waves in a chemic
medium. Although such arrhythmias are most likely asso
ated with changes both in the physiological properties~this
translates into the associated nonlinear kinetics in reac
diffusion models of cardiac propagation! of the tissue as well
as the geometry of the tissue, abnormal heart geome
confer significant risk for serious arrhythmia.5 For instance,
therapies that target specific anatomical regions of the h
for radio-frequency ablation often owe their success to
destruction of anatomical features that are necessary e
for sustaining or initiating arrhythmia. Thus, it becomes im
mediately of interest to investigate the possible types
wave organization and their dynamics as a function of
geometry of the excitable medium in which waves prop
gate. Real human hearts are enormously complex th
dimensional structures. Although there have been invest
tions of the dynamics in these complex geometri
domains,6 in the current study we investigate propagation
an extremely simple geometry—a spherical shell. Even
problem presents challenges and its complete solution
lacking.
© 2001 American Institute of Physics
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There have been theoretical studies of a pair of coun
rotating spiral waves whose tips are located at opposite p
of a spherical surface.7–9 A class of asymmetric counter
rotating spiral waves on the surface of a sphere has b
studied using the eikonal approximation.10 Numerical solu-
tions of the reaction–diffusion equations on spherical geo
etries have been used to study the dynamics of a spiral w
pair.11 More complicated, even chaotic, behavior was fou
in numerical studies in inhomogeneous media with a sph
cal geometry.12 Spiral wave patterns have also been obser
in experiments on the BZ reaction on spherical beads.13

Our investigations of scroll waves in spherical shell g
ometries are organized as follows: Section II describes
evolution of scroll wave pairs in the FitzHugh–Nagumo sy
tem as a function of the thickness of the spherical shell fo
fixed value of the outer radius of the surface. Section III
devoted to an investigation of the maximum number of sp
waves that a thin spherical shell can support starting b
from regular and random initial conditions. The case of sc
wave filament evolution in solid spheres is the topic of S
IV where parameter values leading both to filament shri
age and turbulence are studied. The conclusions of the s
are presented in Sec. V.

II. THE MODEL

We consider the FitzHugh–Nagumo model for two sc
lar fieldsu andv:

]u

]t
52

u3

3
1u2v1Du“

2u,

~1!
]v
]t

5e~u2av1b!1Dv“
2v.

In this modele is the ratio of the time scales associated w
the two fields andDu andDv are the constant diffusion co
efficients. The parametersa andb characterize the local dy
namics. In this paper we concentrate on the excitable reg
and take 0,e,1.

We solve Eq.~1! numerically using an algorithm tha
automatically adjusts the time step to achieve an effic
simulation while controlling the error in the solution.14 The
reaction medium is a spherical shell whose outer and in
radii we denote byRe andRi , respectively. Any point in the
medium can be unambiguously defined by the usual se
spherical coordinatesrP@Ri ,Re#, uP@0,2p#, and f
P@0,p#.

The initial condition was taken to be a domain of excit
state,

$r,u,f:Ri<r<Re ,u0<u<u01Du,f0<f<f01Df%,
~2!

adjacent to a domain of the refractory state,

$r,u,f:Ri<r<Re ,u02Du<u,u0 ,f0,f<f01Df%.
~3!

This initial condition produces a pair of counter-rotating s
ral waves. Observing the outer surface of the shell, one
the formation of two spiral wave tips: one located atu5u0

and f5f0 and the other atu5u0 and f5f01Df. They
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extend inwards forming two straight filaments connecting
inner and outer surfaces of the spherical shell.

Since the dynamics are locally periodic and the ph
space trajectory is a closed loop, it is possible to introduc
phase variableF(r ,t)5arctan(v(r ,t)/u(r ,t)) which param-
etrizes the trajectory. A phase mapM associates to eac
point in a well-defined two-dimensional domainD a phase
lying on the unit circle,FPS1. Suppose the domain is th
surface of a sphere. Consider any closed curve,CPD, not
passing through singularities of the phase map. The indeI
of C is defined in the following way. AsC is traversed once
in a clockwise orientation, we compute

2pI 5 R
C
“F•dl. ~4!

By continuity, I must be an integer. The index of a singul
point is defined by drawing a small circleA around the sin-
gular point that contains no other singular points. The ind
or topological charge of the singular point is equal to t
index of A. The following results may be deduced from th
construction. The index of any closed curveC not passing
through any singularities is equal to the sum of the indices
the singular points contained inC. The sum of the indices o
the singular points of a two-dimensional medium with pe
odic boundary conditions is invariant.15 Further, for a closed
oriented two-dimensional manifold, the sum of the indices
all singular points is equal to zero.16 If the medium is three
dimensional, the arguments apply to every two-dimensio
surface bounded only byC.17 These results place constrain
on the dynamics of the filaments discussed in the follow
sections. In particular, on the surface of the sphere, spi
appear as pairs, one with index11 and the other with index
21, so that the net index of each pair is 0. In other conte
singularities in phase maps have been called defects18 and
the index is sometimes called the topological charge.19

In order to investigate the effect of geometry on the ev
lution of the spiral scroll waves, various values of the ou
radius, Re and thicknessD5Re2Ri were considered. We
have chosen the initial conditions such that one tip for
near one of the poles and the other on the equator, i.e.f0

50, Df5p/4, andDu510°. For small values of the thick
ness the filaments remain attached to the inner and o
surfaces of the spherical shell for all times and the sys
behaves essentially as a two-dimensional surface: the s
wave dynamics are similar to that of spiral waves on
spherical surface.11 An instantaneous picture of a scroll wav
in a thin spherical shell is shown in Fig. 1~a!. In this case the
excitation pattern on the outer surface matches that on
inner surface.

Keeping the outer radius fixed while increasing t
thickness, the scroll wave filaments remain attached to
inner and outer surfaces of the spherical shell until a criti
inner radius,Ri(min), is reached at which point an importa
qualitative change is observed. ForRi,Ri(min), after some
transient time, the two filaments collide and merge to form
single curved filament. In certain parameter ranges
single filament shrinks and finally disappears. An instan
neous picture of such a scroll wave is shown in Fig. 1~b!.
Thus, under these conditions the scroll wave pattern is de
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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759Chaos, Vol. 11, No. 4, 2001 Scroll waves
bilized by a factor entirely dependent on the geometry of
medium. It is the inability of the inner surface to accomm
date the scroll wave dynamics that is responsible for
destabilization of the pattern.

For the set of parameters employed here, the value o
critical radius was found to beRi(min)59 and independen
of the value of the outer radius, as shown in Fig. 2, where
line marking the transition from persistent to transient spir
is parallel to the bisectrix~the line corresponding toRi50!.
Transient scroll waves of the form in Fig. 1~b! are found in
the region ‘‘T,’’ while persistent spirals of the form of Fig
1~a! are found in region ‘‘P.’’ We study thin spherical shel
in Sec. III and thick spherical shells in Sec. IV.

III. THIN SPHERICAL SHELL

In this section we focus on the properties of scroll wav
in thin spherical shells withRe2Ri52 where the scroll
waves behave as spiral waves on the surface of a sphere
radiusRe .

A. Minimum spherical shell size

There is a critical size of the thin spherical shell belo
which self-sustained spiral waves cannot exist. From pu
geometric considerations this critical sizeRm can be related
to the spiral wavelengthl. This problem has been considere

FIG. 1. Scroll wave pair in a spherical shell. System parameters:a50.2,
b50.75, e50.2, Du52, andDv50. ~a! Thin shell: Ri@Ri(min), and~b!
thick shell,Ri,Ri(min). In this figure~and in Figs. 3 and 5! isosurfaces 0
<F(r ,t)<F* are shown, where the thresholdF* was chosen to display
the essential features of the scroll waves. In panel~b! the curved filament
connecting the two spiral tips on the outer surface of the spherical she
shown as a thick line. Also in this panel, the small circular region in
center corresponds to the inner surface of the spherical shell.

FIG. 2. Regions of existence of persistent and transient spirals separat
the transition line denoted by crosses. The solid line is the lineRi50.
Permanent spirals exist in region P while transient spirals exist in regio
The patterns observed in each of these regions correspond to those of
1~a! and 1~b!, respectively.
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earlier in the context of spiral waves in cardiac tissue.20 For
the set of parameters chosen in our simulations the radiu
the smallest sphere that still supports spirals isRm510.

A rough estimate ofRm can be obtained in the following
way: Monitoring the local dynamics at fixed spatial points
the spherical surface, one may determine the rotation pe
of the pattern,t. The wave propagation velocity,cp , was
calculated from the times of excitation of two spatial poin
separated by a known fixed distance. The wavelength is t
l5tcp and Rm can be estimated from the conditio
2pRm /l'1, i.e., when the wavelength is of the same ord
of magnitude as the perimeter.

Simulations show thatt'17 time units and that it varies
only very slightly with Re in the interval investigated, 12
<Re<68. The wavelengthl'38 space units and its depen
dence onRe was also found to be very weak. For larg
spheres the ratioR52pRe /l is large and there is enoug
surface to sustain the spiral wave dynamics. However, as
radius decreases the denominator of this expression cha
much more slowly than the numerator andR decreases. In
our simulations we found that spiral waves cannot be s
tained forR,1.6, in reasonable agreement with the cru
estimate of the critical value given above. It may be possi
to construct more accurate estimates for the critical rad
using properties of the spiral core like its size and the eff
tive range of core–core interactions.

B. Regular distribution of many spirals

We now consider the number of spirals that can fit on
spherical surface with a given radiusRe . To study this prob-
lem we use a particular class of initial conditions: a regu
arrangement ofp domains of excited and refractory region
of the type considered in Eqs.~2! and~3!. The spiral tips are
initially located on opposite poles of the sphere and the
cited and refractory regions positioned so that all spir
propagate in the same direction. The angular separation
tween two consecutive domains in this regular arrangem
is 2p/p. We describe now what is observed for differe
numbers of initial spiral pairs,p, on a thin shell (Re2Ri

52) with Re544.
For p<7 all tips recede from the poles and stabilize

an anglefs(p) with respect to a line passing through th
poles. The resulting pattern consists ofp equivalent spiral
wave pairs that propagate on the spherical surface. A qu
tative change in behavior occurs forp58. The resulting
stable pattern is shown in Fig. 3. The system rapidly evol
into a pattern of alternating long and short spiral pairs. T
spiral tips are distributed in a set of two differentfs(8)
angles. This state is very sensitive: small deviations from
regular angular separation in the initial condition rapidly le
to the annihilation of some of the pairs.

For the parameters considered here, the maximum n
ber of spiral pairs that is stable under this configuration
eight. For 8,p,13 the system evolves into a pattern wi
seven or fewer spiral pairs. For instance, a pattern with
initial spiral pairs evolves to a pattern with eight pairs a
finally to a stable pattern with four spiral pairs. A patte
with 13 initial spiral pairs quickly evolves to a complete
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quiescent state by annihilation of all spiral pairs. The an
fs(p) versusp is shown in Fig. 4.

C. Random distribution of many spirals

In addition to regular distributions of initial spiral pairs
we have considered random distributions where the init
condition domains used to generate spiral pairs are rando
distributed on the surface of the sphere. We again takeRe

544 andD52. The random initial condition was generate
in the following way: the tips of the initial-condition do
mains are taken to havef andu values uniformly distributed
on 0,f,p/2 and 0,u,2p, respectively. After such a
domain is chosen, a rigid-body rotation of the domain w
performed with Euler angles chosen randomly. This pro
dure was repeated for each of thep initial spiral pairs with
no attempt to avoid overlap of the initial-condition domain

During the evolution from the initial state, pairs of sin
gularities with index11 and 21 may annihilate or new
pairs of singularities may form as a result of breaking
wave fronts. As a result a complicated pattern of spiral wa
pairs can form on the sphere~see Fig. 5!.

FIG. 3. Phase isosurfaces at one time instant showing a regular distrib
of eight spirals in the thin spherical shell with alternating short and lo
spiral pairs.

FIG. 4. The anglefs(p) versusp. The maximum number of stable spira
pairs isp58 for which there are two different angles.
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As a result of annihilation and creation events the nu
ber of singularities in the system may vary with time but f
this parameter value any realization of the evolution from
random initial condition evolves to a state with a fixed nu
ber of singularities. We definens(`) to be the average num
ber of singularities which survive starting from an initi
configuration withns(0)52p singularities. A plot ofns(`)
versusns(0) is shown in Fig. 6.

When the initial number of singularities is sma
ns(`)'ns(0) since most of the initially formed spiral pair
are likely to survive. However,ns(`) saturates for large
ns(0).40 due to the annihilation of closely spaced defe
pairs. From the figure we may estimate this saturation va
to bens(`)[ns* '17.5563.22. Thus, the average maximu
number of randomly distributed spiral pairs that can fit on
sphere withRe544 is about nine, which is very close to th
value of eight obtained for a regular initial configuration.

From these results we may estimate the maximum a
age density of spiral waves on the sphere asrs*

on
gFIG. 5. Instantaneous picture of the phase isosurfaces for a system whe

spiral pairs were randomly initiated.

FIG. 6. Number of surviving singularitiesns(`) as a function of the initial
numberns(0) for a spherical shell withRe544 andRi542. Each point is
the average of 14 realizations and the vertical bars have length of twice
standard deviation. The solid is the bisectrix.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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5ns* /4pRi
2 , where we have usedRi since the inner surface

of the thin spherical shell is smaller. For the spherical sh
with Ri542 we findrs* 57.931024. If the spiral density is
constant for a fixed set of parameter values, one may t
determine the maximum average number of spiral waves
a sphere of any size. For example, we predict that a sphe
shell with Ri528 will support, on average, a maximum
eight (ns* 54pRi

2rs* 57.8) spiral waves, while simulation
show thatns* 58.1563.0.

One may users* even to estimate the size of a sphe
that will support a single spiral wave pair,Rmin5(rs*p)21/2.
Taking the above value ofrs* we find Rmin514.2, which is
comparable to but somewhat larger than the value ofRmin

510 found in Sec. III A.

IV. SCROLL WAVES IN A THICK SPHERICAL SHELL

A. Scroll wave dynamics

The filament of the scroll wave is a space curve wh
can be described by a parametric equationR(t,s)
5(x(t,s),y(t,s),z(t,s)) wheret is the time ands is the arc
length, 0<s<L(t) with L(t) the total length of the filament
An orthogonal coordinate system can be attached to e
point of the curve with tangentt(s), normaln(s), and binor-
mal b(s) unit vectors defined by

t~s!5
dR

ds
, n~s!5

dt/ds

udt/dsu
, b~s!5t~s!3n~s!. ~5!

A full description of a scroll wave requires a specific
tion of the local phase or ‘‘twist.’’21 This is accomplished in
the following manner. In the plane normal to the filame
~spanned byn and b!, the scroll wave appears as a tw
dimensional spiral rotating around the point where the fi
ment pierces the plane. The local phase of the spiral ca
defined as the angle between some unit vectorV, rotating
rigidly with the spiral and some local reference directio
Choosing V5n cosf1b sinf, where f is the angleV
makes with the normal,n, we may write the local twist rate
as

w~s!5
dV

ds
•t3V5t~s!1

df

ds
, ~6!

wheret(s) is the torsion,t(s)5udb/dsu.
Theoretical investigations of the dynamics of thre

dimensional scroll waves with a filament of arbitrary sha
were carried out by Keener22 who derived its equation o
motion. For an untwisted filament in a plane his equatio
reduce to

df

dt
5ak,

dR

dt
•b5bk,

dR

dt
•n5ck, ~7!

wherek5udt/dsu is the curvature and the coefficientsa, b,
andc can be determined from a knowledge of the eigenva
problem corresponding to the linearized reaction–diffus
equation. In general, at any moment of time the motion
the filament has three components:~a! a component in the
direction of the normal unit vector,dR(t,s)/dt n, or
Downloaded 18 Aug 2003 to 132.216.11.185. Redistribution subject to AI
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‘‘shrinking,’’ ~b! a component in the direction of the bino
mal unit vector,dR(t,s)/dt b, or ‘‘drifting,’’ and ~c! a me-
andering motion.

A simplification of the dynamics occurs whenDu5Dv
5D. In this case,c5D anda5b50. A planar filament re-
mains in the same plane at all times and the normal velo
is proportional to the diffusion coefficient. This law has be
confirmed experimentally in the context of spirals
Belousov–Zhabotinsky reagent.23 In the more general cas
of unequal diffusion coefficients,b is not zero, and a plana
filament will not remain planar unless the filament is initial
exactly a circle. Similarly, ifa is not zero an untwisted fila
ment will develop twist as time proceeds unless it is exac
circular initially.22

We now describe the behavior of a scroll wave in
system where the internal radius is below the critical va
Ri(min) so that the inner surface of the spherical shell can
support a spiral pair. Using the initial conditions describ
earlier, the two straight filaments connecting the the ou
and inner surfaces detach from the inner surface after s
interval and merge to form a single curved filament as in F
1~b!. The subsequent evolution of this filament depends
the values of the parameters of the model. For values ofb for
which the amplitude of the meandering is small, the filam
rapidly attains the shape of an arc circle with radius of c
vaturer(t) and shrinks until it disappears. For values ofb
close to the meandering transition, where the amplitude
the meandering is large, the filament enters a turbulent
gime; this case is studied in detail in Sec. IV E.

In the calculations reported in the remainder of this s
tion, the internal radius was set to zero and we conside
solid sphere withRe5R. Similar results obtain providedRi

,Ri(min), well into the transient region of Fig. 2. We con
sider initial conditions that generate spiral pairs whose t
are located on opposite poles of the sphere; i.e., initially
filament is a straight line passing through the center of
sphere. We choose the Cartesian axes so that initially
filament runs along thez axis and the center of the sphere
the origin of the Cartesian coordinate system.

B. Meandering

We have studied the meandering of the filament for va
ous values ofb. There have been many investigations
meandering in two-dimensional media~see, for instance
Ref. 1, and articles therein! and explicit calculations of the
meandering ‘‘be-phase diagram’’ for the FitzHugh–Nagum
system have been carried out.24 Here we simply focus on the
nature of the meandering of the filament in our thre
dimensional solid sphere geometry for the selected value
b employed in our study.

Figure 7 shows the trajectories of the intersection of
filament with thexy plane,z50 for three values ofb and
e50.2 in a solid sphere with radiusR590. Forb50.75, the
amplitude of the meandering motion is about nine sp
units which is small compared to the sphere dimensions.
meander amplitude increases asb approaches the edge of th
meandering region in thebe-phase diagram. The largest m
ander amplitude shown in Fig. 7 corresponds to a value
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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b51.0, very close to the meander border. With furth
change ofb three borders are crossed in succession in
following order: the meander border, the rotor border a
finally the propagation border, as described by Winfree24

Although no attempt has been made to locate precisely th
points, it was verified that forb51.05 the system is outsid
the propagation region.

When the meander amplitude is small, as forb50.75
~see Fig. 7!, the effect of meander on the overall motion
the filament is not important; it simply introduces noticeab
dispersion about the mean filament position. For thisb value
we have found that all segments of the filament move
phase so that in this regime the filament meanders as a n
rigid body. In the next section we discuss the shrinkage
disappearance of the filament. We note that the meande
period is about 30 time units which is small compared to
total lifetime of the filament of approximately 7200 tim
units. These observations suggest that meandering has
effect on the results for shrinking and drifting in these p
rameter values.

C. Shrinking

Starting with an initially straight filament passin
through the poles of the sphere, forb50.75, after some
transient time, the filament adopts the shape of an arc
circle and maintains this shape as it shrinks. Since the
ment tangent vectort at the surface of the sphere is normal
the sphere surface, one can readily calculate the radiu
curvature of the filament at any time. We have done this
two different sphere radii,R590 and 45. Figure 8~a! shows
a cross section of the physical sphere taken in the plan
which the filament lies, as well as an auxiliary circle that fi
the filament and from which we may extract the radius
curvature. The filament is taken to lie in thexszs plane. Since
initially the filament lies on the spherez axis and remains
parallel to this axis at all times, the plane of the filament
always perpendicular to thexy plane and thezs andz axes
always coincide.

We may use Eqs.~7! to derive equations for the tim
evolution of the filament. The calculation is easier for t

FIG. 7. Trajectories of the intersection of the filament with the planez50
for various values ofb. ~a! b50.75, ~b! b50.90, and~c! b51.0. The
straight line has length 10 and is shown as reference.
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intersection pointP in Fig. 8 of the filament with the surface
where various simple trigonometric relations apply. Figu
8~b! shows the geometry at some particular timet in the
plane of the filament. The thick black line represents
physical sphere of radiusR and the dotted line is a sketch o
the filament at that particular time. Letr denote the distance
of the tip of the filament to thez axis. It is easy to see tha

r5
R

r
AR22r 25

Rz

r
. ~8!

Applying Eqs.~7!, point P moves in the direction of the
normaln ~tangent to the surface! with speed

vn5ck5
c

r
. ~9!

The horizontal component of this velocity is

vn,r5vn sinf5
vnz

R
, ~10!

FIG. 8. ~a! Fit of the filament~dense set of points! with an auxiliary circle
~short dashed line! of radiusr(t). The left circle~thick black line! is a cut
through the physical sphere with radiusR590 and center atO by a plane
containing the filament.~b! Detail showing the intersection of the filamen
with the sphere surface, pointP.
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where the anglef is defined in Fig. 8. Substitution of Eqs
~9! and ~8! yields a differential equation forr ,

vn,r5
dr

dt
5

c

R2 r , ~11!

which can be readily solved to give

r ~ t !5r ~0!ect/R2
. ~12!

This equation can be expressed in terms of the lifetimet f by
noticing thatr (t f)5R. Thus,

r ~ t !5Rec(t2t f )/R
2
. ~13!

Finally, substituting into Eq.~8! we obtain

r~ t !5R~e2c(t f2t)/R2
21!1/2. ~14!

From this equation, other features, such as the length of
filament,L, can be calculated. We have

L~ t !52R~e2c(t f2t)/R2
21!1/2arcsin~ec(t2t f )/R

2
!. ~15!

The results are shown in Figs. 9 and 10, where it can be s
that the agreement with the numerical simulation is exc
lent. Equations~14! and ~15! should be used only after
transient time when the filament adopts the shape of an a
a circle.

FIG. 9. Time evolution of the radius of curvature of the filament. Pluses
values from the simulation in a sphere withR590 while crosses are forR
545. The solid lines are calculated using Eq.~14! with c56.5.

FIG. 10. Time evolution of the length of the filament. Pluses are values f
the simulation in a sphere withR590 and the solid line is the length from
Eq. ~15! with c56.5.
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D. Drifting

Lateral drifting of scroll rings has been observed wh
the diffusion coefficients are unequal25,26as is the case in this
work. However, the presence of a spherical surface in
duces an important qualitative difference. Because of the
vature of the surface at which both tips of the filament a
attached, the binormal component of the filament results
slow rotation of the filament plane around the axis of sy
metry of the sphere. The situation is illustrated in Fig.
where the projection of the filament on thexy plane is shown
for three different times. The plane of this figure is perpe
dicular to that of Fig. 8.

The rotation of the filament plane can be described by
angleu with respect to an arbitrary axis. As shown in Fi
8~b!, the intersection of the filament with the sphere is
cated at pointP at a distancer from thez axis. The analysis
is similar to that for the shrinkage of the filament, but in th
case both proportionality constants,b andc in Eq. ~7!, enter
the equation of motion. From Figs. 8 and 11 the compon
of the velocity vector in the direction of thex axis is

dx

dt
5vx5vn cosu sinf2vb sinu

5
cAR22r 2

rr
cosu2

b

r
sinu. ~16!

Using dx/dt5(dr/dt)cosu2r sinu(du/dt) and Eq. ~8!, we
obtain a differential equation foru,

du

dt
5

b

RAR22r 2
5

b

R2A12e2c(t2t f )/R
2
. ~17!

This equation can be integrated to obtain

u~ t !5u~0!1
b

R2 t1
b

c
ln

11A12e22ctf /R2

11A12e2c(t2t f )/R
2
. ~18!

Results from this equation are compared to those fr
the numerical simulation in Fig. 12 and the agreement is v
good. We have found that the drifting velocity is small com

e

FIG. 11. Projection of the system on thexy plane. The thick line is the
perimeter of the physical sphere. Pluses indicate the filament at three d
ent times, from bottom to top,t5350,1200,1750.
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pared to the shrinking velocity. With the choice of para
eters made here,c/b'4.5. Furthermore, Eq.~18! shows that
at early times the rotation rate is dominated by the lin
term bt/R2 which is small for large spheres. Indeed, in o
case the plane of the filament rotates only about 24° be
vanishing.

E. Turbulent regime

For values ofb close to the meander border, the filame
neither shrinks nor remains planar as described in the
ceding section but instead its dynamics becomes turbu
The elongation and bending of the initially straight filame
is shown in Fig 13. In this parameter regime, the filam
continues to stretch and bend until a segment of the filam
collides with the surface of the sphere. At this point the fi
ment breaks into new shorter filaments whose dynamics
turn, follow the same pattern. Through this process m
filament segments with different lengths are created. If
resulting filament segments are too small they shrink
disappear.

Figure 14 shows the time evolution of the total length
the filament segments. After a long transient period,

FIG. 12. Time evolution of the angle of the filament plane with respect to
arbitrary axis. Pluses are results from the simulation and the solid line is
solution of Eq.~18! with b51.45.

FIG. 13. Instantaneous configuration of the filament in the region clos
the meandering transition,b51.0.
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length attains a constant average value about which there
large fluctuations. Major filament annihilation events occ
when the newly formed filament segments are so small
they disappear soon after their formation. In addition
shrinkage of small filament segments, in this turbulent
gime we have observed occasionally the formation of
panding scroll rings. Expanding scroll rings near the me
dering transition have been observed earlier.25,27 Equations
~7! support expanding scroll rings if the coefficientb is nega-
tive, which may occur if the diffusion coefficients are n
equal.22

Since turbulent filament dynamics occur throughout
spherical volume, if the radius of the sphere is large eno
the surface to volume ratio will be small and the characte
the filament turbulence is expected to be similar for differe
geometries. However, for smaller spheres the dynamics
filaments which are connected to the surface will play a s
nificant role and we expect that the turbulent evolution w
depend on the geometry. To fully investigate this proble
studies of filament turbulence as a function of sphere s
must be carried out and compared with those for differ
geometries.

Filament instabilities have been studied in models of
citable media28 and in models of anisotropic cardiac tissue29

Filament turbulence has also been observed in the com
Ginzberg–Landau equation.30

V. DISCUSSION

For thin spherical shells the vortex filaments remain
tached to the inner and outer surfaces. In this quasi-t
dimensional case the mean number of spiral pairs tha
sphere with given radius can support may be determined.
thick spherical shells the filaments may detach from
smaller inner surface and the resulting dynamics may re
either in simple shrinkage or in turbulent filament dynami
depending on the system parameters.

Part of the motivation for the present study stems fro
the application of such scroll wave dynamics to the phys
ogy of cardiac arrhythmias. Although a real heart is inhom
geneous and has a very complicated geometry and loca

n
e

to

FIG. 14. Time evolution of the total length of the filament segments in
turbulent regime.
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namics, the problems studied in this paper are also
relevance for the heart. In particular, scroll waves are
lieved to play a role when the heart is in fibrillation or e
hibits flutter. It is then important to determine how ma
spiral waves the heart can support and to characterize
dynamics. The observation that scroll waves are only s
tained in a spherical shell of certain minimum size is cons
tent with the finding that a critical mass is essential to sus
ventricular fibrillation in a mammalian heart.31

While the topology of a real heart is quite complex a
differs from that of a simple spherical shell due to t
‘‘holes’’ arising from valves and veins, some of the princip
features of scroll wave dynamics are best elucidated
studying more simple dynamics in simple geometries, s
as the spherical shell considered here. One may build on
understanding of the dynamics presented here by exten
such simple models to include more complicated featu
such as holes, varying shell thickness, or inhomogenietie
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