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We explore the behavior of richly connected inhibitory neural networks under param-
eter changes that correspond to weakening of synaptic efficacies between network
units, and show that transitions from irregular to periodic dynamics are common
in such systems. The weakening of these connections leads to a reduction in the
number of units that effectively drive the dynamics and thus to simpler behav-
ior. We hypothesize that the multiple interconnecting loops of the brain’s mo-
tor circuitry, which involve many inhibitory connections, exhibit such transitions.
Normal physiological tremor is irregular while other forms of tremor show more
regular oscillations. Tremor in Parkinson’s disease, for example, stems from weak-
ened synaptic efficacies of dopaminergic neurons in the nigro–striatal pathway, as
in our general model. The multiplicity of structures involved in the production
of symptoms in Parkinson’s disease and the reversibility of symptoms by pharma-
cological and surgical manipulation of connection parameters suggest that such a
neural network model is appropriate. Furthermore, fixed points that can occur in
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the network models are suggestive of akinesia in Parkinson’s disease. This model
is consistent with the view that normal physiological systems can be regulated by
robust and richly connected feedback networks with complex dynamics, and that
loss of complexity in the feedback structure due to disease leads to more orderly
behavior.

c© 1999 Society for Mathematical Biology

1. INTRODUCTION

The principal site of cell damage in Parkinson’s disease (PD) is in the substantia
nigra pars compacta (SNc). Loss of dopaminergic neurons here, which project
mainly to the striatum, prevents or weakens the modulatory effect of the SNc on the
striatum. The main treatment for PD is the administration of levodopa which tem-
porarily replenishes the supply of dopamine in the nigro–striatal pathway. These
structures are part of a complex circuitry within the basal ganglia and through the
thalamus and motor cortex, involving several loops with multiple inhibitory con-
nections. Parkinson’s disease is characterized by several types of change in motor
function, such as tremor, rigidity, bradykinesia and akinesia, which are associated
with this circuit (Wichmann and DeLong, 1993; Elble, 1996). Exactly why these
particular changes occur is not known, though it seems clear that they must be an
indirect result of the cell destruction in the SNc.

We propose that the mechanism by which symptoms of PD arise is one of a
simplification in a dynamical process that is always active, but changes when pa-
rameters such as the amount of dopamine in the nigro–striatal pathway decrease.
We investigate a general mathematical model that has many of the properties of
the motor circuitry involved in the generation of parkinsonian motor signs. Using
this model, we show by numerical simulation and by analysis that weakening of
synaptic efficacies of a subset of units in the model can lead to changes in dynamical
regime like those observed in PD. Normal physiological tremor, which is irregular
in character, gives way to regular oscillations, or else approaches a fixed point,
which is suggestive of akinesia.

The idea of parkinsonian symptoms arising from a parameter change in a network
has been suggested before in other mathematical models. Borrettet al. (1993) used
a simple perceptron-type network with feedback to simulate changes in voluntary
movement that occur in PD (movement about a single joint, including repetitive
oscillatory movements), and Grossberg (1987, p. 135) suggests explanations of
difficulties in initiating and terminating movements in PD as well as the ‘bracing’
phenomenon using gated dipole networks. Contreras-Vidal and Stelmach (1995)
model basal ganglia modulation of voluntary movement and note that dopamine
depletion in their model leads to decreased modulatory range of the network. None
of the above deal with tremor,per se.
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We put forward our hypothesis in Section 2 and present some examples of tremor in
control subjects and in patients with PD, showing the differences in dynamics. Then
in Section 3 we briefly motivate our modeling approach. In Section 4 we describe the
neural network model in general and simulations with relatively many units (50 or
20) showing the change from aperiodic to periodic behavior. In Section 5 we analyze
the origin of the changes in dynamics in the model and this process is illustrated in
Section 6 by means of a particular 6-unit network, where the mechanism is apparent.
In Section 7 we describe aspects of the physiology of the motor ciruitry that justify
our model. Finally, in Section 8 we discuss interesting aspects of the model, both
mathematically and in relation to PD.

2. THE HYPOTHESIS

We propose that an appropriate model for the motor circuitry involved in the
production of tremor is a neural network in which connections are rich enough
to involve multiple interacting loops and in which many of the connections are
inhibitory. Furthermore, the change that occurs in PD should be modeled as a
weakening in synaptic efficacies in one part of the network (simulating dopamine
deficiency in the nigro–striatal pathway).

If one takes this approach, the analysis described in this paper leads to the hypoth-
esis that the onset of a regular oscillation in PD is a change in dynamical regime
of the network from a normally aperiodic one to a more regular one as the pa-
rameter corresponding to dopamine efficacy decreases. This implies that tremor in
PD and normal physiological tremor are produced by the same motor circuitry, but
operating in different parameter ranges. It also implies that normal physiological
tremor is the output of an aperiodic regime in the network, i.e., that it is determin-
istic but aperiodic. It is, of course, possible that there are other sources of noise in
the final generation of movement at the periphery, such as stochastic properties of
ion channels, so that normal physiological tremor need not be strictly deterministic.
However, this hypothesis is different from what might be presented as an alternative
hypothesis: that normal physiological tremor corresponds to a fixed point perturbed
slightly by noise, and that regular tremor arises from it by a Hopf bifurcation.

The model also displays a stable fixed point for certain parameter values. This
is suggestive of another common symptom of PD, namely, difficulty with initiation
of movement. This symptom is at least one form of what is clinically known as
akinesia, although it is perhaps better considered as one aspect of a complex set of
symptoms in PD whose relationships are not fully understood, including akinesia,
the ‘freezing phenomenon’, bradykinesia and rigidity (Delwaide and Gonce, 1993).
Once a dynamical system is attracted to a fixed point, it requires an external force of
some magnitude to dislodge it. The model suggests that this akinesia may simply
be another mode of operation of the same dynamical system with another value of
the altered parameter.
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Figure 1. Displacement recordings of postural tremor in a control subject and two patients
with PD, sampled at 200 Hz. On the left are 5-s segments of the time series; on the right are
corresponding power spectra for the full 29.5-s recordings (estimated by smoothing with
an 11-point Daniell filter). The large amount of power at low frequencies arising from the
drift in finger position is not shown. Note that the scales on the power spectra are different.
(a),(d) Normal physiological tremor in a control subject. (b),(e) Typical parkinsonian
tremor, with a frequency of 6.3 Hz, though the amplitude is relatively small compared with
many PD patients. (c),(f) Unusually low amplitude tremor (compared with control subjects)
of another patient with PD known to have rigidity, as shown by a neurological exam, and
difficulty with initiating and sustaining rapid alternating movements, as shown by other
motor tests. Although the amplitude is very low, there does seem to be some oscillation at
about 5 Hz, typical of PD.

Figure 1 shows displacement recordings and power spectra of postural tremor in
a control subject and in two patients with PD. The first [Fig. 1 (a),(d)] is typical
of normal physiological tremor. It is irregular and has a broad spectrum. The fre-
quency of normal physiological tremor is usually cited as being between 8 and 12
Hz, but in displacement (rather than acceleration) lower frequencies are relatively
more enhanced and the power between about 6 and 11 Hz seen here is typical. The
second [Fig. 1 (b),(e)] is typical of tremor in PD, with a frequency of 6.3 Hz, though
the amplitude is relatively small compared with that of some patients with PD. The
third [Fig. 1 (c),(f)] shows the tremor of the affected hand of another patient with PD
having an unusually low amplitude. This patient had clinically diagnosed rigidity
and other motor tests showed difficulties with initiation and maintenance of smooth
movement. There is, however, evidence of some oscillation around 5 Hz despite
the low amplitude.
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3. MODELING APPROACH

Ideally, one would want to construct a mathematical model that described faith-
fully the essential aspects of the brain’s motor circuitry. However, the dynamics of
the interactions between the structures involved in the motor circuits, and indeed
the exact set of structures that are essential, are not known in detail. We know
where there are inhibitory and excitatory connections for the most part, but it is not
possible yet to quantify reliably the strengths of these connections, or to ascertain
the importance of time delays present in all neural systems, or of internal dynamics
of a single structure.

We therefore take a general approach and ask whether simple models that share
some basic properties with the network of brain structures involved in the motor
circuits show the type of dynamical changes in behavior that we see in PD when
a similar parameter is changed. We do not argue that our particular model is
exactly right, but that the types of behavior observed are generic in systems of
this type. It is clear from the description above that the relevant motor circuitry
involves a network of multiple interacting loops in which many of the connections
are inhibitory. Though in principle this could apply on a fine scale, where the units
of the network are individual neurons, we have in mind a coarse description, in
which anatomical structures (or functional substructures of them) are considered
as individual units, e.g., Vop in thalamus, SNc, striosomes and matrisomes as
substructures within striatum (Graybiel, 1991). Our network is intended to include
all the relevant structures for involuntary motor control, including those in the
basal ganglia thalamo–cortical loops, the cerebellar loops and possibly descending
pathways and feedback from the periphery.

We expect the input–output (response) function for a unit to be one that sums
inputs and that saturates: beyond a certain level of stimulation the unit does not
become more active, and similarly, below a certain level it does not become less
active. To the extent that cells within a structure simply act in parallel, they may be
lumped into a single unit having properties like those of a single neuron. Though this
is a simplification, it is a reasonable first approximation. According to Bergman
et al. (1998), ‘The neural networks of the basal ganglia are organized as single-
layered elements that are connected by sequential feed-forward connections. Most
neurons in the nuclei of the basal ganglia are projection neurons with interneurons
forming only a small fraction of the total neuronal population. Even the numerous
lateral interconnections in the striatum are functionally weak.’

Therefore, standard Hopfield-type neural network models with sigmoidal re-
sponse functions and inhibitory connections are an appropriate framework for
this investigation (Hopfield, 1984). Complex behavior in such networks appears
common, especially in high dimensions (K¨urten and Clark, 1986; Sompolinsky
et al., 1988; Daset al., 1991; Lewis and Glass, 1991, 1992). We study the effects
of changes of connectivity in networks of this type. To findtypical effects, we run
simulations withrandomnetworks. We have chosen to make all our connections
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inhibitory, but essentially the same results are found if excitatory connections are
included, as long as inhibition is abundant. We require inhibitory loops, but a simple
loop can be inhibitory even if only one of its links is inhibitory (any odd number
will do the trick).

Though the main arguments here apply to any of the variants of the Hopfield
model, for the numerical simulations we will make the further simplification of
supposing that the response function of the network units is a Heaviside step func-
tion, rather than a steep sigmoid, while retaining continuous time dynamics. The
class of equations resulting from this simplification preserves the range of qualitative
dynamical behaviours of continuous-response networks, though the limiting pro-
cess has not been rigorously analyzed (Glass and Pasternack, 1978a; Sompolinsky
et al., 1988; Lewis and Glass, 1991, 1992). The resulting equations are piecewise
linear and easily integrated.

These piecewise-linear neural networks form a subset of a larger class of Boolean
networks not restricted by the Hopfield model requirement that the combined effect
of the inputs to a unit be a linear combination. Such networks have been used to
model gene regulation (Thomas, 1973; Mestlet al., 1995a) and chemical kinetics
(Glass, 1975) as well as neural networks (Lewis and Glass, 1991, 1992). Their
equations are also particularly tractable, permitting significant analysis (existence,
stability and properties) of fixed points, periodic orbits and aperiodic trajectories
(Glass and Pasternack, 1978a; Mestlet al., 1995b; Mestlet al., 1996). kinds of
transitions from irregular to regular behavior that we find here have been observed
in Boolean networks when other parameters are changed, namely the probability
that a given unit will be biased towards either the ‘on’ or the ‘off’ state (Glass and
Hill, 1998), and the thresholds in the neural network case (Lewis and Glass, 1992).

4. PERIODIC AND APERIODIC BEHAVIOR IN NEURAL NETWORKS

Hopfield-type neural networks (Hopfield, 1982, 1984) can be expressed as

ẏi = −yi +
N∑

j=1

wi j g(yj )− τi , i = 1, . . . N, (1)

wherewi j represents the ‘synaptic efficacy’ of neuronj acting on neuroni , τi is
the threshold level of neuroni and g is the response function of a neuron to its
input, which may be a sigmoid function, such asg(yj ) = (1+ tanhβyj )/2 where
β controls the slope or gain of the sigmoid, or a Heaviside step function, i.e.,

g(yj ) =
{

0 if yj < 0
1 otherwise.

(2)

In this formulationyi represents the amount by which the neuron’s membrane
potential,xi , exceeds its threshold, i.e.,yi = xi − τi , so that the threshold for each
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yi is 0. This transformation of variables is mathematically convenient [see, e.g.,
Lewis and Glass (1991)]. Writing equation (1) in vector form,

ẏ = −y+Wg(y)− τ, (3)

whereg is applied componentwise, emphasizes that the strengths of synaptic con-
nections can be represented by a matrix,W. Negative (positive) elements inW
indicate inhibitory (excitatory) connections. Outputs from a unit correspond to
columns inW, inputs to rows.

In order to look at the typical effect of reducing the strengths of outputs of a
group of units in an inhibitory network, we generated random networks in the
form of equation (3) with the binary response function of equation (2), having
N units, each unit receiving inputs fromK others. That is, for each unit, we
randomly selectedK of the remainingN−1 units to provide inputs to it, and set the
corresponding entry in the connection matrix to−1, all other connections being 0.
The choice of input units was further restricted to preclude 2-loops, that is, if unit
i has an input to unitj , we do not allow an input from unitj to unit i . This is not
necessary but is helpful from the point of view of computation, in that it prevents
the activity of pairs of units from making many very rapid transitions as they spiral
in to the origin. We used as threshold vectorτ in equation 3 a slight perturbation
of τ = −(K − 1.5) × (1,1, . . . ,1). The perturbation was small (pseudo-random
numbers from a normal distribution with mean 0 and standard deviation 0.001) and
was introduced to prevent ambiguities that can arise in integrating the equations
when trajectories asymptotically approach the potentially ill-defined situation where
the activities of two or more units cross 0 simultaneously. The connection matrix
was adjusted by reducing the entries in the firstd columns by a factorα ∈ [0,1].
This corresponds to weakening the output of thesed units of the network. As the
connection matrices are random, the selection of the firstd columns is essentially a
random one. Trajectories can easily be computed in terms of points at which units
switch state (change sign) (Glass and Pasternack, 1978b). We integrated networks
in this way from random initial conditions until the trajectory converged to a fixed
point or periodic cycle or for 304 000 steps (switchings), whichever came first. In
the process we kept track of the sequence of units that switched, as well as the
times of these switchings. Periodicity was determined by looking for at least five
consecutive repetitions of a sequence of switching units (up to 2000 steps long) and
checking for convergence of the period of this cycle (i.e., the last two circuits taking
the same amount of time within 10−12 time units).

Figure 2 shows the activity of one of the units in one of these networks over
about 150 time units (scaled down to 5 on the plots) with decreasing values of the
parameterα. For each simulation, an initial condition was randomly selected and
the equations were integrated until convergence to a periodic orbit, or for 304 000
steps if it did not converge, before recording the segments shown. Figure 2(a) shows
apparently aperiodic behavior whenα = 1. Integration for 304 000 steps failed to
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Figure 2. Interpolated time series from one unit of each of three random networks (N = 50,
K = 10, d = 8) with different values ofα, after transients have died away (after 304 000
integration steps when aperiodic). On the left are segments of the time series; on the right
are the corresponding power spectra, based on all 6000 points (estimated by smoothing
with an 11-point Daniell filter). The time scale is arbitrary and has been divided by 30 for
the plots, so that the frequencies in the spectra are similar to those in the tremor examples.
(a),(d)α = 1.0, aperiodic, all units switching; (b),(e)α = 0.5, period= 64.304 62 time
units (562 integration steps); (c),(f)α = 0.2, period= 5.18061 time units (40 integration
steps).

reveal any periodicity. It is likely that the behavior of this network is aperiodic, but
we cannot rule out very long periods or very long transients. Figure 2(b) shows an
example whenα = 0.5 with a long period (64.30 time units). The behavior still
appears irregular over short times. Figure 2(c) shows an example whenα = 0.2
with a short period (5.18 time units).

One way to compare time series from the model with recordings of tremor is to
calculate their power spectra. Figure 2 also shows the power spectra of the simula-
tions from the model in the regular and irregular regimes. None of the simulations
have the low-frequency drift that is seen in recordings of postural tremor, but this
is not usually considered as part of the tremor,per se. The short-period example
[Fig. 2(f)] has a single dominant peak like that of the parkinsonian tremor example.
The aperiodic example [Fig. 2(d)] has a broad range of power extending to higher
frequencies than that of the short-period one, similar to the normal physiological
tremor with power above the parkinsonian frequency. The long-period example



Parkinsonian Tremor and Simplification in Network Dynamics 165

0.0
0.0

10
5

10

15

20

25

20Pe
ri

od

Pe
ri

od

5

10

15

20

Pe
ri

od

30

40

0.2

0.4

0.6

Fr
ac

tio
n

0.8

1.0

0.2 0.4
α

0.6 0.8 1.0

(a) 

0.0
0.0

0.2

0.4

0.6

Fr
ac

tio
n

0.8

1.0

0.2 0.4
α

0.6 0.8 1.0

(b) 

0.0
0.0

0.2

0.4

0.6

Fr
ac

tio
n

0.8

1.0

0.2 0.4
α

0.6 0.8 1.0

(c) 

0.0 0.2 0.4
α

0.6 0.8 1.0

(d) 

0.0 0.2 0.4
α

0.6 0.8 1.0

(e)

0.0 0.2 0.4
α

0.6 0.8 1.0

(f)

Figure 3. Average behavior of 100 random networks each of which is weakened by various
values of the parameter,α. The fraction of networks that had aperiodic behavior (‘◦’), the
fraction of networks that had fixed point behavior (‘4’), and the average fraction of units that
were fixed (not switching) after transients had died away (‘+’) are all indicated on the upper
graphs. The average period of the periodic orbits is indicated on the lower graphs. (a),(d)
N = 50, K = 5,d = 10; (b),(e)N = 50, K = 10,d = 8; (c),(f) N = 20, K = 5,d = 5.

[Fig. 2(e)] has power in the same range as the aperiodic one, but more isolated in
equally spaced peaks. The time and therefore frequency scale of the simulations
is arbitrary, of course, and in this study we have not attempted to deal with the
complex issue of transformation of neural signals through muscle contractions to
finger displacement.

Figure 3 shows the results of simulations of a large number of networks each
with several values of the parameterα, for several choices ofN, K andd. The
fraction of networks that were aperiodic after 304 000 integration steps, the fraction
that reached a fixed point and the average fraction of ‘fixed’ units are all plotted.
A unit is considered fixed if it does not switch once a periodic cycle is reached
(in the sense that the sequence of units which do switch have settled down to a
periodic pattern, though of course the trajectory itself only approaches a limit cycle
asymptotically). In the case of aperiodic behavior, we counted ‘fixed’ units over
the last 10 000 steps after a 294 000 step transient. Figure 3 also shows the average
period of the networks that were periodic (not counting networks that approached
fixed points).

In general, asα decreases, the behavior becomes more regular. The number of
fixed units clearly tends to increase as the parameter decreases. Note that the fraction
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of fixed units is usually much larger than the fraction of units weakened — the
dynamical effect of the damage is widespread. The fraction of aperiodic networks
clearly decreases with the parameter, with a dip atα = 0.5. The proportion of fixed
points increases slightly asα is decreased with a big jump atα ≈ 0.25. The average
period of the periodic solutions does not seem to vary in any simple way with the
parameter, except that at aroundα = 0.5 we tend to have very long periods. At
this parameter value, there seems to be a dearth of aperiodic networks but these
are replaced by an abundance of very long-period ones. There may be a smaller
but similar effect atα = 0.75. In general, in these examples, whenα > 0.5 we
tend to find aperiodic behavior, but if it is periodic, the period tends to be short
or intermediate in length, and fixed points are rare. For 0.25 < α < 0.5, there
are few aperiodic networks, still not too many fixed points, and we usually obtain
periodic behavior of intermediate length. Whenα < 0.25 we find more fixed points,
short-period oscillations and very few aperiodic networks.

5. DYNAMICAL SIMPLIFICATION

Equation (3) has many parameters (all the entries of the matrixW and of the
vectorτ ), which allow for a wide variety of behaviors. However, there are clearly
comprehensible effects of moving to boundaries of the region of parameter space
where all variables can actively change state. A kind of dynamical simplification
occurs, wherein the effective dimension of the dynamics is reduced as units become
stuck in the ‘on’ or ‘off’ state.

This is true even in more general contexts. The response function,g, may be a
continuous sigmoid, and the decay terms may have coefficients other than 1. In fact,
even if the sigmoid (or step function) takes on extremal values of anything other than
0 and 1, the equations can nevertheless be rewritten with our standardg with range
[0,1], by adding another term to the threshold and scaling the connection matrix.
Similarly, adding an external input vector,I , to the equation is mathematically
equivalent again to changing the thresholds (τ is replaced byτ − I ). We continue
to work with equations (2) and (3) for simplicity, but realize that the comments of
this section apply equally in a much broader context.

After crossing such a ‘boundary’ in parameter space, the sum of the inputs to a
particular unit cannot cross threshold, regardless of the configuration of inputs. For
example, this is the case if, for somei in equation (1),

max
y

( N∑
j=1

Wi j g(yj )

)
< τi . (4)

The left-hand side here is
N∑

j=1

max{wi j ,0},
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the sum of the positive entries in thei th row of W, becauseg takes on values in
{0,1}. In this case, for any value of the vectory, we have

N∑
j=1

Wi j g(yj )− τi < 0,

andyi will become negative in finite time and remain negative thereafter. This means
that, even thoughyi continues to change, its effect on other variables becomes fixed
at 0 (asg(yi ) = 0 whenyi < 0) and the behavior of the system becomes essentially
(N − 1)-dimensional.

Similarly, if

min
y

( N∑
j=1

Wi j g(yj )

)
=

N∑
j=1

min{wi j ,0} > τi , (5)

thenyi will become positive in finite time after whichg(yi ) is fixed at 1. If one of
these two conditions holds for every variable,i = 1, . . . , N, then the network is
forced to a fixed point.

If each row ofW hasK entries and entries in thei th row are bounded by±αi , αi >

0, then the above conditions become

|τi | > αi K ,

in which caseg(yi ) becomes fixed. It is clear that these extremes can be reached
by manipulating any of the three parameters: decreasingK , the number of inputs,
decreasingαi , the strength of the inputs, or increasing the magnitude ofτi , the
threshold. Adding an external input will have a similar effect as discussed above.

From the point of view of modeling parkinsonian tremor, rather than rows ofW
(i.e.,αi or K above) or the thresholds, it is more appropriate that columns ofW are
weakened, as this corresponds to weakening the outputs of damaged units. This is
the approach taken in the 50- and 20-unit examples of the previous section. We now
turn to an example that makes clear how this process can lead us to a ‘boundary’ in
parameter space.

6. A SIX-DIMENSIONAL EXAMPLE

We wish to address the question of how networks of complex inhibitory loops
can show the type of transition from irregular to regular behavior that we see in
Parkinson’s disease by means of weakening of synaptic connections. To this end,
we focus here on a particular 6-unit inhibitory network (Fig. 4), namely equation (3)
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Figure 4. The connection structure of the example 6-unit network. All connections are
inhibitory with weight 1 except the three labeledα, which are weakened asα decreases.

with

W =



0 −1 0 0 0 −1
0 0 0 −1 0 −1
0 0 0 −1 −α 0
−1 0 0 0 0 −1
−1 −1 0 0 0 0

0 0 −α 0 −α 0

 ,

and

τ = −3

2
(1,1,1,1,1,1)T .

The parameterα will be varied. This network withα = 1 is a slight modification of
one considered in Lewis and Glass (1991) and further investigated by Bersini and
Calenbuhr (1997), which appeared to display chaotic behavior.

This network, though simple, still shares some features with the network thought
to be involved in the production of tremor in Parkinson’s disease. In particular,
there are several units that participate in more than one inhibitory loop each. The
parameterα represents the modulation of outputs from two of the units (the third
and fifth) which might be considered as synaptic efficacies (in a global sense) of
signals emanating from neurons in these units.

This network also changes from irregular to regular behavior asα decreases.
Whenα = 1, its behavior seems irregular as shown in Fig. 5(a). However, ifα < 3

4
it is easy to show that the behavior must be periodic [Fig. 5(b)]. In this case, the sixth
unit, which receives inputs only from the third and fifth, receives a total (inhibitory)
input of at most 2α < 1.5 so that

36 ≡ w6,3g(y3)+ w6,5g(y5)− τ6 ≥ 1.5− 2α > 0.
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Figure 5. Behavior of one unit of the 6-unit network when (a)α = 1.0, aperiodic and (b)
α = 0.7, period= 2.88727 time units.

Now the equation driving the sixth unit at any time is

ẏ6 = −y6+36,

where36 = 1.5,1.5− α, or 1.5− 2α, depending on the signs ofy3 andy5, i.e.,
on which orthant (then-dimensional analog of a quadrant in two dimensions) of
phase space the trajectory is in. As36 is always positive, in a finite timey6 will
become positive, and from then on,g(y6) will be fixed at 1. In other words, the
system can be reduced to five dimensions with input from unit 6 incorporated into
τ . The equation for unit 1, for example, becomes

ẏ1 = −y1− g(y2)− g(y6)+ 3

2
= −y1− g(y2)+ 1

2
.

The net has reached a ‘boundary’ in parameter space, where unit 6 ceases to con-
tribute to the dynamics of the system. Furthermore, under these circumstances, units
1, 2 and 4 receive a constant input from unit 6 and behave as an isolated network,
i.e., the resulting 5× 5 W matrix is reducible. Amongst themselves, these three
units now form the simple inhibitory cycle of Glass and Pasternack (1978b), which
is known to oscillate periodically. Units 3 and 5 are then driven by the periodic
oscillation of units 1, 2 and 4 and follow the same rhythm.

In fact, even forα somewhat larger than34 the network has this same behavior.
The bifurcations that occur asα is increased again from 0.75 up to 0.8 are shown
in Fig. 6 for one of the units (y6). Note that asα increases, stable cycles disappear,
causing the network to fall into another stable cycle until at aboutα = 0.796 the
behavior appears not to settle onto a periodic cycle but remains irregular. Analysis
of these bifurcations is in progress and will appear in a future publication.
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Figure 6. Bifurcation diagram for the 6-unit network asα is varied. For each value ofα,
the network was integrated for 1000 steps (points on trajectories where one variable crosses
zero), the value of unit 6 at the last 500 steps being plotted. After choosing a random initial
condition for the smallest value ofα, the final state of the system at each value ofα is used
as initial condition for integration at the next incremented value.

The possible effect of a ‘lesion’ can be understood by considering a slight al-
teration of this example. Suppose that a seventh unit has threshold−3

2 and has
excitatory connections to units 5 and 6 with strengthβ, and that the thresholds for
units 5 and 6 are−1

2, instead of−3
2. Suppose that unit 7 is fixed in the ‘on’ state. Now

36 = βg(y7)− αg(y3)− αg(y5)+ 1

2
.

If β = 1, this reduces to the situation we had before. Suppose now that units 3 and
5 are damaged to the point whereα = 0.7. Then

36 = β − 0.7(g(y3)+ g(y5))+ 1

2
≥ 0.1,

as before. Unit 6 is fixed ‘on’ and the loop of units 1, 2 and 4 goes periodic. But
now a lesion in the structure represented by unit 7 will decrease the total strength,
β, of its output connections. Ifβ < 0.9,

36 < 1.4− 0.7(g(y3)+ g(y5)),

which is negative when units 3 and 5 are both ‘on’, so that unit 6 can switch states
again. If we damage unit 7 by the right amount, unit 5 (which had also stopped
switching) starts again, too. In simulations withβ = 0.89, the aperiodic behaviour
re-emerges, and the ‘lesion’ has eradicated the regular periodic tremor.
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In our 20- and 50-unit examples in Section 4, the number of fixed units increased
as the parameter decreased (Fig. 3) suggesting that the same type of dynamical
simplification is occurring as in the 6-unit example above. The phenomenon can
be understood in terms of the approach to boundaries of the central region in pa-
rameter space, where even before leaving the central region, the probability of a
unit becoming fixed in the ‘on’ or ‘off’ state (though not fixed in level of internal
activity) increases. The number of units contributing to the dynamics (and therefore
the effective dimension of the dynamics) decreases as synaptic efficacies in parts of
the network are weakened. This is a probabilistic statement: it clearly depends to
some extent on the particular structure and the particular trajectory.

7. PHYSIOLOGICAL PLAUSIBILITY OF THE MODEL

It is evident that the brain’s motor circuitry is a network. Several subcortical loops
involving many anatomical structures are involved in motor function in general and
tremor in particular [schematics of these may be found in, e.g., Graybiel (1991) and
Elble (1996)]. A cerebellar circuit involves the pontine nuclei, the inferior olive
and the thalamus, as well as motor cortex. The motor circuit of the basal ganglia,
which is directly implied in PD, also involves the thalamus and motor cortex. Yet
another circuit involves spinal cord neurons and feedback from the periphery, to
the cerebellum and thalamus, for example. If the details of the connections and
structures involved are still debated, the overall picture of a complex network with
multiple interacting loops is clear. It is also clear that many of the connections in
this network are inhibitory.

The input structure (putamen) and output structures (internal segment of the globus
pallidus and substantia nigra pars reticulara) of the basal ganglia are connected by
an inhibitory direct pathway and an indirect pathway that is excitatory in net effect
(involving two inhibitory links). These conflicting pathways are modulated by the
SNc, apparently by both excitation and inhibition of subpopulations of cells in the
putamen (Wichmann and DeLong, 1993). This modulation is weakened in PD by
loss of dopaminergic neurons in the SNc that project to the striatum (including
putamen). Thus, the particular damage that occurs in PD weakens the synaptic
efficacies of a part of the network. The net effect seems to be that the output
structures of the basal ganglia become overactive, and therefore keep the thalamus
inhibited. But how parkinsonian tremor arises in these circuits is still not clear.

Thalamic cells in the ventralis intermedius (Vim) have been observed to oscillate
at the frequency of the tremor observed in hands, feet and jaw in PD. Destruction
of a part of Vim often leads to a dramatic and long-lasting reduction in tremor.
However, cells have also been observed to fire in correlation with tremor in another
part of the thalamus, the ventralis oralis posterior (Vop), in the subthalamic nucleus,
the internal part of the globus pallidus and in motor cortex and the pyramidal tracts.
Vim, where surgical interventions are most effective, does not even receive inputs
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directly from the basal ganglia, but is really part of the cerebellar motor circuit.
Moreover, interventions involving a lesion of the globus pallidus or the subthalamus
can also suppress parkinsonian tremor (Elble, 1996).

This critical and proven involvement of several separate structures and circuits in
the production of the tremor suggests that it does not result simply from a particular
localized group of tremorgenic cells. Rather, it seems to result from abnormal op-
eration of an existing control system that involves interactions in a network of brain
structures. Feedback loops involving inhibition can produce oscillatory behavior in
dynamical systems, and the existence of such loops in the brain’s motor circuitry is
well established. Thus, it seems plausible that PD is a ‘dynamical disease’ in the
sense that it arises from normal tremor via bifurcations in a dynamical process. This
was previously suggested by Beuter and Vasilakos (1995b), where the reversibil-
ity of symptoms in PD by pharmacological and electrical interventions were also
argued to support the idea, though the model presented there was different.

The normal dynamical regime in the network discussed above should be one of
irregular activity. Everyone has a normal physiological tremor that is usually quite
small in amplitude and irregular in character, involving what seems to be random
firing of motor neurons (Fig. 1). Of course, amplitude generally increases when
tremor develops in PD, though the regular oscillations can sometimes be seen even
when amplitude is not abnormally large (Edwards and Beuter, 1996).

Tremor in subjects with PD can undergo changes over periods of minutes or sec-
onds. The higher amplitude regular oscillations can appear and disappear suddenly
or gradually (Gurfinkel and Osovets, 1973; Beuter and Vasilakos, 1995a; Edwards
and Beuter, 1996). This suggests that the parameters determining the dynamical
regime are also fluctuating, or that additional inputs are being given to the network
from other areas (voluntary commands or anxiety, for example, can alter tremor),
or that other systemic variables such as the ballistocardiogram are modifying the
dynamics via peripheral feedback (Beuter and Vasilakos, 1995b).

Of course, there are other types of regular tremor, such as essential tremor, that
have different etiologies. However, it is not unreasonable to suppose that these types
of tremor could also arise from changes in dynamical regime, but due to alterations
of different parameters. We do not consider this question further here.

To say that akinesia equals a fixed point attractor in the dynamics of the network
would no doubt be an oversimplification. However, the need for a large input to
dislodge a dynamical system from a deep basin of attraction at a fixed point is one
possible explanation for difficulty with initation of movement in PD. PD has been
classified into one predominantly tremorous type and one predominantly akineto-
rigid type. The distinction is not always very clear, however, and when levodopa
is given to patients with the latter type, they sometimes pass through a period
of tremor before the symptoms are relieved (Findley, 1993). This argues for an
interrelationship between the symptoms and suggests the presence of a dynamical
regime corresponding to tremor and another corresponding to akinesia, but does
not mean that these symptoms will react identically to treatment.
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8. DISCUSSION

Recent reviews have underlined the necessity of network models for understanding
basal ganglia functions [e.g., Alexander (1995) and Graybiel (1991)]. The model
presented here, though somewhat abstracted from the details of connections of
the basal ganglia and related structures, responds to this need. A number of recent
network models of the basal ganglia and motor function (Kwanet al., 1990; Mitchell
et al., 1991; Borrettet al., 1993; Contreras-Vidal and Stelmach, 1995; Suriet al.,
1997) have concentrated on voluntary movement and learning, whereas we tackle
an involuntary movement for the first time from a network perspective. In this
context, too, we take the approach that basal ganglia functions are understandable
as part of a larger motor network.

The simulations and analysis in the above sections provide a plausible mechanism
for dynamical changes in the motor circuitry of the brain that lead to regular tremor
and possibly even akinesia in PD. The basic observation is that as synaptic efficacies
of a group of units in the system are weakened (as for the dopaminergic neurons of
the SNc in PD), then dynamical simplification can take place. Network activity that
is normally irregular can become regular periodic oscillation or can stop altogether,
going into a fixed state.

Aspects of the model that seem necessary for transitions from irregular to regular
behavior are: the presence of inhibition, which is needed to prevent (by means of
frustration) approach to a fixed point; several interconnecting loops [which seem to
be necessary for aperiodic behavior to exist, see Mestlet al. (1996)]; saturation of
activity in units (which is necessary to keep behavior bounded, and is completely
plausible physiologically). These conditions are not very restrictive. The summing
of inputs by a unit to determine output is part of the neural network framework,
but in the context of general Boolean networks where this assumption is relaxed,
similar behavior and transitions are seen (Glass and Hill, 1998).

The irregular regime in the model resembles recordings of normal physiological
tremor at the periphery. The periodic regime looks increasingly like the regular
oscillations of tremor in PD as the period shortens. Long period behavior still looks
irregular over short intervals. It is estimated that the symptoms of PD emerge only
when 80–90% of the cells in the SNc are damaged (Hornykiewicz and Kish, 1987).
It could be argued that our simulations show a similar robustness in that short
period behavior, which really looks like tremor, becomes common only when the
α parameter is decreased below about 0.25.

Recordings of finger position in patients with PD who have rigidity or akinesia
but not the typical tremor may sometimes resemble fixed point behavior, as much
as can be expected in such a complex physiological system. Also, the difficulty in
initiating movement in PD is suggestive of the necessity to provide a strong external
input to a dynamical system stuck in a stable fixed state. Interestingly, the neural
network model of Borrettet al. (1993) for parkinsonian bradykinesia also associates
akinesia with a fixed point of its dynamics. The presence of transitions in patients
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with PD between regular and irregular tremor suggests that a fluctuating parameter
or an external input is causing a bifurcation in the motor circuit network’s dynamics,
which is understandable in terms of the model.

We know that other structures besides the SNc and other neurotransmitters besides
dopamine are affected by PD. We also pointed out above that the model ignores
many complexities. These facts do not undermine the observation that the features
of the physiological network which are retained produce behavior resembling in
many respects the physiologically observed behavior. A weakness of this model,
however, is that it does not reproduce the increase in amplitude along with transition
to periodicity that is usually associated with tremor in Parkinson’s disease.

The implication of this model that normal physiological tremor is the output of
an aperiodic but deterministic dynamical system (and there is evidence for ‘chaos’,
strictly speaking, in models of this type) is provocative. It has been argued that
normal hand tremor is a result of uncorrelated firing of motor neurons driving a
damped linear oscillator (Gantertet al., 1992; Timmeret al., 1993). Our model
suggests that this uncorrelated firing may be deterministic. This does not rule out
the possibility that other influences could be at work simultaneously in normal
physiological tremor, including stochastic ones, but it does suggest that there is an
aperiodic deterministic component to it. It is different from other potential models
of the transition such as a Hopf bifurcation from a fixed point (normal) to a periodic
orbit (parkinsonian). Transitions from fixed point to periodic behavior also occur
in our network model and it might be suggested that these transitions better reflect
the appearance of parkinsonian tremor. However, such transitions correspond to an
increasein the synaptic efficacies, rather than a decrease, and though the increase
in amplitude in parkinsonian tremor would be accounted for, other factors such as
akinesia would not and normal physiological tremor would then have to originate
elsewhere.

The current work places into focus fundamental questions concerning the nature
of normal physiological function. One view is that the normal state reflects a stable
steady state which is stabilized and maintained by numerous feedbacks. Here, the
steady state would reflect the targeted position of the finger (Fig. 1), but in other
settings the steady state would reflect the blood pressure, expired carbon dioxide,
cell count, etc. However, controlled physiological variables are not constant in time,
but display fluctuations about some mean value. Although it has been argued that
such fluctuations reflect deterministic chaos (Goldbergeret al., 1990), data analysis
methods used to demonstrate the idea present formidable challenges and claims
based on them have been contested (Kaplan and Glass, 1993). Whether or not
normal functioning reflects deterministic chaos, Goldberger has observed that loss
of complex dynamics is a common feature of human disease (Goldberger, 1996).
The current work proposes a hypothesis by which such loss of complexity can
occur.

Key physiological systems are regulated by multiple feedback circuits, and chaotic
dynamics have been observed in this type of system (Glass and Malta, 1990; Mestl
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et al., 1996). Changes in the structure of the system can lead to transitions from chaos
to periodicity and steady states (Glass and Pasternack, 1978a). In identifying the
changes in Parkinson’s disease with dynamical simplification in a dynamical system
we make the implicit assumption that the normal behavior may be associated with
deterministic chaos (operating in a range that might be typified by low amplitude
high-dimensional fluctuations). Loss of the complex feedback structure through
disease leads to bifurcations to more orderly dynamics.
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