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A fundamental problem in functional genomics is to determine the structure and dynamics of genetic networks based
on expression data. We describe a new strategy for solving this problem and apply it to recently published data on
early Drosophila melanogaster development. Our method is orders of magnitude faster than current fitting methods
and allows us to fit different types of rules for expressing regulatory relationships. Specifically, we use our approach to
fit models using a smooth nonlinear formalism for modeling gene regulation (gene circuits) as well as models using
logical rules based on activation and repression thresholds for transcription factors. Our technique also allows us to
infer regulatory relationships de novo or to test network structures suggested by the literature. We fit a series of
models to test several outstanding questions about gap gene regulation, including regulation of and by hunchback and
the role of autoactivation. Based on our modeling results and validation against the experimental literature, we
propose a revised network structure for the gap gene system. Interestingly, some relationships in standard textbook
models of gap gene regulation appear to be unnecessary for or even inconsistent with the details of gap gene
expression during wild-type development.
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Introduction

The segmented body pattern of Drosophila melanogaster is
established by the expression of segmentation genes during
the blastoderm stage of development (reviewed in [1,2]). The
polarity of the embryo along its anterior–posterior (A–P) axis
is established by maternal gradients of the Bicoid (Bcd),
Hunchback (Hb), and Caudal (Cad) transcription factors
(Figure 1A–1C). The trunk gap genes, hunchback (hb), Krüppel
(Kr), knirps (kni), and giant (gt), are among the earliest targets of
these maternal gradients. They show broad, overlapping
expression domains (Figure 1E–1H). Gap genes together with
maternal factors then regulate the expression of downstream
targets, such as pair-rule and segment-polarity genes, which
establish the segmental periodicity of the Drosophila body plan.

The gap gene network has been studied extensively by
means such as the analysis of transcription factor binding sites
on the DNA and the measurement of gene expression under
wild-type andmutant conditions. These studies are the basis of
qualitative regulatory models (e.g., [3,4]), which assert activat-
ing or repressing regulatory relationships between genes.
These models provide a useful summary of the interactions
within the network. However, ambiguities in the primary data
can lead to different qualitative models. For example, if
deleting a gene A results in decreased expression of a gene B, is
A necessarily an activator of B? Or, could A be a repressor of
some other gene C, which in turn represses B? This particular
type of confusion has resulted in conflicting models of at least
two relationships in the gap gene system, regarding the effect
of Hb on Kr and the effect of Kr on kni. Qualitative models are
also limited in that they usually do not specify precisely how
conflicting regulatory signals (e.g., activation and repression)
are resolved, leaving one without means for predicting the
results of genetic or pharmacological interventions, for

example. Further, qualitative models typically provide little
or no explanation of the timing or dynamics of expression,
which are key questions in processes such as development.
The increasing availability of quantitative gene expression

data raises the possibility of detailed mathematical modeling
of the regulatory relationships between genes. Indeed, recent
work has shown that model parameters and even the
existence of regulatory relationships can be automatically
inferred from expression time series data [5–9]. Quantitative
models can sometimes resolve ambiguities in qualitative
models, offer much more specific predictions, and allow in-
depth analysis of temporal changes in expression and the
dynamical roles of regulatory relationships. For example,
recent work on the gap gene system [6] has highlighted
previously unappreciated effects of known regulatory rela-
tionships in shifting the expression domains of Kr, kni, and gt.
Unfortunately, fitting quantitative dynamical models can

be computationally challenging. Only two techniques [5,10–
12] have so far proven capable of fitting satisfactory models of
the spatio–temporal segmentation gene expression data that
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we study, and both involve very long running times. Fitting all
the models for the recent Jaeger et al. study [6,7], for example,
which was done by parallel simulated annealing [5,10,11],
required an estimated 20,000 CPU hours, or approximately
two CPU years. Because of these intensive computing
requirements, alternative regulatory explanations were not
explicitly explored, and it has not been established whether
previously proposed regulatory models (e.g., [3]) are equally
capable of capturing the data. Long fitting times also make it
difficult to explore alternative mathematical forms for the
model. Gene regulation is an enormously complex process,
and it is unclear in general how much of the biochemistry can
be simplified away while retaining the key properties of the
system. At a coarse level, the behavior of some genetic
networks appears adequately captured by Boolean (on/off)
models of gene expression [13–15]. However, detailed analysis
of some genes has revealed more complex behavior which
may well be functionally relevant [16,17]. Thus, it is advanta-
geous to be able to easily experiment with different forms of
models.

We use a novel strategy for fitting networkmodels to spatio–
temporal gene expression data that is compatible with a
variety of modeling formalisms and, by combining function
approximation techniques with simulation-based optimiza-

tion, is vastly faster than previous methods [5,10–12]. The
increased efficiency of the algorithm enables the fitting of
many more models, allowing us to explore alternative
modeling formalisms and assumptions about regulatory
relationships between genes. We applied this strategy to fit
four models to gap gene expression data [18]. Together, these
models demonstrate different modeling formalisms and
address alternative regulatory explanations for gap gene
expression. Specifically, we show that both a smooth nonlinear
representation of gene regulation (gene circuits [5–7]) and a
discontinuous logical formalism based on activation and
repression thresholds are capable of reproducing the ob-
served gap gene expression dynamics, and that such models
can efficiently be fit to the data. We show that it is possible to
infer the activating and repressing relationships between
genes directly from the data, as well as to test specific network
structures, namely the model of Rivera-Pomar and Jäckle [3].
We find that the Rivera-Pomar and Jäckle model does not
correctly capture all the major features of gap gene expression
and requires additional regulatory links. Further, our opti-
mizations consistently eliminate certain links in the Rivera-
Pomar and Jäckle model, suggesting that those links are
incorrect. (In Protocol S1, we also report on fits using themore
recent but similar Sanchez and Thieffry network structure [4],
and find similar conclusions.) We summarize our findings in a
Combined network model that includes a core of regulatory
relationships found in all of our models in addition to
regulatory relationships that are supported by some models
and that are consistent with other experimental work.

Results/Discussion

Modeling Gap Gene Expression Dynamics
Gap gene expression is established in the trunk region of

the embryo, indicated by the black bars in Figure 1, during
cleavage cycles 13 and 14A (before cellularization), a span of
approximately 70 min. We model the wild-type expression of
the four trunk gap genes, hb, Kr, kni, and gt (Figure 1C and 1E–
1H). We do not model the expression of bcd, cad, or tailless (tll),
a terminal gap gene (Figure 1A, 1B, and 1D). However, we
allow the observed expression values for these genes to act as
regulatory input to our models of the trunk gap genes.

Figure 1. Maternal and Gap Gene Expression

(A–C) Drosophila embryos at early blastoderm stage (cleavage cycle 13) fluorescently stained for Bcd (A), Cad (B), and Hb (C) protein.
(D–H) Drosophila embryos at late blastoderm stage (late cleavage cycle 14A) fluorescently stained for Tll (D), Hb (E), Kr (F), Kni (G), and Gt (H) protein.
Anterior is to the left, dorsal is up. Black bars indicate the A–P extent we model.
(I–L) Mean relative gap protein concentration as a function of A–P position (measured in percent embryo length) for Hb (I), Kr (J), Kni (K), and Gt(L).
Expression levels are from images and are unitless, ranging from 0 to 255. Images and expression profiles are from the FlyEx database [18]. Embryo IDs:
bd3 (A,B), hz30 (C), tb6 (D), kf9 (E), kd17 (F), fq1 (G), nk5 (H).
DOI: 10.1371/journal.pcbi.0020051.g001
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Synopsis

Modeling dynamical systems involves determining which elements
of the system interact with which, and what is the nature of the
interaction. In the context of modeling gene expression dynamics,
this question equates to determining regulatory relationships
between genes. Perkins and colleagues present a new computa-
tional method for fitting differential equation models of time series
data, and apply it to expression data from the well-known
segmentation network of Drosophila melanogaster. The method is
orders of magnitude faster than other approaches that produce fits
of comparable quality, such as Simulated Annealing. The authors
show that it is possible to detect interactions de novo as well as to
test existing regulatory hypotheses, and they propose a revised
network structure for the gap gene system, based on their modeling
efforts and on other experimental literature.
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Expression of these genes is largely invariant along the
dorsal–ventral axis of the embryo. Thus, we model expression
as a function of time and of position along the A–P axis
(Figure 1I–1L). At the start of cleavage cycle 13, there is some
hb expression in the anterior, due to maternally deposited hb
mRNA. There is no unambiguously detectable expression for
the other three gap genes. By the end of cleavage cycle 14A,
there are six main gap expression peaks, two each for hb and
gt and one each for Kr and kni.

We represent gap gene dynamics using a reaction–diffusion
partial differential equation [12]:

@vaðx; tÞ
@t

¼ fðtÞPaðvðx; tÞÞ � kavaðx; tÞ þ Da @
2vaðx; tÞ
@x2

; ð1Þ

where va(x,t) denotes the relative concentration of gap
protein a (unitless, ranging from 0 to 255) at space point x
(from 35% to 92% of embryo length) and time t (0 min to 68
min after the start of cleavage cycle 13). The three terms on
the right-hand side account for production, decay, and
diffusion of protein, respectively. ka and Da are decay and
diffusion rates. The model combines the processes of tran-
scription and translation into a single production process. Pa

specifies the production rate of protein a, as a function of the
vector of concentrations of all proteins (including Bcd, Cad,
and Tll) at the same point in space and time, v(x,t). The factor
f(t) accounts for changes in transcribing gene density, due to
the shutdown of transcription during mitosis [19] and due to
the doubling of nuclei (see Materials and Methods for details).

We fit a total of four models, resulting from two different
choices for the form of the production rate functions, Pa, and
two different sets of constraints on the regulatory relation-
ships between genes. The first model uses a gene circuit
formalism identical to the one used by Jaeger et al. [6,7] for
the production rate functions.

Paðvðx; tÞÞ ¼ Rag
X
b

Tabvbðx; tÞ þ ha
 !

; ð2Þ

where Ra is the maximum production rate, b ranges over
the seven genes fbcd, cad, hb, Kr, gt, kni, tllg, and
gðuÞ ¼ 1

2 ð uffiffiffiffiffiffiffiffi
u2þ1
p þ 1Þ. The regulatory weights, Tab, encode the

effect protein b has on the production rate of protein a. If
Tab . 0, then we interpret gene b as being an activator of
gene a. If Tab , 0, then we say it is a repressor. We place no
restrictions on the signs of the regulatory weights, so that the
optimization determines the qualitative regulatory relation-
ships between the genes. We call the resulting model Unc-GC,
for unconstrained gene circuit. Following Jaeger et al. [6,7],
we fix the bias, or offset, terms ha¼�3.5 for all a.

While our first model tests the feasibility of inferring
regulatory relationships de novo, our second model tests the
ability of an established regulatory model to reproduce the
data. In our second gene circuit model, regulatory relation-
ships are limited to those in the model of Rivera-Pomar and
Jäckle [3], with one exception. Rivera-Pomar and Jäckle did
not consider the posterior hb domain, and their regulatory
relationships cannot reproduce this domain (unpublished
data). So, we added Tll activation of hb, which was sufficient to
activate a posterior hb domain. We call this set of activation
and repression relationships the RPJ network structure. The
weights that represent these relationships are constrained to
be positive or negative for relationships that are respectively

activating or repressing. An additional complication in the
RPJ network structure is that Kr is activated by low levels of
Hb but repressed by high levels of Hb. We model this by
allowing two weights for describing the effect of Hb on Kr—a
positive weight that is multiplied by vhb(x,t) and a negative
weight that is multiplied by (vhb(x,t))2/255. We call the resulting
model RPJ-GC.
Previous analyses suggest that the general regulatory

principle of the gap gene system is that genes are activated
in broad regions by maternal gradients, but that repression
from other gap genes can locally overwhelm general
activation [3,7]. Our final two models rely on logical rules
for the production rate functions that implement this general
plan. Specifically, we assume that gap protein a is produced at
rate Ra if at least one of its activators exceeds an activation
threshold and none of its repressors exceed their repression
thresholds. For example, the rule

Phbðvðx; tÞÞ ¼
Rhb if ððvbcdðx; tÞ � 20Þor ðvhbðx; tÞ � 90ÞÞ

and ðvKrðx; tÞ � 140Þ
0 otherwise

8<
: ð3Þ

states that Bcd is an activator of hb, hb is autoactivating, and
Kr is a repressor. If there is enough Bcd or Hb and not too
much Kr, as determined by the activation and repression
thresholds, then there is production of Hb at the rate Rhb.
For our logical models, fitting the production rate

functions means finding values for the Ra and for the
activation and repression thresholds. We do not attempt to
optimize which relationships are activating and which are
repressing, although the optimization can change a threshold
so that the activating or repressing effect is effectively
eliminated. Our Unc-Logic model employs the regulatory
structure discovered by our unconstrained gene circuit fit,
except that we remove Gt activation of hb and Kni activation
of gt (see Materials and Methods for justification). Our RPJ-
Logic model uses the RPJ regulatory relationships.

Model Fitting
We fit all four models using the same general strategy

outlined in Figure 2 and described in greater detail in
Materials and Methods and Protocol S2. In short, the strategy
has three stages. Stage 1 produces an initial estimate of the
decay and diffusion parameters for each gene and the spatial
and temporal extents of protein production associated with
each expression domain, without any regulatory explanation
(Figure 2A and 2B). Stage 2 produces an initial estimate of the
regulatory parameters by attempting to fit the estimated
protein production rate at each space–time point (from Stage
1) in terms of the observed protein levels present (Figure 2C).
In Stage 3, all model parameters are optimized using a local
search procedure, starting from the initial regulatory, decay,
and diffusion parameter estimates produced in the first two
stages. The optimization approach we use in the third stage is
much simpler than the approach used by Jaeger et al. [5–
7,10,11]. However, if the initial parameter estimates are
sufficiently good, then it can produce results of comparable
quality and can do so relatively quickly.

Optimization Results
The observed expression data is shown in Figure 3A and

3B. Simulated gap gene expression from our best-fitting
models of each type is shown in Figure 3C–3F. The root mean
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squared errors (RMS error; see Materials and Methods) of
these models are, in order of best to worst, 12.29 (Unc-GC),
14.83 (Unc-Logic), 15.88 (RPJ-GC), and 21.91 (RPJ-Logic). The
Unc-GC and Unc-Logic models reproduce all six expression
domains in approximately the right locations and with
approximately the right timing (Figure 3C and 3D). The
RPJ-Logic model suffers a major failure. It begins to form, but
does not sustain, the posterior gt domain (Figure 3F). This
accounts for much of the difference in RMS error between
that model and the other four. The RPJ-GC model also
contains a significant error, although it eventually reproduces
all six domains. At the early time points, Kr production
extends through the whole front of the embryo (Figure 3E, t¼
11,24 min). Only later does repression from Hb eliminate

production in the anterior, so that Kr is expressed in the
correct region. The RPJ-GC model also creates a small
erroneous Kr domain in the posterior half of the trunk
(Figure 3E, t ¼ 62 min). This is discussed further below.
Summary of regulatory mechanisms in the models. The

exact parameters for the best-fitting models of each type can
be found in Protocol S3. The qualitative relationships they
represent, as well as the relationships in some previously
published models, are summarized in Figure 4A. Figures 5–8
provide detailed snapshots of the regulatory action between
genes at different times. The models agree on many of the
qualitative relationships between genes and never contradict
each other, in the sense of one model claiming a relationship
is activating while another claims it is repressing.

Figure 2. Outline of the Optimization Approach

In Stage 1, protein production associated to each domain is assumed to fall within a quadrilateral-shaped region of space–time (A) (darkness indicates
rate of production), whose boundaries are optimized so that simulated expression (B) matches observed data (Figure 3B).
In Stage 2, regulatory parameters are estimated by trying to fit the quadrilateral production regions (A) based on the observed levels of transcription
factors present at each space–time point (C).
In Stage 3, local search, starting from the parameter values estimated in Stage 2, is used to optimize a fully coupled partial differential equation model
of gene expression, so that simulated expression (Figure 3C–3F) matches observed expression (Figure 3B).
DOI: 10.1371/journal.pcbi.0020051.g002

Figure 3. Observed and Simulated Expression at Five Time Points

(A) Observed expression of bcd, cad, and tll, which are not modeled, but which are allowed to act as exogenous inputs to the trunk gap gene models.
(B) Observed expression of the trunk gap genes.
(C–F) Simulated expression produced by the models Unc-GC, Unc-Logic, RPJ-GC, and RPJ-Logic, respectively. The horizontal axis in each plot is A–P
position, ranging from 35% to 92% of embryo length. The vertical axis represents relative protein concentration corresponding to fluorescence intensity
from quantitative gene expression data [18] (units arbitrary).
DOI: 10.1371/journal.pcbi.0020051.g003
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Figure 4 also includes a Combined network model and
diagram, which represents our best estimate of the regulatory
relationships in the real system. The Combined model
includes a regulatory relationship if it was deemed significant
in all of our models or if it was significant in it at least some of
our models, performing a correct function, and is supported
by other experimental evidence, such as binding site analysis
or mutant or overexpression studies. Weights in a gene
circuit model are considered insignificant if they are smaller
than 0.0001 in magnitude. Terms in a logical model are
considered insignificant if their removal results in no change
in simulated expression. We adopted these stringent con-
ditions on insignificance because we preferred to make
decisions about weak/borderline interactions based on other
experimental evidence rather than, for example, choosing
some arbitrary threshold. (See the final paragraph of the
Results and Discussion section for more information.) The
regulatory structure of the Combined model is itself sufficient
to reproduce all six gap gene domains using either the gene
circuit or logical formalisms for production rate functions
(Protocol S4). We first cite support for our Combined model,
and then consider the results of the individual models in light
of several outstanding questions about gap gene regulation.
The maternal proteins Bcd and Cad are largely responsible

for activating the trunk gap genes, with Bcd being more
important for the anterior domains and Cad more important
for the posterior domains. Bcd is a primary activator of the
anterior hb domain [20,21], the anterior gt domain [22], and
the Kr domain [23,24]. Cad activates posterior gt [25]. The kni
domain is present in bcd mutants and in cad mutants, but not
in bcd;cad double mutants. This suggests redundant activation
by the two maternal factors. Such redundant activation of kni
is present in our Unc-GC model. For the other models, the
optimization selected one or the other as activators, but not
both. Tll is crucial for activating the posterior hb domain [26–
28], while it represses Kr, kni, and gt, preventing their

Figure 4. Regulatory Relationships in Our Models and Previously

Published Models

(A) Qualitative regulatory relationships in our four models after
optimization (Unc-Gc, Unc-Logic, RPJ-GC, and RPJ-Logic), a Combined
model (see text for details), and the relationships posed by Rivera-Pomar
and Jäckle (R-P & J) [3], Sanchez and Thieffry (S & T) [4], and Jaeger et al.
[6,7]. ‘‘þ’’ represents activation, ‘‘�’’ represents repression, ‘‘þ�’’
represents activation at low levels of the regulator and repression at
high levels, ‘‘�’’ represents no regulatory relationship. For Jaeger et al.,
‘‘0’’ represents a regulatory relationship that was eliminated by
optimization. For our models, we use ‘‘%’’ and ‘‘*’’ to denote activating
and repressing relationships, respectively, that were eliminated by
optimization. For the gene circuit models, a regulatory relationship was
considered eliminated if the corresponding weight was 0.0001 or less in
magnitude. For the logical models, an activation or repression term was
considered to be eliminated if removing it resulted in no change in
simulated expression.
(B) Diagram of the Combined network model. Boxes represent trunk gap
gene domains, with endings ‘‘-a’’ or ‘‘-p’’ denoting the anterior and
posterior domains, respectively, for hb and gt. Arrows (!) indicate
activation while T-connectors (

T

) represent repression.
DOI: 10.1371/journal.pcbi.0020051.g004

Figure 5. Simulated Gap Gene Expression, Production, and Regulatory Effects in the Unc-GC Model

(A) Simulated expression at five of the 10 times for which we have observed data.
(B–E) Production rates of Hb, Kr, Gt, and Kni, respectively, as a fraction of maximum (black curve) along with the production rate that would result when
individual regulatory inputs are removed (colored curves). For example, in the plot for Hb at time t¼ 62 min, the yellow curve below the black curve
shows what the production rate of Hb would be if, at that moment, Hb autoactivation were removed from the model, and the red curve shows what
the production rate would be if repression by Kni were removed.
DOI: 10.1371/journal.pcbi.0020051.g005
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expression in the extreme posterior [22,29–34]. All the
regulatory relationships between the gap genes in our
Combined model are repressive. The complementary gap
gene pairs, hb–kni and Kr–gt are strongly mutually repressive
[22,32,35–38], as was found in nearly all of our models.
(Repression of hb by Kni is not part of the RPJ regulatory
relationships, but our Unc-GC and Unc-Logic models
included the link.) Our models also suggest that mutual
repression between hb and Kr helps to set the boundary
between those two domains [38–41]. A chain of repressive
relationships, hbagtakniaKr [6,7], causes the shifts in the Kr,
kni, and posterior gt domains. Autoactivation by hb is well-
established [42], and there is also some evidence for
autoactivation by Kr [43] and gt [22].

Does Hb have a dual regulatory effect on Kr? There is a
long-running debate about whether or not low levels of Hb

activate Kr. In hb mutants, the Kr domain expands anteriorly,
suggesting that Hb represses Kr [39]. However, Kr expression
in these mutants is lower than in wild-type [31] and expands
posteriorly in embryos overexpressing Hb [36]. Further, in
embryos lacking Bcd and Hb, the Kr domain is absent, but can
be restored in a dosage-dependent manner by reintroducing
Hb [44,45]. These observations suggest that Hb activates Kr. It
has been suggested, therefore, that low levels of Hb activate
Kr while high levels repress it [36,44,45]. An alternative
explanation, however, is that the apparently activating effects
of Hb are indirect, via Hb’s repression of kni and Kni’s
repression of Kr [7]. Optimization of the Unc-GC model,
which could have resulted in activation or repression of Kr by
Hb, but not both, resulted in repression (Figure 4A). The RPJ
models allow for a dual effect, but activation by Hb was
eliminated during optimization of the RPJ-Logic model. The

Figure 6. Simulated Gap Gene Expression, Production, and Regulatory Effects in the Unc-Logic Model

In each plot in columns B–E, the black bar indicates the spatial extent of production. Colored bars above the black bar represent regions in which the
corresponding activatory input is above threshold (at least one activator must be above threshold for production to occur). Colored bars below the
black bar represent regions in which the corresponding repressive input is above threshold (production only occurs if no repressors are above
threshold).
DOI: 10.1371/journal.pcbi.0020051.g006

Figure 7. Simulated Gap Gene Expression, Production, and Regulatory Effects in the RPJ-GC Model

DOI: 10.1371/journal.pcbi.0020051.sg007
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RPJ-GC model retained functional activation and repression
of Kr by Hb. However, Kr expression in this model is
defective. Kr is not properly repressed in the anterior (Figure
3E, t ¼ 11,24 min). Further, Kr is ectopically expressed in a
small domain in the posterior of the embryo (Figure 3E, t¼62
min and Figure 7C, t¼ 62 min). Thus, our models provide no
support for activation of Kr by Hb. The only support we find,
which is crucial in all models except Unc-Logic and also
consistent with the mutant and overexpression studies cited
above, is for repression of Kr by Hb.

What represses hb between the anterior and posterior
domains? Another point of disagreement in the literature is
what prevents the expression of hb between its two domains.
In the model of Rivera-Pomar and Jäckle [3], repression by Kr
is the explanation. Our RPJ models confirm that this
mechanism is sufficient. Specifically, in these models Kr
repression prevents hb expression just to the posterior of the
anterior hb domain (Figures 7B and 8B, t ¼ 37,49,62 min).
Between the Kr and posterior hb domains, there is no explicit
repression of hb. Rather, Hb is not produced simply because
of a lack of activating factors. In contrast, the models of
Jaeger et al. [6,7] detected no effect of Kr and attributed
repression solely to Kni. Our Unc-GC and Unc-Logic models
found repression by Kni, but in addition to repression by Kr,
not instead of it (Figures 5B and 6B). Kr is more responsible
for repression near the anterior hb domain and Kni is more
responsible for repression near the posterior hb domain. This
is consistent with observations of expression in mutant
embryos. Embryos mutant for Kr show slight expansion of
the anterior hb domain [38], while kni embryos show
expansion of the posterior hb domain [39]. In Kr;kni double
mutants, hb is completely derepressed between its two usual
domains [38]. This suggests, as seen in our Unc-GC and Unc-
Logic models, that Kr and Kni are both repressors of hb, that
their activity is redundant in the center of the trunk, and that
Kr and Kni are the dominant repressors for setting the
boundaries of the anterior and posterior domains, respec-
tively. This interpretation was also favored by Jaeger et al.
[6,7], on the basis of the mutant data, even though their
models did not find repression by Kr.

The posterior hb domain. In all of our models, the posterior
hb domain is activated by Tll and sustained by Tll and hb
autoactivation (Figures 5–8B, t¼ 37,49,62 min). Rivera-Pomar
and Jäckle [3] did not consider the posterior hb domain, and
did not include activation by Tll in their model. We added
that link to the RPJ network structure because otherwise it
was not possible to capture the posterior hb domain
(unpublished data). The model of Jaeger et al. [6,7] captured
the domain without Tll activation by substituting activation
from cad. However, there is no confirming evidence for such
an interaction. The absence of posterior hb in tll mutants [26–
28] and the inability of our models to explain posterior hb by
other means, leads us to believe the straightforward hypoth-
esis that Tll activates posterior hb. Posterior hb is unique in
that the domain begins to form later than the other five
domains we model (Figure 3B, t¼ 37 min). In our RPJ models,
this happens simply because high levels of Tll are needed to
activate hb—levels that are reached only at about t ¼ 30 min
(Figure 3A, t ¼ 24,37 min). The Unc-GC and Unc-Logic
models also employ repression by Cad to slightly delay Hb
production in the posterior (Figures 5B, t¼ 24 min, and 6B, t
¼ 24 min). However, there is no confirming evidence for such
repression, and we omit it from our Combined model.
Shifting of the Kr, kni, and posterior gt domains. Domain

shifting was first observed by Jaeger et al. [6,7] and attributed
to a chain of repressive regulatory relationships,
hbagtakniaKr. Our models largely support the importance
of this regulatory chain, particularly the final two links.
Repression of Kr by Kni was significant in all of our models
(Figure 4A). Repression of kni by Gt was present in all models
except RPJ-Logic, where it would be of little impact anyway,
as RPJ-Logic has a defective posterior gt domain. Consistent
with these findings, Kni binds to the regulatory region of Kr
[29], and the Kr domain expands towards the posterior in kni
mutants [39,40]. Similarly, the kni domain expands posteriorly
in gt mutants [22], while embryos overexpressing gt show
reduced kni expression [35].
Repression of gt by Hb is not as well supported by our

models. The Unc-GC model included the link, though the
regulatory weight was the smallest of all those in the model

Figure 8. Simulated Gap Gene Expression, Production, and Regulatory Effects in the RPJ-Logic Model

DOI: 10.1371/journal.pcbi.0020051.g008
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(Protocol S3). The link was eliminated from Unc-Logic and,
of course, not present in the RPJ network structure. Instead,
the models utilized decreasing activation by Cad (Unc-GC,
Unc-Logic) and repression by Tll (Unc-GC, RPJ-GC) to shift
the posterior gt domain (Figures 5–7D). Even with these links,
however, shifting of the domain is not well-captured (Figure
3C, 3D, and 3F). RPJ-GC appears to capture the posterior gt
shift best (Figure 3E). However, it relies on its small ectopic Kr
domain to repress gt, a completely incorrect mechanism
(Figure 7D, t ¼ 62 min). Interestingly, a gene circuit fit using
the network structure of Sanchez and Thieffry [4] (Protocol
S1), captured the shift of posterior gt better than any of our
other models, and it did so using repression of gt by Hb,
providing additional modeling support for the relationship.
There also is strong mutant evidence in favor of the
relationship. In hb mutants, the posterior gt domain does
not retract from the posterior pole [22,32,46]. Further, Gt is
absent in embryos that have ubiquitous Hb, such as maternal
oskar or nanos mutants [22,32] or embryos expressing Hb
ubiquitously under a heat-shock promoter [33]. Thus, we find
sufficient evidence to include a repressive link from hb to gt in
our Combined model.

Activating or repressing links that oppose the direction of
the repressive chain were eliminated by optimization of the
Unc-Logic, RPJ-GC, and RPJ-Logic models (Figure 4A). In
agreement with this result, the boundaries of the kni and
posterior gt domains are correctly positioned in Kr and kni
mutants, respectively [22,31,37,46]. Thus, the simplest picture
supported by our models and consistent with the mutant
studies is that there is no regulation from Kr, kni, or posterior
gt to any of their immediate posterior neighbors, and that the
repressive chain highlighted by Jaeger et al. [6,7] is indeed
responsible for domain shifting.

Do gap genes autoregulate? All four of our models include
autoactivation by hb. This is supported by the observation
that late anterior hb expression is absent in embryos lacking
maternal and early zygotic Hb [47]. Our models suggest hb
autoactivation also plays a crucial role in sustaining the
posterior domain, once it has been initiated by Tll (Figures 5–
8B, t ¼ 37–62), a role not previously emphasized. Autoacti-
vation for the other genes was found by our Unc-GC model,
but is not part of the RPJ network structure (Figure 4A). We
included autoactivation only for Kr and gt in our Combined
model, on the basis of a weakened and narrowed Kr domain
in embryos producing defective Kr protein [43] and a delay in
gt expression in embryos producing defective gt protein [22].
Interestingly, the gene circuit models of Jaeger et al. [6,7] also
found autoactivation for all four gap genes, but they
considered autoactivation by gt to be the weakest and least
certain. In contrast, our Unc-Logic model retained gt
autoactivation while eliminating autoactivation for Kr and
kni (Figure 4A). The RPJ-Logic model was unable to
reproduce the posterior gt domain. However, we found that
by adding gt autoactivation to the model, it was able to create
and sustain posterior gt correctly, bringing the error of the
model down to 15.34 (unpublished data). This suggests that,
after hb, gt is the most likely candidate for autoactivation.
However, even this is not strictly necessary. The RPJ-GC
model is able to reproduce and sustain the posterior gt
domain without autoactivation by relying on cooperative
activation from Bcd and Cad (Figure 7D).

Conclusions
Comparison of regulatory architectures. The regulatory

relationships proposed by Rivera-Pomar and Jäckle [3] are
not fully consistent with the data and require amending.
Repression of gt by Kni, which contradicts the mechanism of
domain shifts described by Jaeger et al. [6,7], was eliminated
by the optimization in both of our models based on the RPJ
regulators. We also never observed activation of kni by Kr. We
found no support for a dual regulatory effect of Hb on Kr.
Activation of Kr at low levels of Hb was eliminated in the RPJ-
Logic model. It was retained in the RPJ-GC model, but
resulted in serious patterning defects. Inclusion of Tll as an
activator of hb was sufficient to produce the posterior hb
domain. Based on our fits and the primary experimental
literature, there are likely other regulatory links missing from
the model of Rivera-Pomar and Jäckle, though they are not
strictly required to reproduce the wild-type gap gene
patterns. Foremost is repression of hb by Kni, which appears
important for eliminating hb expression anterior of the
posterior domain. Fits based on the Sanchez and Thieffry
regulatory relationships [4] (Protocol S1) also support these
conclusions.
In contrast, the regulatory relationships in our Combined

model and both the Unc-GC and Unc-Logic models are able
to capture the wild-type gap patterns without gross defects.
The relationships in the Unc-GC model are very similar to
those obtained by Jaeger et al. [6,7]. For example, the
regulation of Kr and kni is qualitatively equivalent in both
models, and there is a single minor difference in the
regulation of gt (Figure 4A). Our optimizations correctly
identified activation of hb by Tll, which was missed by Jaeger
et al. [6,7], though our models did less well at capturing
shifting of the posterior gt domain. These regulatory
relationships are also similar to those found by Gursky et al.
[12], though that study was based on gap gene expression data
with much lower accuracy and temporal resolution than the
data used here [5,18]. These similarities show that differences
in the mathematical formulations of these models—as
ordinary versus partial differential equations, how diffusion
and nuclei doubling are modeled, and choice of boundary
conditions and other simulation parameters—are not im-
portant for the reproduction of the gap gene patterns nor for
the inference of regulatory relationships from the data.
Comparison of gene circuit and logical formalisms. Both of

our gene circuit models fit the data better than the
corresponding logical models. Although both types of models
grossly simplify the complexity of gene regulation, this
suggests that the gene circuit formalism is a better descrip-
tion of gap gene regulation than the logical formalism.
However, the Unc-Logic model shows that the logical
formalism can correctly capture the main features of gap
gene expression. Of greater concern is that the strict on/off
nature of the logical rules renders many regulatory inputs
completely redundant, effectively eliminating them from the
regulatory structure (Figures 4A, 6, and 8). In sparsely
connected gene networks, this may be a useful bias. In a
densely connected network like the gap gene system, it results
in the elimination of many correct regulatory links. Another
serious drawback of the logical models is that we could not
find a satisfactory method for inferring the regulatory
structure as part of the optimization process. We were forced
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to set the activators and repressors in the Unc-Logic model
from the Unc-GC findings, and were able only to optimize the
strengths of the regulatory relationships, represented by the
activation and repression thresholds. Resolving this problem
is an important avenue for further work.

Speed and accuracy of the fitting method. The RMS errors
in simulated expression for the Jaeger et al. [6,7] model and
our Unc-GC model are comparable, so both optimization
algorithms are equally successful in fitting the models to the
data (Protocol S5). An important advantage of our technique,
however, is speed. Each run of the algorithm used by Jaeger et
al. [5–7,10,11] took approximately 3–10 days on a 10-
processor machine, for a total of approximately two years
of CPU time for their study. In contrast, it took on the order
of a day or two to optimize each of our models, on a single-
processor machine running unoptimized, uncompiled MAT-
LAB code. The relative speed of our technique was crucial to
our study because it allowed us to rapidly explore alternative
modeling formalisms and to test specific network structures.
The strength of our technique (see Materials and Methods)
lies in the approach it uses to produce initial estimates of the
regulatory, decay, and diffusion parameters. With good initial
estimates, the models can easily be fined-tuned by a
straightforward search algorithm. Indeed, the simplicity of
the procedures we used to solve each of the three stages
speaks to the power of the decomposition. However, it is
certainly possible to substitute other, more sophisticated
methods for solving each stage. For example, Stage 2
comprises a set of function approximation problems, for
which many fitting techniques are available. The optimization
approach of Gursky et al. [12] is quite fast when given a good
starting point, and it would be interesting to use their
algorithm for Stage 3 of our approach.

Limitations of the models. While our models, particularly
Unc-GC, Unc-Logic, and the Combined model, capture the
main features of gap gene expression dynamics, some
failings are common to all the models. For example, none
of the models capture well the shifting of the posterior gt
domain (Figure 3). A gene circuit model based on the
Sanchez and Thieffry regulatory relationships [4] (Protocol
S1) does capture the shift, and by the expected mechanism,
Hb repression of gt. However, the failure of the Unc-GC,
Unc-Logic, and Combined models to capture the shift,
despite including the necessary link, we can only attribute
to imperfect optimization of the parameters. Our models
also show defects in the early establishment of the domains,
particularly the posterior gt domain (Figure 3C–3F, t ¼ 11
min; similar defects were observed in [7]). This may be
because the data is sampled less often early on, and so the
RMS error effectively puts less weight on the correctness of
the models early on. It may also be due to our
simplification of transcription and translation into a single
production process with no delay. At the start of cleavage
cycle 13, gap gene transcripts begin to accumulate in the
absence of gap proteins (except the Hb from maternally
deposited mRNA). Thus, there should be no regulation
between gap genes during the first few minutes of the time
series. Our models allow regulation from the start of the
time series, and this may be impacting the early expression
patterns. Finally, none of the models capture the late
parasegment 4-specific expression stripe of the anterior hb
domain. This is visible as a small peak on top of the main

anterior hb peak (Figure 1I or Figure 3B, t ¼ 62 min). This
expression stripe is due to a second hb promoter, different
from the promoter responsible for the rest of the anterior
hb domain [47]. It is likely that our gene circuit and logical
models are simply incapable of capturing this phenomenon
with a single production rate function, and would need to
be generalized, perhaps by allowing hb production to be the
sum of two separate production rate functions, to recreate
the stripe.
Our models largely capture the wild-type expression

patterns, and the regulatory relationships they rely on are
consistent with mutant studies. However, our models do not
in general display correct mutant expression patterns (see
Protocol S6 for an example of simulating a Kr knockout
mutant). The problem may point to a mismatch between
biological reality and our modeling assumptions—for exam-
ple, the mathematical forms of our production rate functions,
our omission of production delays, or our treatment of
protein concentrations as unitless numbers between 0 and
255. (Our expression data comes from images. Actual
concentrations for the proteins are not known and may not
even be of the same order of magnitude.) On the other hand,
it is possible that the wild-type data to which the models were
fit do not contain sufficient information to generalize to
mutant organisms—although some gene circuit models fit to
wild-type data do successfully predict mutant expression
patterns [48]. Our fitting approach allows for rapid testing of
alternative modeling assumptions, which may lead to models
with improved predictions of mutant expression patterns.
However, an important question for future research is
whether we can find a way to incorporate the wealth of
already available mutant expression data—which is often
qualitative and not as temporally resolved as our wild-type
data—into our fitting procedure.
Our models, particularly the Unc-GC model, includes a

number of weak regulatory relationships, the significance of
which is difficult to determine. Some of the links may arise
from overfitting the data, or they may be compensating for
incorrect modeling assumptions or for other missing or
imperfectly modeled regulatory factors. However, it is
difficult to say precisely which links should be ignored. Our
data comprises a single space–time series, with strong
correlations between datapoints. Resampling approaches
for estimating significance, such as cross-validation or boot-
strapping, are not useful in such cases. Jaeger et al. [7]
deemed weights smaller in magnitude than a chosen thresh-
old to be insignificant. However, the magnitudes of weights
do not always reflect their importance to the model. For
example, in the Unc-GC model, Tll activation of hb receives
the smallest weight of any of hb’s regulators, and yet this link
is crucial for the formation of the posterior hb domain. In
contrast, some links that receive larger weights in the Unc-
GC model are dispensible, as shown for example by the
success of the RPJ-GC model at reproducing the hb
expression patterns. For these reasons, we used stringent
criteria for dismissing links based on modeling alone. (Gene
circuit weights of magnitude less than 0.0001 and logical
terms that have absolutely no effect on expression were
discarded.) Instead, we turned to external validation, admit-
ting links to our Combined model only if they are addition-
ally supported by other experimental evidence. However, it is
also possible that some of the weak links in the Unc-GC or
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other models are correct. Regulatory effects between the gap
genes can be subtle. For example, some studies have found
changes in kni expression in gt underexpression and over-
expression conditions [22,35], while other studies did not
detect any change [33,37]. Additional, careful quantitative
measurements of gap gene expression in wild-type as well as
mutant organisms will be necessary to resolve the existence
of the weaker links in our models.

Materials and Methods

Quantitative gene expression data. Quantitative gene expression
data used in this study are available online in the FlyEx database
http://urchin.spbcas.ru/flyex or http://flyex.ams.sunysb.edu/flyex [18].
Methods for data acquisition and processing are described in detail
elsewhere [49–52]. The data include quantitative wild-type concen-
tration profiles for the protein products of bcd, cad, hb, Kr, kni, gt, and
tll during cleavage cycles 13 and 14A, which constitute the late
syncytial blastoderm stage of Drosophila development [53,54]. This
covers a time of approximately 70 min between the first unambiguous
detection of gap protein [7] and the onset of gastrulation [54].
Expression data from cleavage cycle 12 are used for the initial
concentration of Hb at t¼ 0. Initial concentrations of Kr, Kni, and Gt
are zero. The data represent expression at ten times, two during
cleavage cycle 13 (t ¼ 0 and 11 min) and eight during cleavage cycle
14A (t¼ 24,30,37,43,49,55,62, and 68 min). These times differ slightly
from the ones used in [7], because we use a fixed time step of one
minute for simulating our models (see below). The exact data are
available as Dataset S1.

Model-fitting strategy. Here we describe our three-stage approach
to fitting the parameters of the partial differential equations. Details
of how this strategy was applied for each model can be found in
Protocol S2. The ultimate goal is to produce a partial differential
equation model [12]:

@vaðx; tÞ
@t

¼ fðtÞPaðvðx; tÞ;HaÞ � kavaðx; tÞ þ Da @
2vaðx; tÞ
@x2

: ð4Þ

This is essentially the same as Equation 1, except that we have made
explicit the regulatory parameters Ha that need to be optimized. Ha

comprises Ra and either the weights of a gene circuit model or
thresholds of a logical model. The term f(t) models the doubling of
nuclei and shutdown of transcription during mitosis as follows.

fðtÞ ¼
0:5 0min � t, 16min
0 16 min � t, 21min
1 t � 21 min

8<
: ð5Þ

From the experience of Jaeger et al. [6,7], it would appear that
direct optimization of the parameters, Ha, ka, and Da is difficult. The
first two stages of our approach are intended to produce good initial
estimates of these parameters. The third stage is a direct optimization
approach that fine-tunes the initial estimates to produce a good fit to
the data (see Figure 2 for a summary).

Stage 1. In the first stage, we estimate ka, Da and the spatial and
temporal extents of production associated with each domain. Peaks
in gap protein expression are symmetrical, flat-topped, and have
steeply sloping sides. It is reasonable to assume that, at any point in
time, the rate of protein production associated with a particular peak
is constant in some interval along the A–P axis and zero outside of
that interval. However, it is not clear from the data exactly where
such boundaries should be. It is also not clear exactly when
production begins and when (or if) it ends.

We use a set of seven parameters to describe the conditions of
protein production associated with each of the six gap protein peaks:
q, a production rate; sstart, the time at which production begins; send,
the time at which production ends; xs,a, the anterior-most extent of
production at time sstart; xs,p, the posterior-most extent of production
at time sstart; xe,a, the anterior-most extent of production at time send;
and xe,p, the posterior-most extent of production at time send. The last
six parameters define a quadrilateral region of space–time (Figure
2A). Within this quadrilateral, we take protein production to occur at
rate q. Genes with multiple peaks are assigned one quadrilateral per
peak. At space–time points that do not fall in any of the quadri-
laterals for a particular protein, the rate of protein production is
assumed to be zero. Thus, for a single-domain gene, the production
rate function has the form

Pðx; tÞ ¼

q if sstart � t � send

and
send � t

send � sstart

� �
xs;a þ

t� sstart
send � sstart

� �
xe;a

� x � send � t
send � sstart

� �
xs;p þ

t� sstart
send � sstart

� �
xe;p

0 otherwise

8>>>>>>>><
>>>>>>>>:

ð6Þ

For a two-domain gene, the production rate function is the maximum
of two such functions. In either case, the dynamical model of the
expression of protein a is

@vaðx; tÞ
@t

¼ fðtÞPa
1ðx; t;Ha

1Þ � kavaðx; tÞ þ Da @
2vaðx; tÞ
@x2

; ð7Þ

where Ha
1 are parameters that specify the spatial extent of

production and production rates for the expression domain or
domains of protein a. To fully specify Equation 7 requires nine
parameters for a single-domain gene and 16 parameters for a two-
domain gene—a decay rate, a diffusion rate, and seven parameters
describing the production conditions for each domain. The system
of partial differential equations is decoupled—the genes do not
interact—so the parameters for each gene can be optimized
independently. We optimize the parameters for each gene to
minimize the RMS error between simulated and observed expres-
sion,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nd

P
x;t ðvaðx; tÞ � yaðx; tÞÞ2

q
, where va(x,t) is the simulated

expression of protein a, ya(x,t), is the observed expression, and Nd
is the number of space–time points. We used a standard, repeated
first-improvement local search with randomized order of neighbor
examination to optimize the parameters for each gene. Stage 1 is
performed only once for all four models, as it does not depend on
the form of the Pa or the regulatory structure or parameters.

Stage 2. Next, we generate an initial estimate of the regulatory
parameters for each gene by searching for Ha that minimize the error

function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nd

P
x;t ðPa

1ðx; t;Ha
1Þ � Paðyðx; tÞ;HaÞÞ2

q
, where Nd is the

number of space–time points, Pa
1ðx; t;Ha

1Þ is the Stage 1 estimate for
the production rate of protein a at space–time point (x,t), and Pa is
the production function for protein a (as in Equation 4, but with the
observed expression values given as input). In other words, we search
for regulatory parameters which fit, as closely as possible, the
quadrilateral production regions found in Stage 1. Parameters can
be optimized separately for each gene. This is just a problem in
function approximation (also known as regression or supervised
learning)—we seek a set of parameters Ha so that Pa reproduces as
well as possible the input–output pairs ð yðx; tÞ;Pa

1ðx; t;Ha
1ÞÞ. Many

techniques are available for solving this sort of problem. For our
gene circuit models, the error function is differentiable with respect
to Ha. We optimize the parameters using repeated runs of an
adaptive step-size gradient descent procedure. For our logical
models, the regulatory parameters are optimized using a repeated
first-improvement local search with randomized order of neighbor-
hood examination.

Although the Unc-GC model includes Gt activation of hb and Kni
activation of gt, we disallowed these links in the Unc-Logic model.
There is no support in the literature for these links and we found that
their removal improved our fits.

Stage 3. Finally, we combine the decay and diffusion constants
estimated in Stage 1 with the regulatory parameters estimated in
Stage 2 in a fully coupled partial differential equation model
(Equation 4). Starting from these initial parameters, we perform
repeated first-improvement local search with randomized order of
neighbor examination, seeking parameters that minimize the RMS

error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nd

P
a;x;t ðvaðx; tÞ � yaðx; tÞÞ2

q
, where Nd is the number of genes

modeled (4) times the number of space–time points, va(x,t) is the
simulated expression from the model, and ya(x,t) is the observed
expression.

Numerical solution of the partial differential equations. We
simulate using a fixed time step of one minute and a spatial grid of
58 points (one space point for each 1% of embryo length between
35% and 92%). For each step, we calculate the production rates for
each gene at each space point and add them to the expression values.
This corresponds to one minute of constant-rate production with no
decay or diffusion. For Equation 1 (or 4), in which production rates
depend on the protein levels present, the simulated gap protein levels
and the observed bcd, cad, and tll levels are used to calculate
production. Values of bcd, cad, and tll are linearly interpolated in
time for simulation times between the times for which we have
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observed values. We then calculate the result of one minute of decay
and diffusion on the updated expression values. Equations 1 (or 4)
and 7 can be solved analytically if there is no production. We assume
reflecting boundary conditions

� @vaðx;tÞ
@x ¼ 0

�
at the anterior boundary

(the 35% line), because that boundary splits the anterior Hb and Gt
peaks. Any protein diffusing out across the 35% line should be
matched by protein diffusing in across the 35% line from the
parts of the peaks not modeled. At the posterior boundary (the
92% line), we use an absorbing boundary condition (va(x,t) ¼ 0),
because that boundary does not intersect any of the gap gene
peaks.
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