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Electrical heterogeneities play a role in the initiation of cardiac arrhythmias. In certain
pathological conditions such as ischaemia, current sinks can develop in the diseased
cardiac tissue. In this study, we investigate the effects of changing the amount of
heterogeneity and intercellular coupling on wavefront stability in a cardiac cell culture
system and a mathematical model of excitable media. In both systems, we observe three
types of behaviour: plane wave propagation without breakup, plane wave breakup into
spiral waves and plane wave block. In the theoretical model, we observe a linear decrease
in propagation velocity as the number of heterogeneities is increased, followed by a rapid,
nonlinear decrease to zero. The linear decrease results from the heterogeneities acting
independently on the wavefront. A general scaling argument that considers the degree of
system heterogeneity and the properties of the excitable medium is used to derive a
dimensionless parameter that describes the interaction of the wavefront with the
heterogeneities.
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*A
1. Introduction

Each heart beat is associated with the propagation of an electrical wave through
the cardiac tissue in a coordinated manner. The wave of activity moves through a
heterogeneous tissue at both the macroscopic and microscopic scale. Never-
theless, in healthy tissue, the electrical conduction occurs as if through a
homogeneous medium. Certain pathological states, such as ischaemia, fibrosis
and cardiac sarcoidosis, can change the anatomical properties of the tissue and
the dynamical properties of the cardiac impulse, heightening the impact of
heterogeneities on wave propagation. Conditions in which the inception or
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propagation of the cardiac impulse is abnormal can lead to cardiac arrhythmias
(de Bakker et al. 1988; Kawara et al. 2001; Hsia & Marchlinski 2002).

A common cause of cardiac arrhythmias are reentrant waves (Grant &
Whalley 1998). A reentrant circuit involves a pathway that bifurcates into two
branches. One pathway is blocked to anterograde conduction, but is excited in a
retrograde fashion by the electrical impulse that travels through the unblocked
path. Spiral waves have also been seen in cardiac tissue and preparations with no
anatomical obstacle (Pertsov et al. 1993; Witkowski et al. 1998; Bub et al. 2002).
The rotating waves of excitation have similar properties to the spiral waves seen
in models of excitable media. In particular, wavebreaks in models of excitable
media can generate spatiotemporal patterns similar to rotating waves of
excitation associated with certain cardiac arrhythmias (Allessie et al. 1973;
Winfree & Strogatz 1984; Pertsov et al. 1993). Accordingly, wavefront stability
has been studied extensively in models of excitable media.

Wavebreak can occur both in homogeneous (Karma 1993) and heterogeneous
(Bub & Shrier 2002) systems. Of particular interest to the present investigation
is the effect of heterogeneities on the stability of propagating waves (Starobin
et al. 1996; Bub et al. 1998, 2002; Xie et al. 2001; Bub & Shrier 2002). In a model
of atrial fibrillation, wavelets of excitation propagate around areas of conduction
block resulting from spatially fixed differences in refractory time (Moe 1964).
Alternatively, anatomical obstacles with a space scale of comparable size relative
to the wavefront may also result in a broken wave (Starobin et al. 1996; Bub &
Shrier 2002). Such large obstacles are fortunately not seen in healthy tissue.
However, in ischaemic tissue where blood flow has been compromised, cell death
and/or a reduction in cell-to-cell connectivity can occur. As a result, wave
stability is diminished by local asymmetries in cell coupling and by the
heterogeneity associated with cellular death (de Bakker et al. 1988). In extreme
cases, a considerable reduction in blood flow can cause a myocardial infarction
where large areas of tissue death force electrical waves to navigate through tissue
with considerable anatomical heterogeneity (de Bakker et al. 1988, 1993).

Previous studies from our group and others (Bardou et al. 1996; Bub & Shrier
2002; Panfilov 2002; Arutunyan et al. 2003; Bub et al. 2003; ten Tusscher &
Panfilov 2003) have investigated the effects of varying connectivity, cell density
and obstacle size on wavefront stability in experimental and theoretical systems.
In the present work, we investigate the effects of changing the number of
heterogeneities on planar wavefront stability in a cardiac cell culture system and
a mathematical model of excitable media. In both the experimental and
theoretical systems, we observe three types of behaviour as parameters are
varied: plane wave propagation without breakup, plane wave breakup into spiral
waves and propagation block. In the theoretical model, we observe a linear
decrease in propagation velocity as the number of heterogeneities is increased,
followed by a rapid, nonlinear decrease in propagation velocity to zero.
2. Experimental results

Heart cell monolayers are thin layers of tissue grown in culture dishes from
embryonic or neonatal cardiac cells. Cardiac cells from very young animals have
the capacity to easily form gap junctional connections with neighbouring cells in
Phil. Trans. R. Soc. A (2006)



1301Role of heterogeneities in propagation
culture. After a few days in culture, embryonic cardiac cells are capable of
supporting propagating waves of excitation over long distances. Cardiac
monolayers allow controlled environments for studying conduction on micro-
scopic and macroscopic scales.

In brief (Bub et al. 2003), cardiac monolayers are created by enzymatically
isolating chick embryonic ventricular heart cells and plating them on an
appropriate substrate for 72 h in maintenance medium 818a at 36 8C. In the
present study, cells were plated on glass cover-slips treated with varying
amounts of collagen (rat tail collagen Type 1, BD Biosciences, 8–1 mg cmK2) and
were loaded with a calcium sensitive dye to monitor activity. The calcium
sensitive dye Calcium Green (5 mM, loaded for 30 min) was used to allow long
recording times with high signal to noise ratios while minimizing phototoxic
damage.

The activity was monitored using the macroscope-based optical mapping
system discussed in Bub et al. (2003). The macroscope was used to perform low
light level measurements at low-magnification scales (objective: Nikon 80 mm,
imaging lens Chromicar Zoom 130, excitation filter 460 nm, dichroic beamsplitter
at 510 nm, imaging filter 540 nm, Omega optical). Images were collected using a
cooled charge-coupled device (CCD) camera (Princeton Instruments, Model TE
CCD 576) at 20 frames per second. Adjacent pixels in the CCDwere binned (2!2)
and consecutive images were transferred to a computer for storage and analysis.
Image data from each binned pixel was scaled based on its maximal range over 20
frames and the image was spatially averaged, background subtracted and viewed
using CUSTOM-WRITTEN software.

Figure 1 presents fluorescent images captured at 100 m intervals at each
concentration of collagen. At high levels of collagen, monolayers display planar
waves with no wavebreaks (figure 1a,b). For intermediate levels of collagen
(figure 1c) we observe wavebreaks that result in reentrant activity. For low levels
of collagen, monolayers display numerous holes and heterogeneities. Waves are
fractured and form irregular shaped activation fronts (figure 1d ). Activation
fronts frequently break and form partial reentrant circuits, but fail to propagate
throughout the whole medium.

The experimental data provides a challenge for theory. The collagen can affect
the wave propagation in several different ways. Low collagen results in cells
having a relatively higher affinity for cells than the cover-slip, which produces
local variations in cell density. This may produce high-density regions that
require more current to be excited than low-density regions, as well as low
regions that are poorly connected to neighbouring cells. In addition, wavefront
propagation may be affected by several other factors including local changes in
ionic currents and indirect effects that might arise as a consequence of altered
propagation velocity through the medium. In this study, we focus on the effect of
high-density regions on the stability of the advancing wavefront by adding
current sinks to a simple model of excitable media.
3. Mathematical model

The dynamics of wave propagation in inhomogeneous systems has been studied
by analysing the movement of current between regions of current sinks and
Phil. Trans. R. Soc. A (2006)



Figure 1. Activity of cardiac monolayer preparations at different collagen substrate concentrations.
Arrows in each panel show the direction of propagation for each wavefront and bars show the
location of wave block. Images image an 8 mm2 area of the monolayer. (a) 8 mg cmK2 of collagen;
planar wave propagates from top left to bottom right. (b) 4 mg cmK2 collagen; planar wave
propagates from bottom left to top right. (c) 2 mg cmK2 collagen; planar wave blocks and splits into
two wavefronts (100 ms), one wavefront blocks and the other forms a reentrant circuit that
persists. (d ) 1 mg cmK2 collagen; small wavefronts appear but do not propagate throughout the
medium.
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sources (Shaw & Rudy 1997; Bub & Shrier 2002). Any region of tissue that drains
current from the wavefront can be defined as a current sink, while any region
that supplies current to its neighbours is defined as a current source. As the
propagating wave sources current to its neighbours, its neighbours become
activated and the wavefront is propagated. The effect of a current sink on the
wavefront depends in part on the connectivity between cells. In the case of low
connectivity, the sink drains less current from the propagating wave causing the
wavefront to be stabilized (Wang & Rudy 2000).

To simulate cardiac tissue, we make use of the nonlinear partial differential
FitzHugh–Nagumo (FHN) equation. This prototypical model of excitable media,
coupled to the diffusion equation, is given by

vv

vt
ZKwKvðvKaÞðvK1ÞCV$DVvCI ðrÞ; ð3:1Þ

vw

vt
Z eðbvKgwKdÞ; ð3:2Þ

where D is the diffusion coefficient and I(r) is an applied perturbation at the
position r. The time course of the fast variable v in response to a supra-threshold
stimulation has a similar form to the action potential of certain biological tissues.
Phil. Trans. R. Soc. A (2006)



1303Role of heterogeneities in propagation
Owing to this property, in addition to the model’s simplicity which allows for
efficient computational and analytical explorations, many theoretical investi-
gations of wavefront stability and propagation have used the FHN equations or
its derivates as their model system (Glass & Josephson 1995; Aliev & Panfilov
1996; Rabinovitch et al. 1999; Berenfeld et al. 2001; Arutunyan et al. 2003).
While there is no direct relation between variables of the FHN system and the
biophysical properties of a cardiac cell, the variable v can be loosely associated
with a cell’s electrical potential and the slow variable w with the permeability
of the cell’s ion channels. The parameter values used in this investigation are
aZ0.02, bZ0.5, gZ1.0, dZ0.0 and eZ0.01. Simulations were run using a
diffusion coefficient of 0.0007 cm2 sK1 unless otherwise stated.

A two-dimensional sheet of cardiac tissue was simulated with a no-flux
boundary condition. The computation used a forward time centred space finite-
difference approximation, carried out on an N!N array, where NZ200. The
tissue was taken to be isotropic, with a constant space step of 0.02 cm; the time
integration step was 0.1 ms. To elicit a planar wavefront to move across the
lattice, a current (a perturbation) was applied along the left boundary with a
magnitude of IZ1.0 for 100 time units. Simulations were run until all cells had
returned to their resting state following the initial perturbation or until the
30 000th time-step.

In this study, the effects of electrical heterogeneity on wave propagation were
explored. Since the above represents an electrically homogeneous system,
excitable cells were removed from the lattice and replaced with current sinks
in order to model a form of electrical heterogeneity. A current sink was defined as
a cell clamped at the globally stable steady state vZ0 and wZ0. Each current
sink remained electrically coupled to its four neighbours. Through the coupling,
the current sink could draw electrical potential from its active neighbours. The
current sinks were randomly chosen across the lattice using a uniform probability
distribution. Each node had an equally likely chance of being set as a current
sink. Nodes were selected at random until the desired sink density on the lattice
was obtained, with the density of current sinks varied across simulations.
(a ) Plane wave breakup in a heterogeneous medium

Computer simulations of the FHN system were first run with varying densities
r of current sinks for DZ0.0007 cm2 sK1. Note that r is equal to the number of
current sinks divided by the area of the system.

Three regimes were observed as the number of current sinks was increased.
At low heterogeneity (approx. r!42.5 cmK2) the plane wave propagates
across the lattice without the plane wave breaking up into spiral formations or
being blocked. While the current sinks produced small irregularities in the
wavefront, the wave of excitation maintained an approximately planar geometry.
For example, as the wavefront moved over a region containing current sinks, the
excitable cells in close proximity to the sinks would not be excited because of the
large amount of current being drained in that region. This would result in a
transient break in the wavefront. If the group of current sinks was sufficiently
small, the resulting wavebreak would gradually be filled by the diffusion of
excitation between excitable nodes as the front continued towards the right
boundary. The formation of small transient breaks in the wavefront occurred
Phil. Trans. R. Soc. A (2006)
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Figure 2. Different wave patterns in the variable v described in equation (3.1) observed at three
different densities of current sinks r. The scale is given in the last column. (a) At rZ48.75 cmK2

a spiral wave, with its core in the lower left corner of the system was generated. The spiral
formation persisted until the 30 000th time-step at which point the simulation was stopped. Lines
in the panels indicate the form of the propagating spiral wave with the arrow head marking the end
of the spiral tail. (b) At rZ51.25 cmK2 plane wave breakup was observed. The resulting fragments
did not develop into stable spirals but moved towards the system’s boundary or were dissipated by
the current sinks. (c) At rZ60 cmK2 the plane wave was unable to propagate across the system.
Arrows in (b) and (c) indicate the direction of wave propagation. The images were taken at 100,
400 and 100 ms intervals for (a), (b) and (c), respectively.
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across the lattice wherever current sinks were located. Since the diffusion allowed
the holes produced by the sinks to be filled as the wavefront moved forward, the
stability of the wave was not compromised and plane wave breakup did not
occur.

At a current sink density of rZ42.5 cmK2, plane wave breakup into spiral
waves was first observed. For spiral formation to occur, a localized group of
current sinks must cause a sufficiently large wavebreak. The excitation must then
be able to propagate around the region containing the current sinks and back
towards a previously excited region. Effectively, the propagation of the planar
wave causes a directional asymmetry in the current sinks, which allows for a
unidirectional conduction block. As described above, this is a defining
characteristic of a reentrant circuit. A single heterogeneity is not sufficient to
generate reentry in our model. Rather, several nearby heterogeneities are
required to generate the substrate for reentry. Although we do not at the present
time have a quantitative description of the geometry of the cluster of
heterogeneities necessary to generate reentry, the effect of the distance between
heterogeneities is discussed in §3c. Figure 2a shows the dynamics observed at
100 ms intervals of a simulation run with rZ42.5 cmK2. A spiral formed in the
lower left corner of the lattice. The spiral formation persisted until the 30 000th
Phil. Trans. R. Soc. A (2006)



1305Role of heterogeneities in propagation
time-step at which point the simulation was stopped. Due to the relatively high
degree of heterogeneity in this system, the spiral arm contained several breaks
(see second panel from the left) which in this case did not generate additional
spirals.

Not all simulations run with current sink fractions of rO42.5 cmK2 resulted in
spiral formation. For spiral patterns to be generated, the randomly distributed
current sinks had to be arranged such that they produced a sufficiently large
wavebreak about which a spiral could form. If the region near the initial plane
wavebreak contained numerous current sinks, then the wave of excitation was
unable to generate a spiral. In this situation, the broken plane wave would continue
to propagate towards the right boundary with an approximately planar geometry.
In other cases, current sinks would cause portions of the plane wave to break into
fragments that would then propagate through the system. These fragments did not
necessarily develop into stable spirals, but would either move towards the system’s
boundary or would be dissipated by the system’s current sinks. The latter dynamic
is depicted in figure 2b where a value of rZ51.25 cmK2 was used.

Plane wave block was first observed with rZ60 cmK2. In plane wave block,
the current sinks drain enough current to prevent the wavefront from
propagating forward to excite upcoming cells. Figure 2c shows the dynamics
observed with rZ60 cmK2. Extensive fragmentation and disruption of the planar
wavefront can be seen. The irregularity in wavefront geometry becomes greater
as r is increased.
(b ) Effects of heterogeneity on wavefront propagation velocity: the linear regime

The electrical heterogeneities clearly impact on the propagation of the
wavefront. A decreased conduction is necessary to allow cells proximal to the
unidirectional block to recover their excitability and ultimately be reexcited by
the reentrant wave. Accordingly, any factor that decreases the plane wave’s
propagating velocity may increase the stability of a reentrant circuit and
stabilize spiral waveforms. Similarly, the intercellular coupling impacts on the
plane wave’s propagation velocity. To help characterize their influence on wave
propagation and stability, we analysed how the current sinks and intercellular
coupling affect the wavefront’s propagation velocity, vp.

vp was measured by recording the time course of the excitation variable v
along the columns xZ50 and xZ200. This gave 200 pairs of equally spaced points
perpendicular to the wavefront. The times at which the 400 cells were activated,
defined as reaching a value of vZ0.3 on the upstroke of the excitation profile,
were recorded. The vp for each pair of cells was computed as the distance between
the cells divided by the time between the activation of the two cells. When the
current sinks were positioned in a way that a recorded cell could not become
activated, the vp for the given pair was defined to be zero. The injection protocol
described above causes a transient acceleration of the plane wave as it moves to
the right. As a result, to compute vp, v was recorded at cells with xZ50 to allow
for the wave velocity to stabilize.

Figure 3 shows the measured mean vp of simulations run at a given r for
DZ0.0005, 0.0007, 0.0010 and 0.0012 cm2 sK1. For low levels of heterogeneity, there
is an approximately linear decrease in vp for increasing r. As r is further
increased, the data deviate from the linear trend, ultimately resulting in an
Phil. Trans. R. Soc. A (2006)
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Figure 3. The mean vp of the simulations run at a given r for DZ0.0005, 0.0007, 0.0010 and
0.0012 cm2 sK1. At low numbers of current sinks there is an approximately linear decrease in vp for
increasing r. The linear regime is followed by an abrupt transition to wave block. The transition
occurs at lower values of r asD is increased, suggesting decreased plane wave stability at increasedD.
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abrupt transition to wave block. The increased heterogeneity disrupts the
organization of the plane wave. For example, in the case of DZ0.0007 cm2 sK1,
the deviation becomes more apparent around rZ42.5 cmK2, corresponding to
where spiral formations were first observed, as described above. Interestingly, the
transition occurs at lower values of r as D is increased, suggesting decreased plane
wave stability at increased D. This result is further discussed below.

The linear decrease in vp for increasing r suggests that for low numbers of
current sinks, each sink is acting independently on the wavefront. To test this
hypothesis we proceeded as follows. We constructed a 200!200 lattice with no-
flux boundaries on the left and right borders and periodic boundary conditions
for the top and bottom. The periodic boundary conditions connect the bottom
nodes (yZ1) with the top nodes (yZ200) by diffusion, making the lattice
effectively a cylinder with its axis parallel to the x-axis. As a result, the
y-coordinate becomes arbitrary. With the above periodic boundary conditions
a single current sink was placed on the lattice at xZ1. Using DZ0.0007 cm2 sK1,
a plane wave was initiated using the same protocol as above and the average
propagation velocity between columns xZ50 and xZ200 was computed. The
horizontal position of the current sink was incremented by one, the simulation
run and vp computed as before. This procedure was continued until the end of the
lattice was reached. Combining the results of the simulations gives the average vp
that results from a single sink located at a given x-coordinate. The computed
profile of the decrement in vp (Dvp) relative to the vp in a homogeneous system
(rZ0) is shown in figure 4.

If we assume that the current sinks are uniformly distributed across the lattice
and that each sink acts independently on the wavefront, we can calculate the
expected propagation velocity v̂p as

v̂p Z v�p C0:022rY
XX
nZ1

f ðnÞ; ð3:3Þ

where v�p is vp in the homogeneous system (rZ0), r is the current sinks density,
f(n) is the computed profile given in figure 4, X and Y are the number of
horizontal and vertical lattice nodes, respectively, and 0.022 is the area of an
Phil. Trans. R. Soc. A (2006)
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Figure 5. The mean vp of simulations run with DZ0.0007 cm2 sK1 for given increasing values of the
current sink density r are given by the solid line. The dashed line represents the predicted vp for low
values of r given by equation (3.3). The dotted line shows the vp for increasing values of a global sink
imposed on all lattice points as described in the text. The values of the global sink have been scaled
by a factor of K12 500 so that they fit on the same x-axis as the other two data sets of the figure.
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individual lattice node. Using this equation we obtain v̂p as a function of r. The
predicted propagation velocity along with the measured propagation velocity is
shown in figure 5. There is an extremely close fit of the theoretical expression to
the data over a limited range of densities of sinks. Thus, we believe that for low
sink densities, the assumptions underlying the derivation of equation (3.3) are
valid and that each sink is exerting a slowing of the velocity independent of the
other sinks. However, as the sink density increases, the velocity decreases more
rapidly. This regime is further discussed below.

A possible interpretation of our use of current sinks is that the current sinks
act locally to decrease the excitability of the surrounding region. This suggests
that the current sinks may be equivalent to uniformly decreasing the excitability
in all cells. To address this possibility, simulations were carried out on a
homogeneous system (rZ0) while applying a uniform, global sink to all nodes
in the lattice. This was done by setting I(r) of equation (3.1) to a non-zero value
at each lattice position for the duration of the simulation. As the size of global
sink was increased, a linear decrease in propagation velocity was observed.
Phil. Trans. R. Soc. A (2006)
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At I(r)zK0.0012, the plane wave could no longer propagate and wave block
occurred. As expected, spiral wave formation was not observed for any value of
the global sink. The linear decrease in propagation velocity produced by
increasing the magnitude of the global sink is shown in figure 5.

(c ) A dimensionless number characterizing wave breakup in heterogeneous
excitable media

In order to gain insight into the underlying mechanism of the breakup, we
identify a dimensionless number that reflects both the heterogeneity as well as
the properties of the excitable medium. In the present simulations, a single
isolated heterogeneity generates a transient wavebreak that seals once the wave
propagates some distance from the heterogeneity. If we assume that wavebreaks
only persist due to the interaction of the wave with more than one heterogeneity,
we can define two relevant time-scales. One relates to the time it takes a wave to
propagate the average distance between heterogeneities. In excitable media, the
velocity of propagation is proportional to

ffiffiffiffiffiffiffiffiffi
D=t

p
where D is the diffusion

coefficient and t is the rise time of the excited phase (see p. 236 in Winfree 1993).
Consequently, the transit time of the excitation between heterogeneities is
proportional to

ffiffiffiffiffiffiffiffiffiffiffi
t=rD

p
, where r is the current sink density as defined above. The

other relevant time-scale is the refractory period R, which is approximately equal
to the duration of the active phase of the excitation. Dividing the two time
constants, we obtain the dimensionless parameter

sZR

ffiffiffiffiffiffiffi
rD

t

r
: ð3:4Þ

We believe that s captures the features governing the interaction of the
propagating wave with the heterogeneities, and that consequently, there will be
similar qualitative properties in the dynamics for the same values of s. To
support this, keeping the kinetics of the FHN model constant gives Rz90 ms and
tz24 ms, but varying D and r we find from figure 3 that the value of s where
breakup occurs is sz0.10, 0.10, 0.11 and 0.11 for DZ0.0005, 0.0007, 0.0010 and
0.0012 cm2 sK1, respectively.

Thus, as diffusion and heterogeneity vary, the breakup of the wave appears to
occur at approximately constant values of s. Although our current interest is in
wave propagation in heterogeneous cardiac tissue, we believe that the current
characterization of the instability should have implications for wave propagation
in other heterogeneous excitable media. However, the constant value of s in the
present study assumes that more than one heterogeneity is required to generate
reentry, that different heterogeneities have equivalent effects on wavefront
stability and that the diffusion coefficient and refractory period do not modify
wavefront stability in the absence of heterogeneities. Thus, further studies are
required to test this relationship in other types of excitable media and with other
types of heterogeneities.
4. Discussion

In this study, we investigated two systems with randomly distributed
heterogeneities: an experimental cardiac monolayer system, where
Phil. Trans. R. Soc. A (2006)



1309Role of heterogeneities in propagation
heterogeneities were added by altering the adhesive substrate and a theoretical
model where heterogeneities were modelled by randomly distributed sink cells. In
both the experimental and model systems, we observed transitions from stable
waves to spiral waves to block as the degree of heterogeneity was increased.

In the theoretical model, we examined the impact of the current sinks on vp
and intercellular coupling on propagation. At low values of r, we observe a linear
decrease in vp as r was increased. In this linear regime, the current sinks act
independently on the wavefront to decrease vp. By summing the individual effects
of current sinks at a given x-coordinate, we were able to predict the decrease in vp
using equation (3.3), suggesting that the current sinks act independent of each
other at low r. Our prediction slightly overestimated the effect of the current
sinks on vp. The overestimation may be a result of using periodic boundary
conditions to construct the profiles given in figure 4 compared to the no-flux
boundaries of the initial simulations.

Following the linear regime, there is an abrupt transition towards wave block.
This transition was observed in simulations for all values of D tested.
Interestingly, this transition occurred at different sink densities, with wavebreak
occurring more readily at the higher D. We account for the paradoxical decrease
of wavefront stability by deriving a dimensionless scaling parameter s (equation
(3.4)). Since the variables used to derive equation (3.4) are common to all
excitable media with randomly distributed heterogeneities, we expect to see this
scaling relationship in a wide variety of excitable systems. Paradoxical increases
in spiral wave stability were reported by Panfilov (2002) in an excitable media
with local variations in connectivity and ten Tusscher & Panfilov (2003) in
excitable media with randomly distributed heterogeneities. In both cases,
increased stability was attributed to increased spiral period. Decreased
connectivity has also stabilized waves in the presence of spatial heterogeneity
(Rohr et al. 1997) and decreased excitability (Shaw & Rudy 1997); however, in
these cases wavefront stabilization was accounted for by an analysis of current
sources and sinks.

The present results on wave speed as a function of sink density are qualitatively
similar to simulation results obtained on a one-dimensional strand of cardiac
cells where excitability was varied (Shaw & Rudy 1997). The addition of
current sinks in our model may be interpreted as lowering the local excitability
of the lattice, which suggests that the results shown here may be equivalent
to decreasing excitability equally in all cells. Simulations where a global sink
current was applied to all cells in the simulation display a similar reduction in
propagation velocity and eventual block without spiral wave formation.

In other experimental and theoretical systems, the scaling relationship defined
in equation (3.4) does not appear to hold. Notably, the cardiac monolayer
preparation displays increased wavebreaks as connectivity is decreased (Bub
et al. 2002). A possible explanation for this discrepancy is that a monolayer with
low-connectivity and a large number of heterogeneities is more appropriately
modelled by a discrete system. Simulations with discrete cellular automata
models display similar behaviour to the results found in monolayer experiments
(Bub et al. 1998, 2002; Bub & Shrier 2002).

The present study has several limitations. First, we simulate local
heterogeneity by adding current sinks, which greatly oversimplifies the effects
of varying the collagen substrate on propagation. Alternative approaches, such
Phil. Trans. R. Soc. A (2006)
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as modelling heterogeneities as holes, or modelling the effects of local changes in
connectivity, should be assessed in the context of the present work. Second, the
FHN model does not directly simulate ionic currents that are known to affect
wave speed and wave stability. The simulation results in this paper should be
confirmed in ionic models of cardiac conduction.

In conclusion, the effect of randomly distributed heterogeneities on wave
stability was characterized as a function intercellular coupling and heterogeneity
density. We propose a new dimensionless parameter to characterize the
interaction of the propagating wave with the heterogeneities. While this work
made use of a simple model of cardiac tissue, the mechanism should be applicable
to the study of wave propagation in other heterogeneous excitable media.
Editors’ note

Please see also related communications in this focussed issue by Fink et al. (2006)
and Marée et al. (2006).

The authors thank Katrin Rohlf for helpful comments. This research has been supported by
funding from the Canadian Heart and Stroke Foundation, CIHR, MITACS and the NIH National
Center for Research Resources.
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